

DNx-ARINC-664
—

User Manual

ARINC-664 Protocol Communications Interface
for the PowerDNA Cube or RACK series chassis

November 2023

PN Man-DNx-ARINC-664

© Copyright 1998-2023 United Electronic Industries, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
by any means, electronic, mechanical, by photocopying, recording, or otherwise without prior written
permission.
Information furnished in this manual is believed to be accurate and reliable. However, no responsibility
is assumed for its use, or for any infringement of patents or other rights of third parties that may result
from its use.

All product names listed are trademarks or trade names of their respective companies.

See the UEI website for complete terms and conditions of sale:
http://www.ueidaq.com/cms/terms-and-conditions

Contacting United Electronic Industries

For a list of our distributors and partners in the US and around the world, please contact a member of our
support team:

Support:
Telephone: (508) 921-4600
Fax: (508) 668-2350
Also see the FAQs and online “Live Help” feature on our web site.

Internet Support:
Support: uei.support@ametek.com
Web-Site: www.ueidaq.com
FTP Site: ftp://ftp.ueidaq.com

Product Disclaimer:
WARNING!

DO NOT USE PRODUCTS SOLD BY UNITED ELECTRONIC INDUSTRIES, INC. AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.
Products sold by United Electronic Industries, Inc. are not authorized for use as critical components in
life support devices or systems. A critical component is any component of a life support device or
system whose failure to perform can be reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness. Any attempt to purchase any United Electronic
Industries, Inc. product for that purpose is null and void and United Electronic Industries Inc. accepts
no liability whatsoever in contract, tort, or otherwise whether or not resulting from our or our
employees' negligence or failure to detect an improper purchase.
Specifications in this document are subject to change without notice. Check with UEI for
current status.

Mailing Address: Shipping Address:
249 Vanderbilt Avenue
Norwood, MA 02062
U.S.A.

24 Morgan Drive
Norwood, MA 02062
U.S.A.

http://www.ueidaq.com

DNx-ARINC-664 Board i
Table of Contents

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

Table of Contents
Chapter 1 Introduction . 1

1.1 Organization of this Manual . 1

1.2 DNx-ARINC-664 Board Overview. 3
1.2.1 ARINC-664 Receiver . 3
1.2.2 ARINC-664 Monitor . 3
1.2.3 ARINC-664 Transmitter . 3
1.2.4 Certification . 3
1.2.5 Software Support . 3

1.3 Features . 4

1.4 Indicators . 4

1.5 Specification . 5

1.6 ARINC-664 Overview . 6
1.6.1 DNx-ARINC-664 Applications . 6
1.6.2 ARINC-664 Network Overview . 7
1.6.3 OSI Model Structure . 10
1.6.4 ARINC-664 Packet Structure . 12
1.6.5 Bandwidth . 13

1.7 Device Architecture. 14
1.7.1 Device RTOS . 14

1.8 Wiring & Connectors . 15
1.8.1 Connecting to the ARINC-664 Network . 15

Chapter 2 Programming with the Low-level API . 16

2.1 About the Low-level API . 16

2.2 Low-level Functions . 16

2.3 Tutorial . 18
2.3.1 Initialization . 18
2.3.2 Configuration . 19
2.3.3 Send / Receive Messages . 20
2.3.4 Stop Cleanly. 28

2.4 UEI ARINC-664 XML Configuration . 29

Chapter 3 Tools and Diagnostics . 32

3.1 Diagnostic Panel for PowerDNA Explorer. 32

3.2 Device RTOS Processes . 33
3.2.1 Reception. 33

3.3 ARINC-664 Network Packet Inspection . 35

Appendix A . 38
A.1 Accessories . 38

DNx-ARINC-664 Board ii
List of Figures

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

List of Figures
1-1 The DNR-ARINC-664 Board..4
1-2 Example of the DNx-ARINC-664 in an ARINC-664 Network...6
1-3 Basic ARINC-664 Network (Logical Addressing Perspective).......................................7
1-4 The OSI Model for ARINC-664 Systems ...10
1-5 ARINC-664 Packet Structure...12
1-6 DNx-ARINC-664 Logic Block Diagram ..14
1-7 Connection diagram for the DNR-ARINC-664...15
2-1 Immediate (left), VMap (top right), aEvent (lower right)...20
2-2 DaqBios packet format for VMap refresh...22
2-3 VMap control & data ..23
2-4 VMap+ control & data payload ..23
2-5 ARINC-664 Configurator ...29
3-1 DNx-ARINC-664 Panel in PowerDNA Explorer ...32

DNx-ARINC-664 Board
Chapter 1 1

Introduction

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

Chapter 1 Introduction

This document outlines the feature set of the DNx-ARINC-664 board and its use
as an ARINC-664 communications interface.

1.1 Organization
of this Manual

This DNx-ARINC-664 User Manual is organized as follows:
• Introduction

This section provides an overview of the DNx-ARINC-664 avionics
interface board features, device architecture, and connectivity.

• Programming with the Low-Level API
Chapter 3 describes low-level API commands for configuring and using
the DNx-ARINC-664 series board for operating modes.

• Tools and Diagnostics
Chapter 4 describes available diagnostic tools and provides procedures
for troubleshooting the DNx-ARINC-664 in a system.

• Appendix - Accessories
This appendix provides a list of accessories available for use with the
DNx-ARINC-664 communication interface board.

DNx-ARINC-664 Board
Chapter 1 2

Introduction

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

Manual Conventions
To help you get the most out of this manual and our products, please note that
we use the following conventions:

Tips are designed to highlight quick ways to get the job done or to reveal
good ideas you might not discover on your own.

NOTE: Notes alert you to important information.

CAUTION! Caution advises you of precautions to take to avoid injury, data loss,
and damage to your boards or a system crash.

Text formatted in bold typeface generally represents text that should be entered
verbatim. For instance, it can represent a command, as in the following
example: “You can instruct users how to run setup using a command such as
setup.exe.”

Text formatted in fixed typeface generally represents source code or other text
that should be entered verbatim into the source code, initialization, or other file.

Examples of Manual Conventions

Before plugging any I/O connector into the Cube or RACKtangle, be
sure to remove power from all field wiring. Failure to do so may
cause severe damage to the equipment.

Usage of Terms

Throughout this manual, the term “Cube” refers to either a PowerDNA Cube
product or to a PowerDNR RACKtanglerack mounted system, whichever is
applicable. The term DNR is a specific reference to the RACKtangle, DNA to the
PowerDNA I/O Cube, and DNx to refer to both.

DNx-ARINC-664 Board
Chapter 1 3

Introduction

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

1.2 DNx-ARINC-
664 Board
Overview

The DNx-ARINC-664 is a 2 channel communications interface compatible with
ARINC-664 Part 7 (a.k.a. ARINC-664 and the Airbus variant). The
DNA-ARINC-664 and DNR-ARINC-664 versions are designed for UEI’s Cube
and RACKtangle I/O chassis respectively.
Channels may be configured as a single A or B channel or as one dual
redundant channel. The network implementation supports 10/100/1000BASE-T.
Each channel may operate as transceiver, transmitter, or receiver.

1.2.1 ARINC-664
Receiver

In input mode, the user may time tag inputs with resolutions as low as 10
microseconds. The input automatically provides error/integrity checking, but this
feature may be disabled in software if the application requires. Receive filtering
of virtual link (VL), port, and error properties is also supported.

1.2.2 ARINC-664
Monitor

Monitor mode allows the user to capture network traffic, providing the capability
of capturing select information with automatic filtering. Monitor mode will also
gather a variety of statistics from the bus/network. If desired, monitor mode may
be set to capture UDP network traffic statistics, regardless of whether it is
configured based on the ARINC-664 protocol.

1.2.3 ARINC-664
Transmitter

Transmit channels automatically configure traffic shaping via Bandwidth
Allocation Gaps (BAGs) that can be set for 1, 2, 4, 8, 16, 32, 64, or 128
millisecond timing. Transmission may be based on an automatic scheduler or in
one-shot asynchronous mode. Both unicast and multicast virtual links are fully
supported. The transmitter generates and tags consecutive Sequence
Numbers.

1.2.4 Certification The board is based on the Freescale 8347 processor running the DO-178
certified µC Operating System. In PowerDNA mode, the Cube/RACK itself also
uses µC/OS, so even though the units are not certified to DO-178, the fact that
the operating system already is will dramatically reduce certification time.
Advanced users may also wish to implement special functions in the board’s
firmware which can be accessed with custom µC code. The Cube/RACK is well
supported with a variety of debugging tools, and additionally a dedicated
RS-232 diagnostic port is provided on the board allowing easy access to the
lowest levels of the board’s functionality.

1.2.5 Software
Support

Software for the DNx-ARINC-664 series is provided with the UEI Software Suite,
which includes an easy-to-use API for Windows and Linux.

