
  
 

DNx-I2C-534
—

User Manual

  
4-port, I2C Interface Board

for the PowerDNA Cube and RACK Series Chassis

   
 

April 2020

PN Man-DNx-I2C-534

© Copyright 1998-2020 United Electronic Industries, Inc. All rights reserved.



  
Information furnished in this manual is believed to be accurate and reliable. However, no responsibility 
is assumed for its use, or for any infringement of patents or other rights of third parties that may result 
from its use.

All product names listed are trademarks or trade names of their respective companies.

See the UEI website for complete terms and conditions of sale:

http://www.ueidaq.com/cms/terms-and-conditions/



Contacting United Electronic Industries

Mailing Address:

27 Renmar Avenue
Walpole, MA 02081
U.S.A.

For a list of our distributors and partners in the US and around the world, please contact a member of our 
support team:

Support:

Telephone: (508) 921-4600
Fax: (508) 668-2350

Also see the FAQs and online “Live Help” feature on our web site.

Internet Support:

Support: support@ueidaq.com
Website: www.ueidaq.com
FTP Site: ftp://ftp.ueidaq.com 

Product Disclaimer:

WARNING!

DO NOT USE PRODUCTS SOLD BY UNITED ELECTRONIC INDUSTRIES, INC. AS CRITICAL 
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

Products sold by United Electronic Industries, Inc. are not authorized for use as critical components in 
life support devices or systems. A critical component is any component of a life support device or 
system whose failure to perform can be reasonably expected to cause the failure of the life support 
device or system, or to affect its safety or effectiveness. Any attempt to purchase any United Electronic 
Industries, Inc. product for that purpose is null and void and United Electronic Industries Inc. accepts 
no liability whatsoever in contract, tort, or otherwise whether or not resulting from our or our 
employees' negligence or failure to detect an improper purchase.

Specifications in this document are subject to change without notice. Check with UEI for 
current status.

http://www.ueidaq.com


DNx-I2C-534 I2C Interface Board i
Table of Contents
Table of Contents
Chapter 1   Introduction   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1   Organization of this Manual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2   I2C-534 Board Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 I2C Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Guardian Diagnostic Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 CRC-ensured Data Transfers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.4 Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.5 Software Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3   Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4   Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5   Indicators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6   Device Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7   I2C Master Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7.1 I2C Transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7.2 Master Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7.3 Clock Stretching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7.4 Multi-Master Mode, Arbitration, and Synchronization  . . . . . . . . . . . . . . . . . . 10

1.8   I2C Slave / Bus Monitor Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8.1 I2C-534 as an I2C Slave  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8.2 I2C-534 Slave as a Bus Monitor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8.3 Slave RX Data Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8.4 I2C-534 Slave Diagnostic Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.9   I2C-534 CRC Checker & Status Reporting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.10   Termination Pull-up Resistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.10.1 Electrical Specification for I2C Bus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.11   Wiring & Connectors (pinout) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 2   Programming with the High-Level API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1   About the High-level Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2   Creating a session  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3   Configuring the Resource String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4   Configuring an I2C Master Port  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Configuring Loopback  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Configuring Termination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5   Configuring an I2C Slave Port  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.1 Configuring Bus Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Configuring Clock Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6   Configuring the Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7   Reading Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8   Writing Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9   Cleaning-up the Session. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 3   Programming with the Low-Level API   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board ii
Table of Contents
3.1   About the Low-level API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2   Low-level Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3   Low-level Programming Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4   Configuring I2C Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 Setting Up Custom Clock Rate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 CRC-Enabled Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 Command and Raw Mode Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5   XDCP™ Device (Renesas X9119) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.1 Write Wiper Counter Register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.2 Read Wiper Counter Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.3 Write-Restart-Read Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6   Bus Monitor Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7   Slave Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8   Controlling DC/DC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board iii
List of Figures

April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.

List of Figures
Chapter 1 – Introduction1
1-1  Photo of DNA-I2C-534 I2C Board..................................................................................6
1-2  Block Diagram of I2C-534 .............................................................................................7
1-3  Example of I2C Master Commanding a Transfer (7-bit Address) ..................................8
1-4  Built-in START+WRITE+ReSTART+READ Command .................................................9
1-5  Built-in START+WRITE+READ Command..................................................................10
1-6  Built-in START+WRITE+WRITE Command................................................................10
1-7  Pinout Diagram of the I2C-534 Board .........................................................................15
3-1  Read Command with custom clock rate set to 40.0kHz ..............................................25
3-2  Write to Wiper Counter Register using XDCP™..........................................................29
3-3  Read from Wiper Counter Register using XDCP™ .....................................................30
3-4  Write-restart-read zoomed-in scope capture ...............................................................31



DNx-I2C-534 I2C Interface Board
Chapter 1 1

Introduction
Chapter 1 Introduction

This document outlines the feature set and use of the DNx-I2C-534, an ultra 

secure 4-port interface board for serial applications using the I2C protocol, as 
per UM10204 specification. 