DNx-ARINC-664 Board
Chapter 1 4

Introduction

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

1.3 Features The DNx-ARINC-664 features are as follws:
• Compatible with ARINC-664 Part 7 (a.k.a. ARINC-664 and the Airbus

variant)

• 2 independent or 1 dual redundant channels

• 100 BASE-T default (10/100/1000BASE-T capability)

• Transmitter and/or Receiver functions

• Extensive error detection

• Extensive filtering and traffic scheduling

• Tested to withstand 5 g Vibration, 50 g Shock, -40 to +85°C
Temperature, and Altitude up to 70,000 ft or 21,000 meters

• Weight of 150 g or 5.3 oz for DNA-ARINC-664; 162 g or 5.7 oz for DNR

1.4 Indicators The Rack version of the DNx-ARINC-664 is shown in Figure 1-1.

Figure 1-1 The DNR-ARINC-664 Board

DB-9 (female)
9-pin debug connector

Status LEDs

DNR bus
connector

Access Port
ARINC-664 Bus Connector (A)

ARINC-664 Bus Connector (B)

DNx-ARINC-664 Board
Chapter 1 5

Introduction

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

1.5 Specification The technical specification for DNx-ARINC-664 is provided in Table 1-1.
Table 1-1 . DNx-ARINC-664 Technical Specifications

Configuration
Number of channels 2: supports A only, B only or dual redundant

Ethernet BASE 10 1000 BASE-T

Channel functions Transmit, Receive or Monitor

VLs supported Up to 2000 VLs or ports with up to 664 active

Underlying Processor Freescale 8347 running DO-178 certified OS

Receive Specifications
Time tagging resolution 10 μS

Error/Integrity checking Integrity, Sequence Number (SN)

Filtering VL, Port and error detection filters

Monitor Specifications
Configuration

Error Checking

Statistics Gathering Counters: PHY, E , IP, UDP, A

Transmit Specifications
Traffic shape via BAG 1, 2, 4, 8, 16, 32, 64 or 128 m

Transmission scheduling 0 μS resolution scheduling of

Transmission configuration Unicast and multicast addressing

Sequence Numbers Auto- equenced onsecutive

General Specifications
Debugging options via Cube/RACKtangle chassis backplane or

directly to board via RS-232 port

est

Operating temperature tested -40 °C to +85 °C

Vibration IEC 60068-2-6
EC 60068-2-64

5 g, 10-500 Hz, sinusoidal
5 g (rms), 10-500 Hz, broad-band random

Shock IEC 60068-2-27 50 g, 3 ms half sine, 18 shocks @ 6 orientations
30 g, 11 ms half sine, 18 shocks @ 6 orientations
30 g, 11 ms half sine, 18 shocks @ 6 orientations

Humidity 5 to 95%, non-condensing

Power consumption 6 Watts, maximum

DNx-ARINC-664 Board
Chapter 1 6

Introduction

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

1.6 ARINC-664
Overview

The ARINC-664 standard defines an aircraft data network in 8 parts. Part 71 of
the standard (ARINC-664P7) specifies a deterministic network on the OSI data
link layer.
The UEI DNx-ARINC-664 board supports the standard ARINC-664
specification, but does not support the Boeing EDE extension.
ARINC-664 is similar to ARINC-429, ARINC-629, MIL-STD-1553 in that it allows
any two avionics devices to communicate reliably and deterministically within a
specific time-interval across a fault-tolerant dual-redundant bus but with faster
rates of communication, less wire, and lower cost using COTS components.

1.6.1 DNx-ARINC-
664
Applications

The DNx-ARINC-664 can be used to send, receive, or report traffic on an
ARINC-664 network. In practice, the DNx-ARINC-664 is used for the following
applications:
• Test and debug of avionics network equipment during development, such as:

• passively monitoring traffic (data/statistics) from specific ARINC-664
ports

• actively inserting traffic onto the bus to provide input to equipment
• Emulate real plane traffic for physical avionic equipment (e.g., display LRUs)

of commercial aircraft simulator(s)

Figure 1-2 shows an example of multiple avionics devices emulated by the
DNx-ARINC-664:

Figure 1-2 Example of the DNx-ARINC-664 in an ARINC-664
Network

The DNx-ARINC-664 provides the following capabilities in an ARINC-664
network:

• emulation of the ARINC-653 endsystem, partition, virtual links, & ports
• filtering of received message by address and error
• scheduling transmission and periodic retransmissions required by the

underlying ARINC-664 communication protocol
The DNx-ARINC-664 board is configurable by XML into the mode you require.

1.Aeronautical Radio Incorporated, ARINC Specification 664 P7-1: Aircraft Data Network Part 7 -
Avionics Full-Duplex Switched Ethernet Network. AEEC, Annapolis, MD: 2009.

Emulated Aircraft Computer System 2

Port 1

Partition 1

Port 2

EndSystem 1

Port 3

Partition 2

In
te

rfa
ce

Av
io

ni
cs

Su

bs
ys

te
m

In
te

rfa
ce

Av
io

ni
cs

Su

bs
ys

te
m

VL 1

VL 2

VL 3

ARINC-
664

Switch

Emulated Port 1
Emulated E/S 2

Emulated Port 1

Emulated Port 2

Emulated E/S 3

VL 1

VL 3

VL 2

Aircraft Computer System 1

Emulated Aircraft Computer System 3

DNx-ARINC-664 Board

Emulated Partition 1

Emulated Partition 1

. . .

. . .

DNx-ARINC-664 Board
Chapter 1 7

Introduction

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

Once configured, the DNx-ARINC-664 allows your program to abstract away
everything to ARINC-664 messages, allowing you to communicate using a
handful of simple function calls documented in the PowerDNA API.
Refer to Chapter 2 for more information about the DNx-ARINC-664 API and
XML configuration.
The remainder of this section explains the structure and behavior of ARINC-664
network nodes, as well as defines the most common attributes, terms and
definitions.

1.6.2 ARINC-664
Network
Overview

Figure 1-3 shows an example of aircraft network topology:

Figure 1-3 Basic ARINC-664 Network (Logical Addressing
Perspective)

ARINC-664 Part 7 describes the data network as containing one or more of the
following:

• EndSystem (ES): connects an aircraft computer system to the data
network. Each endsystem must have a unique address in the network.
An aircraft computer system will generally have multiple subsystems
and applications, each of which is isolated within an ARINC-653
partition. These applications communicate with one another by
transferring data over sampling or queuing (S/Q) communications ports
defined by ARINC-653. ARINC-664 Part 7 additionally defines service
access ports (SAP). Data from one port on one endsystem is sent
across the network to a receiving port on another endsystem via a
unidirectional logical channel called a Virtual Link (VL).

• Switch: transfers (and polices) data traveling between end systems.
Policing is the process of checking that traffic flowing from one ES to
another ES complies with rules of ARINC-664 networks (traffic shaping)
and ensures that the network is deterministic even if an ES
malfunctions. Each switch pre-loads a configuration file with all
endsystems and their parameters (e.g., VLs, etc).

Aircraft Computer System 2

Port 1

Partition 1

Port 2

EndSystem 1

Port 3

Partition 2

In
te

rfa
ce

Av
io

ni
cs

Su

bs
ys

te
m

In
te

rfa
ce

Av
io

ni
cs

Su

bs
ys

te
m

VL 1

VL 2

VL 3

ARINC
-664
Switch

Port 1

Partition 1E/S 2

ARINC
-664
Switch

Port 1

Partition 1

Port 2

E/S 3

VL 1

VL 3

VL 2

Aircraft Computer System 1

Aircraft Computer System 3

DNx-ARINC-664 Board
Chapter 1 8

Introduction

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

1.6.2.1 Endsystems &
Partitions

Each endsystem has these characteristics:
• Each endsystem must have a unique address in the network consisting

of 16 bits from an 8-bit Network ID plus 8-bit End System ID and an
additional 8-bit Partition ID.

• An endsystem can have 0 to 128 VLs.
Endsystem addresses are represented in IP address notation (Section 1.6.3):

• Unicast IP addresses (for source and destination) addresses are
10.[8-bit Network Id].[8-bit End System Id].[8-bit Partition ID]. These
point-to-point addresses are always from 10.0.0.0 to 10.255.255.255.
For example, 10.1.2.3 is Network 1, End System 2 and Partition 3.

• Multicast IP addresses (for destination addresses) are 224.224.[VLID]
with the 16-bit VLID is split into two 8-bit octets. These point-to-multi-
point addresses are always from 224.224.0.0 to 224.224.255.255.

1.6.2.2 Virtual Link Each Virtual Link (VL) has these characteristics:
• Each is an input or output (unidirectional).
• Each has one or more receiving partitions (via unicast or multicast).
• Each VL has only one source address on the network (unique sender).

Each sending VL can operate in "normal" (1 S/Q ports per VL) or
"subVL" mode (one VL can be assigned 2, 3, or 4 Q/S ports per subVL).
Each subVL is assigned an individual subVL ID and a sending queue.

• Each VL must send packets in the order that they are queued. A VL
divided into 2, 3, or 4 sub-VL queues and sends using a round-robin
algorithm.

• Each VL can transmit once every BAG=1, 2, 4, 8, 16, 32, 64, or 128 ms.
• SkewMax should be between 0 and 253*BAG
• Ethernet frame length (Lmax) should be between 64 and 1518 bytes

Virtual Links are represented in Ethernet MAC address notation (see Section
1.6.3). The destination address has a 16-bit VLID in the last two octets
[03:00:00:00:[VL:ID]]. The source MAC address format contains the source
(transmitter) information: [02:00:00:8-bit Network ID:8-bit Equipment ID:8-bit
Bus ID (20 is A, 40 is B)].