The following sections are provided in this chapter:

• Organization of this Manual (Section 1.1)

• I2C-534 Board Overview (Section 1.2)

• Features (Section 1.3)

• Specification (Section 1.4)

• Indicators (Section 1.5)

• Device Description (Section 1.6)

• I2C Master Description (Section 1.7)

• I2C Slave / Bus Monitor Description (Section 1.8)

• I2C-534 CRC Checker & Status Reporting (Section 1.9)

• Termination Pull-up Resistors (Section 1.10)

• Wiring & Connectors (pinout) (Section 1.11)

1.1 Organization 
of this Manual

This DNx-I2C-534 User Manual is organized as follows:

• Introduction
Chapter 1 provides an overview of DNx-I2C-534 features, device 
architecture, connectivity, and logic.

• Programming with the High-Level API
Chapter 2 provides an overview of the how to create a session, 
configure the session, and interpret results with the high-level 
framework API.

• Programming with the Low-Level API
Chapter 3 is an overview of low-level API commands for configuring and 
using the I2C-534 series board.

• Appendix A - Accessories
This appendix provides a list of accessories available for use with the 
DNx-I2C-534 board.

• Index
The index provides an alphabetical listing of the topics covered in this 
manual.

NOTE: A glossary of terms used with the PowerDNA Cube/RACK and I/O 
boards can be viewed or downloaded from www.ueidaq.com.
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 1 2

Introduction
Manual Conventions
To help you get the most out of this manual and our products, please note that 
we use the following conventions:


Tips are designed to highlight quick ways to get the job done or to reveal 
good ideas you might not discover on your own.

NOTE: Notes alert you to important information.

CAUTION! Caution advises you of precautions to take to avoid injury, data loss, 
and damage to your boards or a system crash.

Text formatted in bold typeface generally represents text that should be entered 
verbatim. For instance, it can represent a command, as in the following 
example: “You can instruct users how to run setup using a command such as 
setup.exe.”

Bold typeface will also represent field or button names, as in “Click Scan 
Network.”

Text formatted in fixed typeface generally represents source code or other text 
that should be entered verbatim into the source code, initialization, or other file.

Examples of Manual Conventions


Before plugging any I/O connector into the Cube or RACKtangle, be 
sure to remove power from all field wiring. Failure to do so may 
cause severe damage to the equipment.


No HOT SWAP

Always turn POWER OFF before performing maintenance on a UEI system. 

Failure to observe this warning may result in damage to the equipment and 

possible injury to personnel.

Usage of Terms

Throughout this manual, the term “Cube” refers to either a PowerDNA Cube 
product or to a PowerDNR RACKtanglerack mounted system, whichever is 
applicable. The term DNR is a specific reference to the RACKtangle, DNA to the 
PowerDNA I/O Cube, and DNx to refer to both.
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 1 3

Introduction
1.2 I2C-534 Board 
Overview

The DNx-I2C-534 boards are 4-port I2C interface boards. 

DNA-I2C-534, DNR-I2C-534, and DNF-I2C-534 boards are compatible with the 
Cube, RACKtangle, and FLATRACK chassis respectively. These board versions 
are electronically identical and differ only in mounting hardware. The DNA 
version is designed to stack in a Cube chassis. The DNR/F versions are 
designed to plug into the backplane of a RACK chassis.

1.2.1 I2C Interface The I2C interface is compliant with the UM10204 standard. Each of the four ports 
include both a master and slave port. 

Users can program DNx-I2C-534 inputs and outputs to use 3.3 V or 5 V TTL 
levels, and the baud rate is configurable to run at Standard-Mode (100 kbit/s), 
Fast-Mode (400 kbit/s), Fast-Mode+ (1 Mbit/s) rates as well as custom clock 
rates from 2kHz to 100kHz.

The SCL and SDA pins include 4.99 kΩ pull-up resistors; additionally, each port 
can be configurable to relay in or out an additional on-board 1.5 kΩ resistor in 
parallel, or users can add resistors externally to better align with RC 
requirements of your system.

The standard I2C transaction includes sending a packet and then receiving an 
acknowledge. Failure to receive an ACK is an error condition. However, some 

I2C devices do not respond with an ACK. The DNx-I2C-534 can be set in a mode 
where it does not wait for an ACK, and does not generate an error message if 
the standard ACK is not received.

1.2.2 Guardian 
Diagnostic 
Support

The DNx-I2C-534 board is part of UEI’s Guardian series, providing additional 
diagnostic capabilities. The master of each physical port can be connected to its 
own slave port in bus monitor mode via on-board switches. This allows the user 
software to confirm the correct data has been sent out from each master.

1.2.3 CRC-ensured 
Data Transfers

To ensure data security and reliability from the host PC and/or embedded CPU, 

a CRC checksum is added to each I2C transaction written. This checksum 
remains with the data as it moves through the system and is checked by the 
DNx-I2C-534 FPGA prior to it being written to the output drivers. 

On data reads, the chassis CPU adds a CRC checksum to the data and this is 
confirmed by the host CPU prior to presenting the data to the application 
software. Note the FPGA is the last device in the data chain and reads and 

writes directly to the I2C receiver/transmitter.

1.2.4 Accessories For ease of connection UEI offers the DNA-CBL-COM which brings the four I2C 
ports out to 9-pin dSub connectors. UEI also offers the DNA-CBL-I2CM-3M that 

brings each of the four I2C ports out to easy to use RJ-10 connectors. Optionally 

the DNA-CBL-37S series brings the four I2C ports out to a 37-pin D-Sub 
connector.

1.2.5 Software 
Support

The DNx-I2C-534 includes all software required for operation in both UEIPAC 
and PowerDNA chassis deployments. There are no license or royalty payments 
ever required and software revision updates are always available on the UEI 
web site at no charge.
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 1 4

Introduction
Software included with the DNx-I2C-534 provides a comprehensive yet easy to 
use API that supports all popular operating systems including Windows, Linux, 
real-time operating systems such as QNX, RTX, VxWorks and more. 
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 1 5

Introduction
1.3 Features A summary of features of the I2C-534 I2C interface is provided below:

• Up to 4 independent I2C interfaces can be used simultaneously: each 
interface offers a master and a slave port

• Fully conforms to UM10204 at Standard-Mode (SM), Fast-Mode (FM) 
and Fast-Mode+ (FM+) bit rates.

• Additionally, a “custom” bit rate mode is available for non-standard 
devices and supports bit rates from 2kHz to 100kHz.

• Guardian read-back of master transmissions can be used to confirm 
validity of transmit data

• Full data path integrity confirmed with CRC

• Standard D-Sub 37 connectivity

• Includes all software including C source code

• No royalties or license required

1.4 Specification Technical specifications for the DNx-I2C-534 board are listed in Table 1-1.

Table 1-1 DNx-I2C-534 Technical Specifications

General Serial Speci ications

Number ports 4, each provides Master/Slave/Bus monitor capability

Serial Interfaces I2C, complies with UM10204 specification

Maximum SCL speed: 1 Mbit/s (compliant with  I2C SM: 100kb, FM: 400 kb 
and FM+: 1 Mb)

Logic Level 5 V / 3.3 V compatible

Protection 350 V -to- ; 15 kV ESD protection

Baud rate clock

FIFO Size Master Mode:  1k  / 1k    input / output Slave Mode:  
512 / 512    input / output

General and Environmental

Isolation 350 Vrms port-to-port and port-to-chassis

Power Consumption < 4 W 

Operating Temp. (tested) -40 °C to +85 °C

Operating Humidity 95%, non-condensing

Vibration   IEC 60068-2-6

             IEC 60068-2-64

5 g, 10-500 Hz, sinusoidal 
5 g (rms), 10-500 Hz, broad-band random

Shock      IEC 60068-2-27 100 g, 3 ms half sine, 18 shocks @ 6 orientations
30 g, 11 ms half sine, 18 shocks @ 6 orientations

MTBF  hours
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 1 6

Introduction
1.5 Indicators The DNx-I2C-534 indicators are described in Table 1-2 and illustrated in 
Figure 1-1.

Figure 1-1  Photo of DNA-I2C-534 I2C Board

Table 1-2  I2C-534 Indicators

LED Name Description

RDY Indicates board is powered up and operational

STS Indicates which mode the board is running in:

• OFF: Configuration mode, (e.g., configuring ports, 
running in point-by-point mode)

• ON: Operation mode

DB-37 (female) 
37-pin I/O connector 

RDY LED
 STS LED

DNA bus
connector
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 1 7

Introduction
1.6 Device 
Description

Each DNx-I2C-534 port is designed to meet the I2C protocol, as per UM10204 

specification. The I2C-534 board offers 4 isolated, independent I2C ports, which 
support both master and slave capabilities. 

Each master and slave have a serial clock line (SCL) and serial data line (SDA), 

which are used to communicate with all I2C devices in a system that are 

connected to the I2C SCL / SDA bus.

Figure 1-2 shows a block diagram of the I2C-534. Refer to Section 1.7 through 
Section 1.10 for descriptions and Section 1.11 for pinout.

Figure 1-2  Block Diagram of I2C-534

 are grouped into 4 isolated blocks of I2C master and I2C slave pairings.

32
-b

it 6
6-

MH
z b

us

Speed selector, error reporting, etc.

 M
as

ter
Pr

oto
co

l C
on

tro
lle

r

 Master  0

SCL_M
SDA_M

SCL_S
SDA_S

DC/DC

RL
 L

oo
pb

ac
k (

fo
r B

M
)

TX FIFO
(512 x 8 bit)
8-bit TX data

TX FIFO
1K x 9 bit
8-bit data

+ STOP bit

I2 C
 S

lav
eP

ro
toc

ol 
Co

ntr
oll

er

Master Command

TX Data Padding
32-bit Register

RX FIFO
1K x 9 bit
8-bit data

+ STOP bit

CLI FIFO
 Input FIFO4-

1K x 32 bit

CLO FIFO
4- Output
1K x 32 bit

 
Configuration

I2C Slave  0

(TX CRC checking)

I2 C
-C

om
pa

tib
le 

Iso
lat

or
s

FP
GA

 Te
st 

Lo
op

ba
ck

 (d
isc

on
ne

cts
 fr

om
 pi

ns
)

RX FIFO
(512 x 12 bit)

8-bit data
4-bit bus code
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 1 8

Introduction
1.7 I2C Master 
Description

Each DNx-I2C-534 port includes an I2C master. I2C masters control the physical 

I2C bus; masters start and stop a transfer and generate the clock signals on the 
SCL pin. Each master includes a transmitter that sends data onto the SDA line, 
and a receiver that receives data from the SDA line.

The I2C-534 master on each DNx-I2C-534 port is designed with a 1K-word RX 
FIFO and a 1K-word TX FIFO for storing data words to receive from or send to 

the I2C bus. 