1.6.2.3 ARINC-664
COM Ports

There are three types of communication ports defined in ARINC-664P7:
• Sampling (SMP) as defined in ARINC-653 for avionics data.
• Queuing (QUE) as defined in ARINC-653 for avionics data.
• Service Access Ports (SAP) defined in ARINC-664P7 for other uses.

In TCP/IP protocol notation this is a 16-bit UDP port from 0-65535 (see 1.6.3).
Sampling ports have the following characteristics:

• Connectionless UDP with no flow or error management.
• Data is transmitted as the payload of a single non-fragmented UDP

packet. Received data is of a fixed size that is preconfigured. The
largest maximum data size is 1471 bytes (when Lmax=1518B).

DNx-ARINC-664 Board
Chapter 1 9

Introduction

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

• Multiple partitions on an endsystem may read from the same sampling
port’s received message buffer. This buffer is not cleared upon read.
This receive buffer has a freshness indicator. Only a single buffer exists
and is overwritten when a new message arrives.

Queuing ports have the following characteristics:
• Queuing ports use connectionless UDP with no acknowledgment.
• Data is transmitted as the payload of a single fragmentable UDP packet.

Data size is set at transmission time. Maximum data size is 8192 bytes.
• When a message is completely received, it is added to a received

message FIFO queue (depth preconfigured) where it can be retrieved
by any partition. Retrieving a message removes it from the buffer.

• On buffer overflow (configured receive buffer too small) the message is
discarded and an error status is provided to the receiving partition.

• IP fragmentation occurs when data exceeds Lmax - 47 bytes and is
transmitted in fragments (up to 8 fragments max).
As an example, an 8192 byte queuing message exceeds 1471 bytes
and would require (8+8192) / 1479 bytes = 6 fragments to transmit when
Lmax = 1518. Refer to Figure 1-5 for packet descriptions.

• The loss of a fragmented packet during reception causes the entire
reassembly buffer to be discarded.

Service Access Ports have the following characteristics:
• SAPs provide UDP services to communicate with a Compliant Network,

and access to Compliant Network is done through a gateway or router.
• Messages are identical to Queuing messages, but the destination

address and port are user-configurable and translated by the Gateway.
• SAPs are commonly used for management functions that include an

SNMP agent, booting from TFTP, or ARINC 615A data loading.

1.6.2.4 Connections On an ARINC-644 network, unique connections are identified as follows:
• Sampling and queuing communication port messages are unique for the

quintuplet srcIP:srcPort + dstMAC(VL):dstIP:dstUdpPort below:

• A transmitting service access point port (SAP) is identified by the
quadruplet srvMAC(VL):srcIP:srcPort->dstMAC(VL). The destination
dstIP:dstPort is set by the user application for a Compliant Network.
A receiving SAP is configured as interface:dstMAC(VL):dstIP:dstPort.

Source IP Address Source UDP Port

VL (VLID in destination MAC address)

Dest. IP Address UDP Port

DNx-ARINC-664 Board
Chapter 1 10

Introduction

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

1.6.3 OSI Model
Structure

The following descriptions are in reference to the OSI 7-layer model for network
communication. Refer to Figure 1-4 for layer stack:

Figure 1-4 The OSI Model for ARINC-664 Systems

1.6.3.1 OSI Layer 1 Layer 1 is the Physical layer defining the hardware connection between sender
and receiver. Note that it transports raw bits rather than logical data. ARINC 667
specifies that the IEEE 802.3 Ethernet standard shall be used for the physical
layer. Each ARINC-664 device has a pair of physical interfaces, one used for
channel/bus/network A, and for redundancy one for network B.
In practice the DNx-ARINC-664 implements two independent bus connectors
that are IEEE 802.3ab 10/100/1000BASE-T Ethernet ports, that accept twisted-
pair copper wiring with both receive and transmit, or “Ethernet cable”, as
explained in architecture Section 1.7; for wiring, see Section 1.8.

1.6.3.2 OSI Layer 2 Layer 2 is the Data Link layer. The data-link layer transfers entire frames of
logical data from sender to receiver, at least as far as Layer 3 is concerned. In
the Ethernet standard the Data Link layer (DLL) is composed of two parts: the
medium access control (MAC) and logical link control (LLC) sublayer.
The MAC sublayer provides mechanisms to access the physical medium
including packet switching and scheduling to transmit data (as Ethernet frames)
assembled by the LLC’s multiplexing of data from Layer 3. The physical layer
and MAC sublayer are designed to be embedded in hardware, so that changing
from twisted-pair copper to fiber or other medium is done by changing the COTS
part. Higher layers are implemented in software.
The IEEE 802.3ab MAC sublayer specifies use of the carrier sense multiple
access with collision detection (CSMA/CD) protocol to choose which device will
have exclusive access to the physical medium to transmit, but CSMA/CD alone
is non-deterministic due to collisions that can cause indefinitely long contention
for the transmission medium by devices with long transmissions. To ensure
deterministic on-time delivery of data between devices on the avionics network
ARINC-664 uses the Virtual Link mechanism in the data-link layer. The Virtual
Link is a logical communication channel which guarantees bandwidth by limiting
one transmission of 1518 bytes or less (<122 µs at 100 Mbps) once every
1-128 ms; Virtual Links are explained in more detail in later sections. ARINC-664
also adds a frame sequence number to the end of the Ethernet frame for
redundancy management of identical frames sent across bus A and B.

Physical Signaling

Layer 2: Data-Link MAC, LLC, and
ARINC-664 VL

Layers 5 to 7

Layer 1: Physical

Session to Application Layers
determined by application

IP or ICMP (limited)

Layer 4: Transport UDP (limited)

Layer 3: Network

DNx-ARINC-664 Board
Chapter 1 11

Introduction

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

1.6.3.3 OSI Layer 3 Layer 3 is the Network layer. ARINC-664 specifies a connectionless
communication network with no routing (gateways for SAP are not considered)
with a very restricted IP header carrying either a ICMP ECHO or a UDP
datagram. The IP header must have the following flags set or be discarded:
Version=4, Type of Service=0, Flag={0,1,2}, TTL=1 (hop),
Protocol={1:ICMP,17:UDP}.
The Internet Control Message Protocol is restricted to ECHO datagrams only
corresponding to ICMP type={0,8} code=0, which are used to “ping” an
endsystem to see if it is online; all other types and codes are not used.

1.6.3.4 OSI Layer 4 Layer 4 is the Transport layer. ARINC-664 defines UDP as the only transport
layer protocol to carry a data payload. The UDP CRC is not used, and the length
can be set to as low as the 4 byte header with no data up to 4+8192 bytes where
8192 bytes is defined as the maximum payload for a queuing port.

1.6.3.5 OSI Layers
5 to 7

Layers 5 to 7 above the Transport layer are not policed by ARINC-664 switches,
but the respective data formats are found in other avionics standards.

DNx-ARINC-664 Board
Chapter 1 12

Introduction

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

1.6.4 ARINC-664
Packet
Structure

Figure 1-5 illustrates an ARINC-664 network packet as a UDP datagram.
The traditional Ethernet UDP datagram structure varies for ARINC-664 packets
in the following ways:

• An Ethernet frame contains an ARINC-664 sequence number (SN),
0-255.

• Ethernet MAC addresses use the ARINC-664 addressing scheme.
• Padding is added to ensure that the Ethernet frame size is at least 64

bytes, and that the Ethernet length field is at least 46 bytes. A sampling
port carrying 1 byte payload: 14+20+8+1payload+16padding+1+4 = 64, for
example, or a fragment carrying 1 byte: 14+20+1+24padding+1+4 = 64.
The minimum frame size is 64 bytes whether the packet is carrying up to
17 bytes of UDP payload: 14+20+8+17payload+1+4 = 64 byte frame.

• The IP header is simplified.
- VER=4, ToS=0, TTL=1, Protocol is only UDP (or ICMP ECHO)
- IP addresses use ARINC-664 EndSystem & Partition addressing
scheme.

• The UDP CRC is ignored. UDP payload may not exceed 8192 bytes.

Figure 1-5 ARINC-664 Packet Structure

Et
he

rn
et

(D

at
a-

Li
nk

)

 64-1518 bytes (Lmax)
 14 45-1499 bytes 1 4
 7 1 6 6 2 20 1-1479 bytes 0-24 1 4 12

 Pr
ea

m
bl

e

SF
D

D
ST

 M
A

C

SR
C

M
A

C

Le
ng

th

46
-1

50
0

[B
yt

e]

IP
 H

ea
de

r

IP Payload

Pa
dd

in
g

to

to
ta

l 6
4B

A
R

IN
C-

66
4

Se
qu

en
ce

FC

S

In
te

r-f
ra

m
e

G
ap

IP
 (N

et
w

or
k)

 20B 1 to 1479 bytes
 4b 4b 8b 16b 16b 3b 13b 8 8 16 32 32

 V
ER

=4

IH
L

To
S=

0

Le
ng

th

21
-1

49
9

[B
yt

e]

Fr
ag

ID

Fl
ag

0=

0,
 1

=D
F,

 2
:M

F

Fr
ag

 o
ffs

et

TT
L=

1

Pr
ot

oc
ol

1:

 IC
M

P
17

: U
D

P

FC
S

SR
C

IP

D
ST

 IP

IP Payload

U
D

P
(T

ra
ns

po
rt)

 8 bytes 0-8192 bytes 2 2 2 2

 SR
C

Po
rt

D
ST

 P
or

t

Le
ng

th

8-
82

00
 [B

yt
e]

CR
C=

0
O

pt
io

na
l i

n
A

RI
N

C-
66

4:

da
ta

+h
dr

 in
 ip

v4

ARINC-664 Payload

(split into fragments of 8+1471 bytes or less per IP packet)

DNx-ARINC-664 Board
Chapter 1 13

Introduction

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

1.6.5 Bandwidth Bandwidth utilization for 17 byte and 1471 byte payloads is:
• 17 byte payload: 100Mbps/(8bits)/(84 octets/frame)=148810 frames/sec

or effectively 148810 FPS * 17 Bytes/frame = 2,529,770 B/s (2.4 MiB/s)
• 1471 byte payload: 100Mbps/(8 bits)/(1538 octets/frame)=8127 frames/sec

or effectively 8127 FPS * 1471 Bytes/frame = 11,954,817 B/s (11.4 MiB/s)

8127 frames / 1000 msec is about 8 sampling messages of 1471 bytes per ms,
and at 17 bytes that is 148 sampling messages per millisecond.