1.7.1 I2C 
Transactions

All transactions begin with a START command and end with a STOP command, 

which are always issued by an I2C master.

A typical transaction executes as follows:

• The master initiates a data transfer on the bus with a START command 
(a HIGH to LOW transition on the SDA line while SCL is HIGH).

• The master generates clock pulses that will clock the data through for the 
transaction.

• The master issues a 7- or 10-bit address to address a specific slave. 
• The master issues a R/W bit to indicate whether the slave is commanded to 

write data or read data. 

Figure 1-3  Example of I2C Master Commanding a Transfer (7-bit 
Address)

• The addressed slave issues an ACK to acknowledge the request (the slave 
pulls the SDA line low). 

• If the command was a READ, the slave serially transmits 8-bit data words to 
the master (MSB first), the data is acknowledged, and the master stores the 
words in its local master RX FIFO.

• If the command was a WRITE, the master serially transmits 8-bit data words 
(MSB first) to the slave, the data is acknowledged. 

• When the transfer is complete, the master issues a STOP command 
(a LOW to HIGH transition on the SDA line while SCL is HIGH).

SCL

SDA A7 A6 A5 A4 A3 A0A1A2 R/W

ACK
(driven from slave)

8-bit data words

START

master addresses slave with 7-bit slave address

...
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 1 9

Introduction
1.7.2 Master 
Commands

Users configure commands, addresses, and data via UEI API. 

The commands include START, STOP, ReSTART, WRITE, READ, and special 
commands designed specifically for a Renesas XDCP™ protocol device:

• STOP: issue a stop condition once bus is available

• START+WRITE: issue a start and a write, including write multiple

• START+READ: issue a start and a read, including read multiple

• START+WRITE+RESTART+READ: issue a start and a write, and then 
restart to keep the bus and read (for back-to-back write then read 
without bus going in to idle state)
Described in Section 1.7.2.1.

• START+WRITE+READ: issue a start and a write, and then a read 
(for Renesas XDCP™ protocol, e.g. X9119)
Described in Section 1.7.2.1.

• START+WRITE+WRITE: issue a start and a write, and then a restart and 
another write (special for Renesas XDCP™ protocol, e.g. X9259)
Described in Section 1.7.2.1.

1.7.2.1 Custom 
Master 
Command 
Sequences

UEI provides built-in master command sequences in support of the Maxim 
potentiometer (e.g. DS3930 potentiometer) and in support of the Renesas 
XDCP™ protocol, (e.g. X9119 and X9259 potentiometers) that extend beyond 

the typical I2C START, STOP, ReSTART, WRITE, and READ. 

1.7.2.1.1 START + 
WRITE + 
RESTART + 
READ

UEI provides a START+WRITE+RESTART+READ command sequence in 
support of devices that require a back to back write then read, (e.g. Maxim 
DS3930). The single byte read sequence transfers as follows: 

Figure 1-4  Built-in START+WRITE+ReSTART+READ Command

1.7.2.1.2 START + 
WRITE +  
READ

UEI provides a START+WRITE+READ command sequence in support of devices 
that require an instruction opcode write immediately followed by a read without 
a ReSTART in between, (e.g. Renesas X9119). 

For the X9119 example, the sequence to Read Wiper Counter Register (WCR) 
is as follows: 

START SLAVE
ACKAddr 0 WR Data 0 SLAVE

ACK ReSTART SLAVE
ACKAddr RD Data 1 MASTER

NACK STOP

WRITE READ
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 1 10

Introduction
Figure 1-5  Built-in START+WRITE+READ Command

1.7.2.1.3 START + 
WRITE +  
WRITE

UEI provides a START+WRITE+WRITE command sequence in support of 
devices that require a 4-bit Device Type Identifier, 4-bit Address and no WR/RD 
bit, (e.g. Renesas X9259). 

For the X9259 example, the sequence to Read Wiper Counter Register (WCR) 
is as follows 

Figure 1-6  Built-in START+WRITE+WRITE Command

1.7.3 Clock 
Stretching

The I2C-534 supports stretching of the clock (as defined in the UM10204 
specification). Clock stretching is a procedure used by the slave to delay the 
next byte of data from transferring immediately. Though the master controls the 
transaction, after a byte transfer, the slave has the capability of forcing the 
master into a wait state by holding the SCL line LOW until it is ready for another 
byte of data.

1.7.4 Multi-Master 
Mode, 
Arbitration, 
and Synchro-
nization

I2C-534 masters can be configured to support Multi-master mode.

Multi-master mode is when more than one master can attempt to control the I2C 
bus at the same time without corrupting the message.

Masters decide which master will own the bus through Arbitration and Clock 
Synchronization, as per UM10204 specification. 

The clock synchronization procedure synchronizes the clock signals of two or 
more devices. Once synchronized, the winning master is determined by which 
master generates SCL clock with its LOW period the longest clock LOW time 
and its HIGH period shortest clock HIGH time.

The arbitration procedure ensures that if more than one master simultaneously 
tries to control the bus, only one is allowed to do so and the winning message is 
not corrupted. This procedure proceeds bit by bit, with masters comparing SDA 
serial data to verify the data read matches what was sent. Upon a master 
reading a low bit value when it expected a high, it loses the arbitration.