DNx-ARINC-664 Board
Chapter 1 14

Introduction

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

1.7 Device
Architecture

This section describes the hardware used in the DNx-ARINC-664 board.
A block diagram of the board is shown in Figure 1-6.

Figure 1-6 DNx-ARINC-664 Logic Block Diagram

The front-end of the DNx-ARINC-664 provides five ports and four status LEDs:
• Two TIA/EIA-568 sockets to connect ARINC-664 bus A/B to the board
• One RS-232 debug port for firmware updates or debugging
• One SD-card port (for future use with storage media logic)
• One SYNC port (for future use with triggering and events logic)
• Four LEDs to provide status information

The TIA/EIA-568 sockets for Bus A and Bus B are wired into a
10/100/1000BASE-T Ethernet chip set that is forced into 100BASE-TX mode
without auto-negotiation that allows for a fast initialization.

The Ethernet ports are wired into a 400MHz processor that manages
communication with the ARINC-664 bus. This processor operates
independently and is connected to a logic chip that interfaces it to the Cube/
RACK’s DNA bus which the card is plugged into. This logic chip provides an
access mechanism to exchange commands, data, and interrupts.

To indicate that a new command/data is ready for exchange, either the
processor or the Cube/RACK’s main CPU (managing the DNA bus) will write to
a doorbell register which triggers an interrupt to perform the exchange. The
logic chip also provides access to the SD & SYNC ports.

The 400MHz processor is additionally directly connected to the RS-232 debug
port, from which it can be debugged or updated.

1.7.1 Device RTOS The DNx-ARINC-664 incorporates a DO-178 certified real-time operating
system “MicroC/OS” that facilitates ARINC-664 emulation. Important processes
like the reception routine and statistic collection are described in “Device RTOS
Processes” on page 33.

FPGA/DSP block

DNx-ARINC-664 board

control

data
IRQ

AR
IN

C
 6

64
In

te
rfa

ce
 0

R
S-

23
2

D
eb

ug
 P

or
t

AR
IN

C
 P

ro
to

co
l S

la
ve

 P
PC

 C
PU

 (4
00

M
H

z)

St
an

da
rd

 D
N

A
B

us
 In

te
rf

ac
eBus A

Bus B

Bus Multiplexor

AR
IN

C
 6

64
In

te
rfa

ce
 1

SD
 &

Sy
nc

 P
or

t
DNA-side Logic IRQ

Boot/Store Flash

128MB RAM

ARINC-side Logic

Event & Media Logic

DNx-ARINC-664 Board
Chapter 1 15

Introduction

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

1.8 Wiring &
Connectors

The following ports are located on the front-end of the DNx-ARINC-664 board:
• RS-232 female connector to debug the DNx-ARINC-664.
• Dual TIA/EIA-568 female sockets accepts Category 5/6 straight-through

unshielded twisted-pair (UTP) wire - the same Fast Ethernet or Gigabit
Ethernet copper wiring that is used to connect PCs to LANs.

The socket closer to the RS-232 port corresponds to Bus B. The socket
closer to the SYNC/LED port is Bus A. See Figure 1-1 for bus labeling.
Note that to connect to an avionics interface that uses an optic fiber link
please contact Technical Support for a recommended media converter.

• SYNC port hardware for synchronization and triggering.

1.8.1 Connecting to
the ARINC-664
Network

To connect the DNx-ARINC-664 board, use the following procedure:
1. Verify the DNx-ARINC-664 board is powered down.

2. Connect the network interface(s) to the switch(es) (Figure 1-7):
- Connect “Bus A” network interface port to the Switch for Bus A.
- Connect “Bus B” network interface port to the Switch for Bus B.

3. Apply power to the RACK or Cube IOM. The board will link to the
network.
Note: The board performs a fast link, and disconnecting either network
cable will disable that network interface until it is power-cycled.

4. Confirm that network link lights are on as orange (10/100Mbps) or
green. You are now connected to the ARINC-664 network.

Optionally, you can connect to the serial debug port using MTTTY (or PuTTY) at
57600 baud, no parity, 8 data bits, 1 stop bit to confirm connectivity.

Figure 1-7 Connection diagram for the DNR-ARINC-664

NOTE: It is preferred that both the Bus A and Bus B Switch be certified ARINC-
664 network switches that are properly pre-configured for the avionics
network. COTS Ethernet switches will act as hubs which degrade
overall performance.

Pin Signal
1 Tx+
2 Tx-
3 Rx+
4 (none)
5 (none)
6 Rx-
7 (none)
8 (none)

Switch
for Bus A

Switch
for Bus B

DNx-ARINC-664 Board
Chapter 2 16

Programming with the Low-level API

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

Chapter 2 Programming with the Low-level API

This chapter provides the following information about programming the
DNx-ARINC-664 using the low-level API:

• About the Low-level API (Section 2.1)
• Low-level Functions (Section 2.2)
• Tutorial (Section 2.3)
• UEI ARINC-664 XML Configuration (Section 2.4)

2.1 About the
Low-level API

The low-level API provides direct access to the DAQBIOS protocol structure and
registers in C. The low-level API is intended for speed-optimization, when
programming unconventional functionality, or when programming under Linux or
real-time operating systems.
UEI also offers a high-level Framework API for use when programming in
Windows OS; however, DNx-ARINC-664 is not supported in the Framework and
must be programmed using the low-level API.
For additional information regarding low-level API, refer to the “PowerDNA API
Reference Manual” located in either of the following directories:

• On Linux systems:
<PowerDNA-x.y.z>/doc

• On Windows systems:
Start » All Programs » UEI

2.2 Low-level
Functions

Low-level functions are described in detail in the PowerDNA API Reference
Manual. Table 2-1 provides a summary of DNx-ARINC-664-specific functions.

Table 2-1 Summary of Low-level API Functions for DNx-ARINC-664

Function Descripti on

DqAdv664AddPort Adds a Sampling, Queuing, or Service Access Port to a
VL.

DqAdv664AddVL Adds a VL.

DqAdv664BusControl Controls ARINC bus parameters.

DqAdv664ClearConfig Deletes the entire configuration.

DqAdv664ConfigEvents Configures asynchronous events for the DNx-ARINC-664.

DqAdv664Enable Enables operation.

DqAdv664EnableVLPort Enables or disable VLs or Ports.

DqAdv664GetBusStat Gets transceiver statistics accumulated during operation.

DqAdv664GetDeviceInfo Gets the device information for the DNx-ARINC-664 board
as stored in the pAR664_DEV_INFO structure.

DNx-ARINC-664 Board
Chapter 2 17

Programming with the Low-level API

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

DqAdv664GetHandle Gets a VL or port handle by their ID.

DqAdv664RecvMessage Gets a Sampling or Queuing message.

DqAdv664RecvMessageHdr Gets a Sampling, Queuing, or SAP message and
headers.

DqAdv664SendMessage Puts a Sampling or Queuing message.

DqAdv664SendMessageHdr Puts a Sampling, Queuing, or SAP message and headers.

DqAdv664SendScheduleTable Sends the transmitter scheduler table for high
performance bin-based scheduling.

DqAdv664SetConfig Configures from file.

DqAdv664ValidateVlPortCfg Validates parameters in a AR664_VL_CFG or
AR664_PORT_CFG and performs boundary-checking
functions.

DqAdv664VLPortStatus Gets VL or port status for a specific handle.

Table 2-1 Summary of Low-level API Functions for DNx-ARINC-664 (Continued)

Function Descripti (Continued) (Continued)on

DNx-ARINC-664 Board
Chapter 2 18

Programming with the Low-level API

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

2.3 Tutorial The following tutorial provides a brief overview of how to set up and use your
DNx-ARINC-664 using the low-level API.
For best results, use this tutorial in conjunction with an actual code example,
which can be found in either of the following directories:
• <PowerDNA-x.y.z>/src/DAQLib_Samples/Sample664_xml (Linux)
• %PDNAROOT%\Examples\Visual C++\ARINC\Sample664_xml (Windows).

The following topics are explained in this tutorial:
• Initialization

▪ Initializing the Cube or RACK and enabling DNx-ARINC-664 board(s).
• Configuration

▪ Clearing any existing configuration from previous runs.
▪ Adding each VL and associated Port with a function call.
▪ Adding all VLs and associated Port from an XML file.