Refer to the UM10204 specification for detailed descriptions.

START SLAVE
ACKID+AD+R/W WR Data SLAVE

ACK RD Data 1 RD Data 2 MASTER
NACK STOP

WRITE READ

4-bit Device ID
3-bit Device Address A2:A0
R/W = 1

4-bit OPCODE
4-bit Register Address

MASTER
ACK

Wiper Position 
(sent by SLAVE on SDA)
XXXXXX WCR9:8

Wiper Position 
(sent by SLAVE on SDA)
WCR7:0

START SLAVE
ACKID+AD WR Data 0 SLAVE

ACK WR Data 1 STOP

WRITE WRITE

4-bit Device ID
4-bit Device Address A3:A0

4-bit OPCODE
4-bit DR/WCR Address

SLAVE
ACK

Wiper Position 
(sent by MASTER on SDA)
WCR7:0
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 1 11

Introduction
1.8 I2C Slave / 
Bus Monitor 
Description

Each DNx-I2C-534 port provides a slave device, which can be used as an I2C 
slave or configured as a Bus Monitor and / or loopback diagnostic tool.

1.8.1 I2C-534 as an 

I2C Slave

As an I2C slave, the slave on each I2C-534 port is addressed by a master 
(external or internal by using loopback) and responds to master commands. 

I2C-534 slaves can be configured with a 7-bit or 10-bit address using UEI API.

The I2C slave receiver reads master commands and data from the I2C bus, and 
the slave transmitter sends data in response to a master request, as described 
in Section 1.7 (refer to  Figure 1-3).

1.8.1.1 Slave Data 
Storage

Slave TX storage: Slave data to be transmitted can be stored in a 512 x 8-bit 
FIFO or a 32-bit TX data padding register.

Upon receiving a WRITE command, the slave transmitter serially transmits 

words to the I2C bus from the FIFO, or alternatively, the transmitter can be 
configured to transmit up to 4 8-bit words from the 32-bit TX data padding 
register (bits 31:24 transmit first, bits 23:17 transmit next, etc.). If the TX FIFO is 
empty, data in the padding register will be sent.

Slave RX storage: Upon receiving a READ command, the slave receiver stores 
received data in a 512 x 12-bit slave RX FIFO. Users can also configure RX data 
from all 4 ports to be stored in a single 1K x 32-bit CLI FIFO.

Refer to Section 1.8.3 and Section 1.8.3.1 for descriptions of the formatting of 
received slave data and for an example of a diagnostic data transfer.

1.8.2 I2C-534 Slave 
as a Bus 
Monitor

The I2C-534 slave can also be configured as a Bus Monitor diagnostic tool. 

If configured as a Bus Monitor, the Bus Monitor slave is connected to the I2C bus 

and reads transactions on the I2C bus regardless of which slave device the 
master is communicating with. 

In this mode, the Bus Monitor slave does not respond to the master; however, as 
a test capability, users can configure the Bus Monitor slave to acknowledge any 
address and provide an ACK. This feature allows testing of master software 
without connecting it to an actual device.

Refer to Section 1.8.3 and Section 1.8.3.1 for descriptions of the formatting of 
data stored via the slave Bus Monitor and an example of what that diagnostic 
data looks like.

1.8.3 Slave RX Data 
Formatting

The slave RX FIFO provides storage for 512 x 12-bit words received. All data 
received by a slave is stored in this FIFO:

• If a slave is configured as an I2C slave: 
All 8-bit data written to the slave from the master is stored in the RX 
FIFO. The FIFO can also include additional information about bus 

conditions on the I2C bus.

• If a slave is configured as a Bus Monitor slave: 
All activity on the I2C bus including data and bus conditions are stored in 
this FIFO. 

The bus condition is stored in the upper 4-bits of the 12-bit word, and the data 
written to the slave is stored in the lower 8-bits. 
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 1 12

Introduction
Note that users can also configure the slave to only store the data words.

The following bus conditions are provided:

1.8.3.1 Example of 
Reading Bus 
Conditions on 
the Slave 
Receiver

This section provides an example showing what data is stored in the RX FIFO 
after a write transaction. In this example, the slave address is 0x2A, and it was 
written with 4 pieces of data (0x1, 0x2, 0x3, 0x4).

In this example, the output from running UEI’s low-level sample code that reads 
the RX FIFO after a master write is formatted as follows:

Master: transmitted=4 available=508 crc_stat=0x0
SlaveRx: received=8 available=0
[0]=300 [1]=100 [2]=454 [3]=601 [4]=602 [5]=603 [6]=804 
[7]=300

where

• 300: is a STOP condition (FIFO can contain STOP conditions from 

moment when I2C transceivers were first powered up. Should disregard 
this in user application)

• 100: is a START condition (ignore lower 8-bits)

• 454: is our address: bit10:8 = 4 (Address+ACK); bit7:1= slave address 
(0x2A); bit0 = RD or /WR (0 indicates a write)

• 601: our first piece of data = 1

• 602: our 2nd piece of data = 2

• 603: our 3rd piece of data = 3

Table 1-3 Master Command Conditions

Value Name Description

0 RSV Reserved

1 START I2C Start condition 
(ignore bits 7..0)

2 RESTART I2C Restart condition 
(ignore bits 7..0)

3 STOP I2C Stop condition 
(ignore bits 7..0)

4 Address + ACK I2C Address with ACK received

5 Address + /ACK I2C Address with NACK received

6 Data + ACK I2C Data with ACK received

7 Data + /ACK I2C Data with NACK received

8 All data received + /ACK I2C Last data byte + NACK received

9 Clock stretching error I2C Error occurred in relation to clock 

stretching 
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 1 13

Introduction
• 804: our 4th piece of data (with a All data received condition) = 4

• 300: is a STOP condition

Users can also configure the slave to only store data words.
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 1 14

Introduction
1.8.4 I2C-534 Slave 
Diagnostic 
Loopback

The I2C-534 master can loopback into the slave on the same port via either of 
the diagnostic loopback modes listed below (refer to Section 1.6 for a block 
diagram):

• RL loopback: the SDA and SCL pins of a slave and master for a port 
connect directly through on-board relays at the connector. The master 

and slave are connected to the I2C bus through the master pins and 
respond as in normal operation. If you disconnect the DB-37 connector, 
this allows the slave to only respond to the master on the same port. 

• FPGA loopback: connects master to slave internally and disconnects 

SDA and SCL from the I2C bus and external devices. The port master 
and slave only communicate with each other; however, note that the 
slave module can function as a fully functional slave and can send and 
receive data to the master, ACK, and stretch the clock. This is a 
diagnostic configuration if you wish to troubleshoot software but do not 
want to affect the external system. 

1.9 I2C-534 CRC 
Checker & 
Status 
Reporting

The I2C-534 includes CRC checksum verification for each I2C transaction that 
is issued from the host PC and/or embedded CPU to the I2C-534 FPGA, the last 
device in the data chain. 

I2C configuration, enable, and transfer API send command and data packets to 
the device, which include a pre-calculated CRC value in the transaction that 
remains with the data as it moves through the system. The I2C-534 FPGA 
calculates the CRC and compares it with the pre-calculated value that is tagged 
to the transaction. In the event of a mismatch, an error is returned from the API 
call. 

The following functions support the I2C CRC checksum:

DqAdv534SetConfig()
DqAdv534MasterSendCommandCRC()
DqAdv534Enable()
DqAdv534MasterSendNChanCRC()
DqAdv534MasterReceiveDataCRC()
DqAdv534ReadBMFIFOCRC()

Additionally, the I2C-534 reports hardware status, which can be read via UEI 
API. 
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 1 15

Introduction
1.10 Termination 
Pull-up 
Resistors

Both I2C-534 SDA and SCL are bidirectional lines, connected to a positive 

supply voltage via a pull-up resistor. When the I2C bus is free, both lines are 
HIGH. The output stages of any device that is connected to the bus must have 
an open-collector or open-drain to accomplish the wired-AND function. 

The I2C-534 features 4.99 kΩ termination resistors on both the clock and data 
lines. Users can configure the I2C-534 to switch in an additional 
1.5 kΩ resistor in parallel to reduce the resistance to 1.15 kΩ if required to 
improve RC constants, or add resistance externally.

1.10.1 Electrical 
Specification 

for I2C Bus

Refer to the UM10204 specification for detailed descriptions.

1.11 Wiring & 
Connectors 
(pinout)

Figure 1-7 below illustrates the pinout of the I2C-534.

Each of the four ports on the I2C-534 includes a master I2C port and/or as a 

slave I2C port. 

The I2C-534 board uses a 37-pin D-sub connector.

Figure 1-7  Pinout Diagram of the I2C-534 Board

All signals are referenced relative to isolated port ground (GND-x). Dashed line 
represents isolation barrier between ports. RSVD pin(s) have no internal 
connection to the I2C-534 board.

NOTE:  If you are using an accessory panel with the I2C-534, please refer to the 
Appendix for a description of the panel.

GND-       1
SDAS-       2
GND-       3

SDAM-      4
Vcc-      5

GND-      6
SDAS-      7
GND-      8

SDAM-      9
GND-    10

SDAS-    11
GND-    12

SDAM-    13
Vcc-    14

GND-    15
SDAS-    16
GND-    17

SDAM-    18
Rsvd   19

20     SCLS-
21     GND-
22     SCLM-
23     GND-
24     Vcc-
25     SCLS-
26     GND-
27     SCLM-
28     GND-
29     SCLS-
30     GND-
31     SCLM-
32     GND-
33     Vcc-
34     SCLS-
35     GND-
36     SCLM-
37     GND-
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 2 16

Programming with the High-Level API
Chapter 2 Programming with the High-Level API

This chapter provides the following information about using the UeiDaq 
Framework High-level API to control the DNx-I2C-534:

• About the High-level Framework (Section 2.1)

• Creating a session (Section 2.2)

• Configuring the Resource String (Section 2.3)

• Configuring an I2C Master Port (Section 2.4)

• Configuring an I2C Slave Port(Section 2.5)

• Configuring the Timing (Section 2.6)

• Reading Data (Section 2.7)

• Writing Data (Section 2.8)

• Cleaning-up the Session (Section 2.9)

2.1 About the 
High-level 
Framework

UeiDaq Framework is object oriented and its objects can be manipulated in the 
same manner from different development environments, such as Visual C++, 
Visual Basic, or LabVIEW.