• Operation: Send / Receive Messages
▪ Sending and receiving messages in simple mode or VMap mode.

• Stop Cleanly
▪ Disabling boards cleanly.

2.3.1 Initialization To initiate communication with the RACK or Cube, you must first get a DAQLib
handle for the IOM by calling DqOpenIOM():

// Connect to the IOM and obtain a library handle for the connection

DqOpenIOM("192.168.100.2", DQ_UDP_DAQ_PORT, 1000, &hd, &DQRdCfg);

DNx-ARINC-664 Board
Chapter 2 19

Programming with the Low-level API

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

2.3.2 Configuration Prepare to configure the DNx-ARINC-664 card by clearing any existing
configuration from its memory:

Configure the VLs and ports by creating an XML configuration file and specifying
its path to DqAdv664SetConfig() call as shown in the following code
snippet.

NOTE: To create the XML file, use the UEI ARINC-664 Configurator tool or use
one of the <config>.xml samples in Sample664_xml as a template.
Refer to “UEI ARINC-664 XML Configuration” on page 29 for a list of
programmable configuration attributes and for more information about
the ARINC-664 Configurator.

The handle_tbl array of AR664_CFG_HANDLES contains the ARINC-664 VL/
Port handle for each entry, which will allow you to address those ports later. See
the definitions for AR664_VL_CFG and AR664_PORT_CFG in powerdna.h for
details.
You can add more VLs/ports later at runtime using the DqAdv664AddVL(),
DqAdv664AddPort(), and DqAdv664ValidateVlPortCfg() function calls
described in the PowerDNA API Reference Manual. The maximum number of
active ports is 664; processing limits this to 128 ports at medium load, and 64
ports for heavy load for revision 1 boards.
DqAdv664SetConfig() returns a set of VL/Port handles, and with these you
can optionally configure transmission VMap or reception aEvent modes; these
modes are explained in Section 2.3.3.
Finally, enable operation to allow the card to receive or send messages as
follows:

// Clear the configuration on both bus A and B

DqAdv664ClearConfig(hd, DEVN, AR664_VL_USE_A|AR664_VL_USE_B);

// Enable both ARINC-664 network interface A and B (bus A and B)
// and create variables for the next setconfig call

AR664_ARCFG AR664NetworkInterfaceConfiguration = {
 (AR664_CTRL_ENABLE_A|AR664_CTRL_ENABLE_B),
 (AR664_CTRL_ETH100_A|AR664_CTRL_ETH100_B)};

int size_tbl;
AR664_CFG_HANDLES *handle_tbl;

// Set the configuration with the above network interface config,
// VL/Ports from my_file.xml, and where to return a handle table and size

DqAdv664SetConfig(hd, devn, 0, 0, &AR664NetworkInterfaceConfiguration,
 "my_file.xml", &size_tbl, &handle_tbl);

// Enable operation on a DNx-ARINC-664 board

DqAdv664Enable(hd, 0, AR664_VL_USE_A|AR664_VL_USE_B);

DNx-ARINC-664 Board
Chapter 2 20

Programming with the Low-level API

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

2.3.3 Send / Receive
Messages

The DNx-ARINC-664 board can send or receive messages in three ways:
(1) Immediate mode; (2) Variable Data Map or VMap+; (3) Asynchronous mode.
The difference between the modes is described below with code snippets in the
following sections. Figure 2-1 is provided for reference:

• Immediate mode: each function call is directed to a single ARINC-664
port. The function call gets received data or puts transmit data and
returns port status. Practical for use with tens of SMP/QUE/SAP/ICMP
ports.

• VMap/VMap+: each variable-size data map contains multiple receive &
transmit ARINC-664 ports that are refreshed simultaneously per
function call. Designed to perform a bulk update of sampling ports of
small data size in a single call and is ideal for frequently refreshed
transmit ports. Each legacy VMap requires a fixed list of ARINC-664
ports to be configured before DqAdv664Enable, and is practical for
tens to a hundred ports. VMap+ allows ports to be set dynamically at
runtime (VMap is only at configuration time) and practical for refreshing
hundreds of ports.

• Asynchronous Events or aEvent mode for ARINC-664 reception only:
the IOM can forward messages received from the ARINC-664 bus
directly to the PC, but requires a separate listening thread on the PC.

Figure 2-1 Immediate (left), VMap (top right), aEvent (lower right)

PC
RecvMessage
(blocking call)
(data,status)

SendMessage
(blocked)
(status)

IOM

(process)

(process)

PC
Refresh (tx-data)
(blocking call)
(optional rx-data)

IOM

(process)

PC
(thread sleep)
(rx-data, status)

IOM
(event)

DNx-ARINC-664 Board
Chapter 2 21

Programming with the Low-level API

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

2.3.3.1 Immediate
Mode

To send messages, call DqAdv664SendMessage() using the ARINC-664 port
handle. The following example shows how to do this for our previously-
configured sampling port:

For this example, let’s assume that we also set up a VL to receive, which has a
corresponding Port named myRxP1hdl.
To receive messages, call DqAdv664RecvMessage() for the port as described
for the following sampling port:

If a message is available, it will be stored in the message_r buffer.
The status variable returns the result of the send or receive. Refer to the API
documentation for meaning of the bits, along with how to interpret the written
and available variables; variables’ meaning depends on the port type.
Immediate mode works on all platforms and is designed for debug and test.

// Set up variables to return send status, and a message

int written;
uint32 available, status;
uint8 message_s[AR664_MAX_MSG_SZ_N] = "my message";

// Send the message

DqAdv664SendMessage(hd, 0, myTxP1hdl, 0, myTxP1.d_size,
 message_s,
 &written, &available, &status);

// Set up variables to return send status, and a message buffer

int received;
uint32 available, status;
uint8 message_r[AR664_MAX_MSG_SZ_N];

// Receive a message into the message buffer

int received, available, status;
uint8 message_r[AR664_MAX_MSG_SZ_N];
DqAdv664RecvMessage(hd, 0, myRxP1hdl, 0, myRxP1.d_size,
 message_r,
 &received, &available, &status);

DNx-ARINC-664 Board
Chapter 2 22

Programming with the Low-level API

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

2.3.3.2 VMap and
Vmap+
Introduction

Rather than receiving or transmitting data from each port, it is possible to set up
a variable-size data map to receive and transmit multiple messages at once.
VMap/VMap+ is described in detail in the “PowerDNx Protocol Manual”. Using a
VMap/+ consists of the following function calls (shown in the next two sections):

• Initial configuration of a VMap/VMap+:
a. set up VMap parameters
b. add input/output channels (fixed for VMap, dynamic for VMap+)
c. start the VMap

• Operation:
d. schedule data to write upon next refresh from channel(s)
e. schedule data to read upon next refresh from channel(s)
f. refresh (see Figure 2-1)
g. read retrieved data from input channel (returned in reply to refresh)

• Stop and close the VMap
Both (a) and (b) are performed in the PowerDNA Library on the PC and that data
map is eventually built and sent to the IOM at (c) when the start command is
called.
The number of input and output channels (up to 64) from (b) are thereafter fixed
and in that VMap control even if no data is scheduled to be sent/received in (d)/
(e) for that channel upon refresh (f).
The DaqBios command for VMap Refresh has the process shown in Figure 2-1
and the packet format shown in Figure 2-2:

Figure 2-2 DaqBios packet format for VMap refresh

Extended VMap can be configured send up to 8 fragments of 1500 bytes (when
initialized within a 1518 byte Ethernet frame) that allows for a maximum VMap
payload of 11764 bytes that is further partitioned into up to 64 I/O “channels”.
For the DNx-ARINC-664, each added channel corresponds to an ARINC-664
port handle. The format of the payload is: output channel size (and tx port handle
for VMap+) array, input channel size (and ARINC-664 receiving port handle for
VMap+) array, and output data of length specified in output channel size earlier.

14 20 8 16 8 4 (variable) 4

ET
H IP U

DP

DQ
PK

T
He

ad
er

VM
ap

He

ad
er

VM
ap

Fl

ag
s VMap control+data

(see below) FC
S

DNx-ARINC-664 Board
Chapter 2 23

Programming with the Low-level API

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

For traditional VMap each ARINC-664 receive/transmit port handle added as an
input/output channel is put into a transfer list. Scheduling data to write and be
read can only be performed for those added ARINC-664 handles and only
requires specifying the size to be written (and data in case of write) or read:

Figure 2-3 VMap control & data

Figure 2-3 shows the VMap control+data portion of Figure 2-2’s Refresh
command sent from PC to IOM. The output and input array indexes correspond
to the channels added in (b) and set in (c) is always of fixed size until the VMap
that they are assigned to is destroyed. For example, for 64 input + 64 output
channels they use up the first 128+128 bytes of 11764 bytes, even if the data
transferred for most channels is mostly 0, leaving only 11508 bytes for output
channel data. The sizes for output channels and data to write are assigned in
(d), and the sizes for input channels to return with the refresh’s reply are
assigned in (e).
The reply from IOM to PC returns a packet with the size of the read data (up to
in_size[] specified in the command) followed by the data itself for that channel.
Up to 256 VMaps, each with 0-64 input and 0-64 output channels, can be
assigned at configuration time. However, for hundreds of ARINC-664 ports, of
which only a few are frequently updated, traditional VMap is not as efficient as
VMap+, since VMap+ gives control to which of thousands of ARINC-664 ports to
refresh.
For VMap+, channels are added with a special flag that allows the ARINC-664
handle to be specified at (d) or (e) using a VMapPlus function call. As seen in
Figure 2-4 the extra control information can create a larger header.

Figure 2-4 VMap+ control & data payload

VMap+ is useful in providing finer-grained control over ARINC-664 ports. The
VMAP+ is refreshed at a particular time or in a particular order, which provides
more efficient use of bandwidth and IOM processing capability.

2-11764 bytes
2-128 Bytes 2-128 (sum of out_size[0] thru [63])

2 2 2 2 2 2 2 2 out_size[0] [1] … [63]

ou
t_

si
ze

[0
]

ou
t_

si
ze

[1
]

ou
t_

si
ze

[..
.]

ou
t_

si
ze

[6
3]

in
_s

iz
e[

0]

in
_s

iz
e

[1
]

in
_s

iz
e

[…
]

in
_s

iz
e

[6
3]

ou
t_

da
ta

[0
]

 o
ut

_d
at

a[
1]

…

ou
t_

da
ta

[1
]

4-11764 bytes
4-256 Bytes 4-256 (sum of out_size[0]..[63])

2 2 2 2 2 2 2 2 out_size[0] [1] … [63]

ou
t_

si
ze

[0
]

ou
t_

po
rt[

0]

...

ou
t_

po
rt[

63
]

in
_s

iz
e[

0]

in
_p

or
t [

0]

...

in
_p

or
t [

63
]

ou
t_

da
ta

[0
]

 o
ut

_d
at

a[
1]

…

ou
t_

da
ta

[1
]

DNx-ARINC-664 Board
Chapter 2 24

Programming with the Low-level API

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

VMap and Vmap+ should be used when multiple ARINC-664 ports are to be
updated simultaneously on the following platforms:
(a) ARINC-664 ports used for transmit on PC in Slave mode
(b) ARINC-664 ports for both transmit and receive on UEIPAC
The examples that follow show how to use VMap and VMap+ in practice.

2.3.3.3 Variable Data
Map (VMap)

This section exemplifies how to configure, operate, and close a VMap.
Configuration
To create a new VMap, call:

Any DNx-ARINC-664 handle provided by DqAdv664AddPort or
DqAdv664SetConfig (or even DqAdv664AddVl) can be addressed as a
VMap channel. Add a channel for any ARINC-664 handle by calling
DqRtVmapAddChannel:

Start the operation of the DNx-ARINC-664 with DqAdv664Enable() to
command the DNx-ARINC-664 to begin to use the ARINC-664 network if not
already done so.
Start the VMap with the configuration and channels requested above, sending
the configuration from PC to IOM over the network, by calling:

Operation
Now the VMap is configured, operation involves preparing to Refresh the VMap
as explained in steps (d) through (g) in the previous section.
Begin by using this convenience function to reset everything to 0 (otherwise you
must reset all channels to 0 yourself):

// Create & initialize a VMap (extended capacity VMap+)

int vmapid = -1; // negative value indicates invalid

DQ_RTMAP_PARAM vmapparam;
vmapparam.max_payload_sz = DQ_MAX_PAYLOAD_FRAG;
vmapparam.mtu = DQ_MAX_ETH_SIZE_100;
vmapparam.refreshRate = 0; //0 means it is not implemented in ARINC-664
DqRtVmapInitEx(hd0, &vmapid, &vmapparam);

// Command PowerDNA Library to add up to 64 channels to the new VMap
// The handles "myRxP1hdl" and "myTxP1hdl" are from previous section

int flags = 0;
DqRtVmapAddChannel(hd0, vmapid, DEVN, DQ_SS0IN , &myRxP1hdl, &flags, 1)
DqRtVmapAddChannel(hd0, vmapid, DEVN, DQ_SS0OUT, &myTxP1hdl, &flags, 1)

// Start the VMap

DqRtVmapStart(hd0, vmapid);

// Reset all channel sizes to 0

DqRtVmapInitOutputPacket(hd0, vmapid);

DNx-ARINC-664 Board
Chapter 2 25

Programming with the Low-level API

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

To write data to a transmitting ARINC-664 port, first request it in the VMap
packet:

The DqRtVmapWriteOutput call will return the number of bytes still available
in the VMap packet (ret) . When (ret!=len) your request has been denied; if
(ret<0) then an error has occurred (for detail, call DqTranslateError(ret)).
The VMap request has been prepared so it can be sent with
DqRtVmapRefresh.
To read a message from an ARINC-664 port, first request it in the VMap packet:

The DqRtVmapRequestInput call will return the number of bytes still available
in the VMap packet (ret) as with DqRtVmapWriteOutput. This VMap request
has been prepared so it can be sent with the next DqRtVmapRefresh.
Note that the above DqRtVmapWriteOutput and DqRtVmapReadInput only
create requests but do not send the actual VMap packet to the IOM. To send the
actual packet use the VMapRefresh call seen below:

Note that the Refresh command only operates on the data of an ARINC-664 port
and does not currently retrieve the status, number of messages in queue, or
SAP headers as the simple messaging mode does. Requesting data from a
queuing port only receives a single message from the queue, not the whole
queue.
The VMap refresh command packet (Figure 2-1 and Figure 2-3) contains both
the data transmitted, (i.e., including out_data) and any request for data to be
returned with the VMap reply from the IOM.
To read the input received after a refresh you must call DqRtVmapReadInput:

Repeat the above sequence of DqRtVmapWriteOutput,
DqRtVmapReadInput, DqRtVmapRefresh, DqRtVmapReadInput until the
simulation is complete.

// Request how much data to write for channel for "myTxP1hdl"

uint8 out_data[1440];
len = sprintf((char*)(out_data), “0123456789”);

DqRtVmapWriteOutput(hd0, vmapid, DEVN, myTxP1hdl, len, out_data);

// Request to read data to get using channel for "myRxP1hdl" in reply

DqRtVmapRequestInput(hd0, vmapid, DEVN, myRxP1hdl, 8192);

// Send the VMap refresh request (sends the actual packet prepared above)

DqRtVmapRefresh(hd0, vmapid, 0);

// Read the data returned by the DqRtVmapReadInput request above

uint8 data[1440];
int rxsz = 0;
DqRtVmapReadInput(hd0, vmapid, DEVN, myRxP1hdl, 1440, &rxsz, data);
printf("Input channel %x data: %d (%s)\n", myRxP1hdl, rxsz, data);

DNx-ARINC-664 Board
Chapter 2 26

Programming with the Low-level API

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

Stop & Close
Once your simulation is complete, call DqAdv664Enable() to disable the
DNx-ARINC-664 network operations, and then stop and clean up the VMaps
with the calls:

For more information, refer to the sample code, “SampleAsync664”.

2.3.3.4 VMap+ To create an Extended VMap+ call (non-UEIPAC):

Add a VMap channel corresponding to an ARINC-664 handle or use any unique
number to identify the channel.
Add a VMap channel for any handle by calling:

You can then start the operation of the DNx-ARINC-664 with
DqAdv664Enable() to allow the DNx-ARINC-664 to interact with the network.
Start the VMap by calling:

To write data to a transmitting ARINC-664 port, first request it in the VMap
packet:D

// Clean up VMap

finish_up:
if (vmapid) {
 DqRtVmapStop(hd0, vmapid); // Stop VMap
 DqRtVmapClose(hd0, vmapid); // Destroy it
}

// Prepare an extended VMap

int vmapid;
DQ_RTMAP_PARAM vmapparam = {12000,1518,0.1};
DqRtVmapInitEx(hd0, &vmapid, &vmapparam);

// Add VMap channels (no ARINC-664 port handles are used, just unique #s)

int vmapch_tx[1] = {0};
int vmapch_rx[1] = {1};

int flags = DQ_VMAP_SPEC_CHANNEL;
DqRtVmapAddChannel(hd0, vmapid, DEVN, DQ_SS0IN , vmapch_rx, &flags, 1)
DqRtVmapAddChannel(hd0, vmapid, DEVN, DQ_SS0OUT, vmapch_tx, &flags, 1)

// Start the VMap

DqRtVmapStart(hd0, vmapid);

// Request to write data to the previously added VMap channel

uint8 out_data[8192];
len = sprintf((char*)(out_data), “0123456789”);
DqRtVmapPlusWriteOutput(hd0, vmapid, DEVN, vmapch_tx[0], myTxP1hdl, len,
out_data);

DNx-ARINC-664 Board
Chapter 2 27

Programming with the Low-level API

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

The DqRtVmapWriteOutput call returns the number of bytes still available in
the VMap packet (ret). When (ret!=len) your request has been denied; if
(ret<0) then an error has occurred (for detail, call DqTranslateError(ret)).
The VMap request is prepared so it can be sent with DqRtVmapRefresh.
To read a message from an ARINC-664 port, first request it in the VMap packet:

DqRtVmapPlusRequestInput returns the number of bytes still available in
the VMap packet (ret) as with DqRtVmapWriteOutput. This VMap request
has been prepared so it can be sent with the next DqRtVmapRefresh.
Once all input and output channels are requested, perform the refresh:

Note that the Refresh command only accesses the ARINC-664 port’s message
payload and does not retrieve the status, remaining messages in queue, or SAP
headers as the simple messaging mode does. Requesting data from a queuing
port only receives a single message from the queue, not the whole queue.
The VMap refresh command packet (Figures 2-1 and 2-3) contains both the data
transmitted (i.e., including out_data) and any request for data to be returned
with the VMap reply from the IOM. The reply contains only ARINC-664 message
data without any status, remaining messages in queue, or SAP headers as seen
with simple messaging mode. The status and number of messages may be
retrieved with the DqAdv664PortMsgStatus and DqAdv664VLPortStatus
commands. It is useful to run these commands to see which ports are
worthwhile refreshing.
To read the input received after a refresh you must call DqRtVmapReadInput:

Repeat the sequence of DqAdv664VLPortStatus,
DqRtVmapPlusWriteOutput, DqRtVmapPlusReadInput,
DqRtVmapRefresh, DqRtVmapReadInput.
Once your simulation is complete, call DqAdv664Enable() to disable
DNx-ARINC-664 network operations, and then stop and clean up the VMaps
with the calls:

// Request to read data to the previously added VMap channel

DqRtVmapPlusRequestInput(hd0, vmapid, DEVN, vmapch_rx[0], myRxP1hdl,
8192);

// Send the VMap request (sends the actual packet prepared above)

DqRtVmapRefresh(hd0, vmapid, 0);

// Read the data returned by the DqRtVmapReadInput request above

DqRtVmapReadInput(hd0, vmapid, DEVN, vmapch_rx[0], 8192, &rxsz, data);
printf("Input channel %x data: %d (%s)\n", myRxP1hdl, rxsz, data);

// Clean up VMap

if (vmapid) {
 DqRtVmapStop(hd0, vmapid); // Stop VMap
 DqRtVmapClose(hd0, vmapid); // Destroy it
}

DNx-ARINC-664 Board
Chapter 2 28

Programming with the Low-level API

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

2.3.3.5 Asynchronous
Events or
aEvent Mode

Asynchronous events were implemented to improve efficiency in receiving large
quantities of data quickly from the ARINC-664 bus and transferring them to the
PC. The UEIPAC does not use aEvent mode because all traffic is local.
Asynchronous events are described in detail in the PowerDNx Protocol Manual.
In summary, configuring and using asynchronous events follows this process:

• Initial configuration:
a. create an independent IOM handle and port for aEvents only
b. configure the DNx-ARINC-664 with a list of ARINC-664 receive ports
c. start listening for events on that list
d. start a thread to process asynchronous events coming from IOM

• Operation on the DNx-ARINC-664:
e. receive a message from the ARINC-664 bus
f. find the receiving port in the aEvents list
g. encapsulate the message data in an aEvent packet
h. queue the IOM-CPU to send the aEvent packet
i. send the aEvent packet to the PC (see Figure 2-1)

• Operation on the host PC:
j. wake sleeping thread (started at d) to receive the aEvent packet
k. unencapsulate ARINC-664 message(s) from the aEvent packet
l. process ARINC-664 message(s), then sleep until next packet

• Cleanup:
m. disable events and clear the aEvent port list

We have seen that Immediate and VMap/VMap+ function calls block the
application on the PC while sending a command to the IOM, which in turn block
the IOM while it polls the DNx-ARINC-664 for data for 1 to 64 receiving ARINC-
664 port. We can see that these steps are no longer necessary with aEvents.
The following event modes are available:

• Send every ARINC-664 message as it is received from ARINC-664 bus.
• Accumulate received messages in a buffer of up to 12 kB, and send

them when the watermark is reached, for bandwidth efficiency.
• Accumulate received messages in a buffer of 12 kB, and send them

when after a timeout is reached, for bandwidth efficiency.

See the “SampleAsync664” example for how to use asynchronous events.
Note that, even though multiple multicast port handles within the same VL will be
sent with aEvent mode, subscribing to send copies of this same data is neither
bandwidth efficient nor necessary - one copy is always sufficient, since it can be
replicated in the aEvents processor thread, so subscribe to only port handle.

2.3.4 Stop Cleanly To stop operation, call DqAdv664Enable() with a FALSE parameter as
follows:

// Disable operation

int DEVN = 0;
DqAdv664Enable(hd, DEVN, FALSE);

DNx-ARINC-664 Board
Chapter 2 29

Programming with the Low-level API

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

This stops operation of the DNx-ARINC-664 board without changing the
configuration.

2.4 UEI ARINC-
664 XML
Configuration

As described in Section 2.3.2, each DNx-ARINC-664 device is configured using
an XML file.

UEI provides a GUI-based ARINC-664 Configurator that allows users to create
and edit ARINC-664 configuration XML files. See Figure 2-5.

Figure 2-5 ARINC-664 Configurator

A UEI ARINC configuration XML file contains the following tags and attributes:

• An initial XML declaration: <?xml version="1.0" encoding="utf-8"?>

• A root <configuration> tag that provides the following attributes:
Table 2-2 Summary of configuration Attributes

Configuration Attribute Description

format 1 for expanded, 2 for compact

version unused metadata

name unused metadata

DNx-ARINC-664 Board
Chapter 2 30

Programming with the Low-level API

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

• One or more <VL> tags that define the following attributes:

• For each <VL>, one or more <port> tags that define the following attributes:

date unused metadata

author unused metadata

Table 2-2 Summary of configuration Attributes (Continued)

Configuration Attribute Description

Table 2-3 Summary of VL Attributes

VL Attribute Description

name metadata

vlid 16-bit virtual link

enabled VL enabled: “yes” or “no”

direction Data transfer direction: “read” or “write” for receive or transmit respec-
tively

bag BAG as 1/2/4/8/16/32/64/128 milliseconds of bandwidth allocation gap

frag_en Enable packet fragmentation: “yes” or “no”

n_subvl Number of subVLs: 2 to 4 possible subVLs; 0/1 to disable subVLs

network_select Network selection: “A”, “B”, or “AB” for redundant

IC_en Enable Integrity checking: “yes” or “no”

RM_en Enable Redundancy Management (when network_select=”AB”):
“yes” or “no”

LMax Largest Ethernet frame: from 64 to 1518 bytes for maximum frame size

skew_max Maximum time difference in the arrival of over redundant ports:
from 0 to 65535 milliseconds for receive ports

max_jitter Maximum allowed jitter: from 0 to 65535 milliseconds for receive ports

ICMP_VLID 16-bit VL ID of the paired VL to receive or return on

ICMP_en Identify if there is an ICMP port on this VLID: “yes” or “no”

Table 2-4 Summary of port Attributes

Port Attribute Description

name metadata

portid metadata

DNx-ARINC-664 Board
Chapter 2 31

Programming with the Low-level API

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

NOTE:

• For the expanded XML format the endsystem and partition address are:
EndSystem address as endsys_src and endsys_dst from 0 to 65535
Partition on EndSystem as part_src and part_dst from 0 to 256
Multicast as “yes” or “no” to use a mutlicast or unicast address

• Compact format endsystem and partition addresses are represented as
a multicast address 224.224.[upper 8 bits of vlid].[lower 8 bits of vlid] or
unicast address 10.[upper 8 bits of endsys].[lower 8 bits of endsys].[part] for
src_ip_address and dst_ip_address.

For more detail, refer to the comments for AR664_VL/PORT_CFG in section
2.3.2.

enabled Port enabled: “yes” or “no”

vlid VLID of parent: 16-bit virtual link of parent

subvl_id subVL ID: 1/0, 2, 3, or 4

port_type “Sampling”, “Queuing”, “SAP”, or “ICMP”

period Period in milliseconds for automatic retransmission in sampling ports as
rounded to (period / bag * bag)

d_size Sampling port payload data size: 1 to 1471 bytes

depth Queue depth for Queuing/SAP/ICMP messages: 1 to 360

src_port Source 16-bit port number

dest_port Destination 16-bit port number

endsys_src See Note below

endsys_dest See Note below

part_src See Note below

part_dest See Note below

multicast See Note below

Table 2-4 Summary of port Attributes (Continued)

Port Attribute Description

DNx-ARINC-664 Board
Chapter 3 32

Tools and Diagnostics

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

Chapter 3 Tools and Diagnostics

This chapter provides diagnostic information, procedures, and tools for
troubleshooting the DNx-ARINC-664:

• Diagnostic Panel for PowerDNA Explorer (Section 3.1)
• Device RTOS Processes (Section 3.2)
• ARINC-664 Network Packet Inspection (Section 3.3)

3.1 Diagnostic
Panel for
PowerDNA
Explorer

PowerDNA Explorer is a GUI-based diagnostic application. The following
section provides information specific to the DNx-ARINC-664. Please refer to the
IOM user manual for a detailed description of the tool.

On Windows based systems, PowerDNA Explorer can be accessed as follows:
• Start » All Programs » UEI » PowerDNA Explorer

The DNx-ARINC-664 panel in PowerDNA Explorer provides the return results of
the low-level API DqAdv664GetBusStats() and
DqAdv664GetDeviceInfo() function calls. Bus usage statistics appear first,
followed by the current firmware version, as shown in the following image:

Figure 3-1 DNx-ARINC-664 Panel in PowerDNA Explorer

DNx-ARINC-664 Board
Chapter 3 33

Tools and Diagnostics

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

When Network > Start Reading Input Data is active,
DqAdv664GetBusStats() will be called a few times per second. This is useful
when debugging a few ARINC-664 ports but should not be used with more than
64 active ARINC-664 ports.