UeiDaq Framework is bundled with examples for supported programming 
languages. Examples are located under the UEI programs group in:

• Start » Programs » UEI » Framework » Examples

The following sections focus on C++ API examples, but the concept is the same 
regardless of which programming language you use.

Please refer to the “UeiDaq Framework User Manual” for more information on 
use of other programming languages.

2.2 Creating a 
session

The session object controls all operations on your PowerDNx device. Therefore, 
the first task is to create a session object:

2.3 Configuring 
the Resource 
String

UeiDaq Framework uses resource strings to select which device, subsystem, 
and ports to use within a session. The resource string syntax is similar to a web 
URL:

<device class>://<IP address>/<Device Id>/<Subsystem><Channel list>

For PowerDNA cube and RACKTangle, the device class is pdna.

For example, the following resource string selects I2C ports on 0,1, and 3 on 
device 1 at IP address 192.168.100.2: “pdna://192.168.100.2/Dev1/i2c0,1,3”.

The I2C-534 is programmed using the subsystem i2c to configure ports as I2C 
ports.

// create one session object to handle inputs and outputs

CUeiSession session;
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 2 17

Programming with the High-Level API
2.4 Configuring 

an I2C Master 
Port

The method CreateI2CMasterPort() is used to configure one or more ports 

as a master I2C port. The following call configures I2C master ports 0 and 1 of 
an I2C-534 set as device 1:

CreateI2CMasterPort() configures the following parameters:

• Bits per second: port speed of 100k, 400k, or 1M bits per second

• TTL Level: TTL level of 3.3V or 5V

• Enable Secure Shell: Enables/Disables secure shell mode. If enabled, 
writing and reading to the master port will use CRC-ensured data 
transfers.

2.4.1 Configuring 
Loopback

Users can configure a loopback mode to connect the master and slave (on the 
same port) either at the front-end connector using a relay or internally at the 
FPGA level.

The following configures loopback at the connector level, which still generates 

signals that can be seen externally on the I2C bus:

2.4.2 Configuring 
Termination

The termination pull-up resistor may be configured to alternate between a 
resistance of 1.15 kΩ and 4.99 kΩ.

The following enables the resistor in parallel, reducing resistance to 1.15 kΩ:

2.5 Configuring 

an I2C Slave 
Port

The method CreateI2CSlavePort()is used to configure one or more ports 

as a slave I2C port. 

The following call configures I2C slave port 3 of an I2C-534 set as device 1:

// configure session’s master ports

session.CreateI2CMasterPort(“pdna://192.168.100.2/Dev1/i2c0,1”,
                            UeiI2CBitsPerSecond100K,
                            UeiI2CTTLLevel3_3V,
                            false);

// configure I2C master on port 0

CUeiI2CMasterPort* pMasterPort = 
dynamic_cast<CUeiI2CMasterPort*>(session.GetChannel(0));

// Set the loopback mode

pMasterPort->SetLoopbackMode(UeiI2CLoopbackRelay);

// Set termination resistance

pMasterPort->EnableTerminationResistor(true);

// configure session’s slave ports

session.CreateI2CSlavePort(“pdna://192.168.100.2/Dev1/i2c3”,
                            UeiI2CTTLLevel3_3V,
                            UeiI2CSlaveAddress7bit
                            32);
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 2 18

Programming with the High-Level API
CreateI2CSlavePort() configures the following parameters:

• TTL Level: TTL level of 3.3V or 5V

• Slave Address Type: Use 7-bit or 10-bit addressing mode

• Slave Address: Specifies the address to assign to the slave

2.5.1 Configuring 
Bus 
Monitoring

Users can configure a slave port to store all data transmitted over the I2C bus. 
By default this feature is disabled. To enable bus monitoring, first create a 
pointer to the slave port you wish to program. Next, enable the bus monitor 
feature and optionally configure ACK generation.

2.5.2 Configuring 
Clock 
Stretching

Slaves can delay bytes by holding the SCL line LOW during transactions. Clock 
stretching can be individually enabled for address, transmit, or receive cycles 
and is configured in 15 nanosecond increments.

The following enables a clock stretching delay of 45 nanoseconds for the 
address, transmit, and receive cycles:

2.6 Configuring 
the Timing

The application must configure the I2C-534 to use the “messaging” timing mode.

The following shows how to configure messaging I/O mode:

NOTE: bufferSize and refreshRate are currently unused for the I2C-534. 
Messages are sent and received when a write or read method is called.

2.7 Reading Data Reading data form the I2C-534 is done using a reader object.

// configure I2C slave on port 0

CUeiI2CSlavePort* pSlavePort = 
dynamic_cast<CUeiI2CSlavePort*>(session.GetChannel(0));

// Enable bus monitoring

pSlavePort->EnableBusMonitor(true);

// Optionally configure generating ACKs to simulate device(s) on the bus

pSlavePort->EnableBusMonitorAck(false);

// set clock delay in 15ns increments

pSlavePort->SetClockStretchingDelay(3);

// Configure clock stretching for each cycle type individually

pSlavePort->EnableAddressClockStretching(true);
pSlavePort->EnableTransmitClockStretching(true);
pSlavePort->EnableReceiveClockStretching(true);

// Configure timing of I2C port

session.ConfigureTimingForMessagingIO(1,0);
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 2 19

Programming with the High-Level API
Since there is no multiplexing of data (contrary to what’s done with AI, DI, or CI 
sessions) you need to create one reader object per input port to be able to read 
from each port in the port list. Note that the reader object can read from both the 
master and a slave of one port.