PowerDNA Explorer’s View > Hardware Report provides additional device
details:

{Layer: Dev0, Model: ARINC-664, S/N: '0123456', Logic: 02.11.66,
Calib.: 'Mar 14, 2015', ST: '00000000', POST: '00000000', FW:
'00000000', LG: '00000000', Version: '1.0.0.88 Mar 14 2015 '}

This information can also be obtained using the RS-232 Serial Debug Port
without using the PowerDNA Explorer diagnostic application by typing
“devtbl l” using the serial debug terminal.

3.2 Device RTOS
Processes

This section describes the process by which the receiver stores or drops ARINC-
664 messages from the time that they are received from the ARINC-664
network.

3.2.1 Reception • Frame is received by Three-speed Ethernet Controller (TSEC) IC and
subjected to loose hash-based hardware filter (if not promiscuous). Silently
discard frame if VLID doesn’t match Section 1.6.2.2 VLID formats as
configured with DqAdv664SetConfig.

• Interrupt Service Routine is called for newly received network frame.

• Pre-filter: Check VLID is one of the Table of VLIDs that was configured for
this card with DqAdv664SetConfig.

• Begin RX processing:

• Record Timestamp

• pkts_rcv++ (for bus statistics retrieved with DqAdv664GetBusStat)

• VL (Ethernet MAC Address) Sanity Filter:
Malformed Source/Destination Ethernet Address: link_err++
Unexpected Bus: bus_not_match++

• IP Address Sanity Filter:
Malformed IPv4 ARINC-664 Header: ip_hdr_err++
Malformed IPv4 ARINC-664 Source/Destination Address: ip_ad-
dr_err++

• VL-specific Filter:
Bus for VL not enabled: bus_dis++ (done)
VL not enabled: vl_dis++ (done)
Frame Larger than LMax: ip_too_big++ (done)
Protocol not UDP/IP or ICMP echo: ip_hdr_err++ (done)
UDP port filter mismatch: port_dis++ (done)
Invalid IP Checksum: ip_chksum++ (continue)
Invalid UDP Checksum: udp_chksum++ (continue)

DNx-ARINC-664 Board
Chapter 3 34

Tools and Diagnostics

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

• Integrity Checking (when enabled for A, B, or both):
Receiver Initialized or Sequence Number is 0: (continue)
Sequence Number is not PreviousSN+1 or +2: intg_drop++ (done)

• Redundancy Management (when enabled in A&B mode):
Receiver Initialized: (continue)
SkewMax exceeded: rdnd_skewmax++ (continue)
Already Received On Other Bus: rdnd_drop++ (done)

• Packet Reassembly (when fragmented):
No fragments found or fragments were discarded: ip_frag_err++ (done)

• For all ports in receiving VL:
• ARINC-664 Port not Enabled: port_dis++ (try next port)
• Source MAC Address does not match EndSystem ID: (next port)
• Source or Destination IP Address does not match: (next port)
• Source or Destination UDP port does not match: (next port)
If no packets processed: udp_port_err++ (done)

• Perform Asynchronous Event processing (if enabled),
or store to port’s message buffer.

• Free network buffer.

DNx-ARINC-664 Board
Chapter 3 35

Tools and Diagnostics

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

3.3 ARINC-664
Network
Packet
Inspection

The following procedure can be used to inspect ARINC-664 network packets
with Wireshark 1.10+. Wireshark is a free and open source network
instrumentation tool.

Perform a Packet Capture

1. Prepare to capture packets

• Bring up your capturing Ethernet Adapter’s Properties (you can type “ip”
in Start Menu).

• Uncheck all boxes, (e.g., Protocol Version 4 (TCP/IP v4), etc.) to avoid
injecting data.

• Connect the Ethernet CAT5e line into the ARINC-664 network.

2. Start WireShark

3. Start a capture. In the Menu, click Capture > Options (Ctrl+K)

• Select LAN connection in Capture panel.

• Uncheck “Update list of packets in real time” in right sidebar options.

• Click Start.

• Notice in the status bar you will see the number of packets captured
(e.g., Packets: 314).

4. Stop the capture when done capturing
In the Menu: Capture > Stop (Ctrl+E)

• The packet capture will then begin rendering.

NOTE: For first-time configuration, you can see packets better if you
perform these commands:

• View > Coloring Rules > Disable “TTL low or unexpected”

• View > Name Resolution > (Uncheck All)

DNx-ARINC-664 Board
Chapter 3 36

Tools and Diagnostics

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

Analyze a Captured Packet

Click a captured packet as shown in the example below:

The following information is shown:

• Source MAC address (xx:xx:xx:xx:xx:20 indicates Bus A)

• Destination MAC address: ends in VLID.
In the above capture 0x4826h = 18470
Note: multicast IP addresses will also be, for example:
244.244.72.38 = 72*256+38 = 18470

• Source IP address in the format: 10.<netid>.<eqid>.<part>

• Destination IP address in the format:

• Unicast VL will be 10.<netid>.<eqid>.<part>

• Multicast VL is 244.244.<VLID={1,65535}>={0.1…244.244.255.255>

• Source UDP Port & Destination UDP Port: 1 to 65535. Note that this has
nothing to do with PortID, even though this is the same in ARINC-664 ICD
files.

• Data, which is the actual payload of the ARINC-664 packet. This is the most
interesting part. This contains a primitive (e.g. int) or a data structure (format
defined by airplane specification).

• VL Sequence Number: 0 if reset, increments 1 to 255 otherwise

The Source IP, Destination IP, Source UDP, Destination UDP is a quadruplet that
defines an ARINC-664 connection (conversation).

DNx-ARINC-664 Board
Chapter 3 37

Tools and Diagnostics

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

Filter a Captured Packet

To create a display filter to track an ARINC-664 connection, you can type a set
of conditions to filter on into the Filter box (see image below).

For example if you have determined that there is interesting data for a particular
connection, you can filter by it:
(ip.src == 10.1.82.2) && (ip.dst == 224.224.70.151) &&
(udp.srcport == 36890) && (udp.dstport == 36890)

This will allow you to scroll through packets to inspect the payload. The payload
is what is delivered to the application running on a virtual flight computer (such
as the Altitude display in a Display Unit).

To inspect jitter of sampling packets (difference between configured and actual
retransmit period), press Ctrl+Alt+6 or use the menu:
View > Time Display Format > Seconds Since Previous Displayed Packet

To switch back to “seconds since start of capture”, use Ctrl+Alt+4.

Find Interesting Data

Let’s say that you want to search for a value (e.g., the Altitude) decoded from a
message on your 429 bus.
To find a particular hex value, click Edit > Find Data > Hex Value

Statistics:

• Statistics > Summary will show averages of traffic

• Statistics > IO Graph will show a graph of traffic across the network

Statistics > Conversations will show when all connections (between various
avionics components) start communicating and for how long.

DNx-ARINC-664 Board
Appendix 38

November 2023 www.ueidaq.com
508.921.4600

© Copyright 2023
United Electronic Industries, Inc.

Appendix A

A.1 Accessories The following cables and STP boards are available for the DNx-ARINC-664.

DNA-CAT5E-CBL

This is a 4-conductor round unshielded twisted-pair cable with 8-pin male TIA/
EIA-568 connectors on both ends.

DNA-DB9MF-CBL

This is a 9-pin serial cable with male D-sub connectors on both ends. It is used
to connects to your PC’s serial port or terminal console to the RS-232 port.

DNA-CBL-SYNC-10

Sync-to-sync cable used for synchronization with an external sync port.

DNA-CBL-SYNC-RJ

Sync-to-8P8C (RJ-45) cable for use with a synchronization breakout board.

	DNx-ARINC-664 — User Manual
	Table of Contents
	List of Figures
	Chapter 1 Introduction
	1.1 Organization of this Manual
	1.2 DNx-ARINC- 664 Board Overview
	1.2.1 ARINC-664 Receiver
	1.2.2 ARINC-664 Monitor
	1.2.3 ARINC-664 Transmitter
	1.2.4 Certification
	1.2.5 Software Support

	1.3 Features
	1.4 Indicators
	1.5 Specification
	1.6 ARINC-664 Overview
	1.6.1 DNx-ARINC- 664 Applications
	1.6.2 ARINC-664 Network Overview
	1.6.3 OSI Model Structure
	1.6.4 ARINC-664 Packet Structure
	1.6.5 Bandwidth

	1.7 Device Architecture
	1.7.1 Device RTOS

	1.8 Wiring & Connectors
	1.8.1 Connecting to the ARINC-664 Network

	Chapter 2 Programming with the Low-level API
	2.1 About the Low-level API
	2.2 Low-level Functions
	2.3 Tutorial
	2.3.1 Initialization
	2.3.2 Configuration
	2.3.3 Send / Receive Messages
	2.3.4 Stop Cleanly

	2.4 UEI ARINC- 664 XML Configuration

	Chapter 3 Tools and Diagnostics
	3.1 Diagnostic Panel for PowerDNA Explorer
	3.2 Device RTOS Processes
	3.2.1 Reception

	3.3 ARINC-664 Network Packet Inspection

	Appendix A