The following sample shows how to create a reader object for port 1 and read up 

to 10 data elements form the I2C slave and up to 10 elements from the I2C 
master.

2.8 Writing Data Writing data to the I2C-534 is done using a writer object.

Since there is no multiplexing of data (contrary to what’s done with AO, DO, or 
CO sessions), you need to create one writer object per output port to be able to 
write to each port in the port list. Note that the writer object can write to both the 
master and slave of one port.

The following sample shows how to create a writer object for port 1 and write 10 
bytes of data to slave followed by a write to a master to request the slave data 

over the I2C bus:

// Create a reader and link it to the session’s stream, port 1

reader = new CUeiI2CReader(session.GetDataStream(),1);

// Read up to 10 data element from the slave

tUeiI2CSlaveMessage slaveRx[10];
reader->ReadSlave(10, slaveRx, &numElementsRead);

// Read up to 10 data elements from the master

tUeiI2CMasterMessage masterRx[10];
reader->ReadMaster(10, masterRx, &numElementsRead);

// Create a writer a link it to the session’s stream, port 1

writer = new CUeiI2CWriter(session.GetDataStream(),1);

// Initialize 10 uint16s to 0x5 that will be written to the slave
// NOTE: only lower 8 bits are currently used for data

uInt16 txData[10];
for(int i=0; i<10; i++) txData[i] = 0x5;

// Write data to slave FIFO, which slave uses when replying to master

writer->WriteSlaveData(10, txData, &numElementsWritten);

// Build I2C read command for master

tUeiI2CMasterCommand params;
params.type = UeiI2CCommandRead;
params.slaveAddress = 0x20;
params.numReadElements = 10;

//Write command to master

writer.WriteMasterCommand(&params);
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 2 20

Programming with the High-Level API
2.9 Cleaning-up 
the Session

The session object will clean itself up when it goes out of scope or when it is 
destroyed. To reuse the object with a different set of ports or parameters, you 
can manually clean up the session as follows:

// Clean up the session

session.CleanUp();
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 3 21

Programming with the Low-Level API
Chapter 3 Programming with the Low-Level API

This chapter provides the following information about programming the I2C-534 
using the low-level API:

• About the Low-level API (Section 3.1)

• Low-level Functions (Section 3.2)

• Low-level Programming Techniques (Section 3.3)

• Configuring I2C Interface (Section 3.4)

• XDCP™ Device (Renesas X9119) (Section 3.5)

• Bus Monitor Functionality (Section 3.6)

• Slave Functionality (Section 3.7)

• Controlling DC/DC (Section 3.8)

3.1 About the 
Low-level API

The low-level API provides direct access to the DaqBIOS protocol structure and 
registers in C. The low-level API is intended for speed-optimization, when 
programming unconventional functionality, or when programming under Linux, 
Windows, or real-time operating systems.

When programming in Windows OS, however, we recommend that you use the 
UeiDaq high-level Framework API (see Chapter 2). The Framework simplifies 
the use of the low-level API that makes programming easier and faster while still 
providing access to the majority of low-level API features. 

For additional information regarding low-level programming, refer to the 
“PowerDNA API Reference Manual” located in the following directories:

• On Linux systems:
<PowerDNA-x.y.z>/docs

• On Windows systems:
Start » All Programs » UEI » PowerDNA » Documentation

3.2 Low-level 
Functions

Table 3-1 provides a summary of I2C-534-specific functions. All low-level 
functions are described in detail in the PowerDNA API Reference Manual.

Table 3-1  Summary of Low-level API Functions for DNx-I2C-534 

Function Description

DqAdv534SetConfig sets up layer configuration 

DqAdv534Enable enables/disables I2C-534 ports

DqAdv534Flush flushes receive and/or transmit FIFOs on slave and/or mas-

ter depending on the <flags> for the selected bitmask of 

ports

DqAdv534BuildCmdData configures the master command to be sent using 
DqAdv534MasterWriteTxFIFO
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 3 22

Programming with the Low-Level API
3.3 Low-level 
Programming 
Techniques

Application developers are encouraged to explore the existing source code 
examples when first programming the I2C-534. Sample code provided with the 
installation is self-documented and serves as a good starting point. 

Code examples are located in the following directories:

• On Linux systems: <PowerDNA-x.y.z>/src/DAQLib_Samples

• On Windows: Start » All Programs » UEI » PowerDNA » Examples 

DqAdv534MasterWriteTxFIFO writes to the master FIFO and returns the number of words 

written and the number of words still available in the FIFO

DqAdv534MasterReadRxFIFO reads from the master FIFO and returns the number of 

words retrieved and the number of words still available in 

the FIFO

DqAdv534SlaveWriteTxFIFO writes to the slave FIFO and returns the number of words 

written and the number of words still available in the FIFO

DqAdv534SlaveReadRxFIFO reads from the slave FIFO and returns the number of words 

retrieved and the number of words still available in the FIFO

DqAdv534MasterSendCommandCRC sends data in a secure fashion. If FPGA CRC check failed, 

the data is discarded. You can program this function to wait 

for all BM data associated with the transmission and return 

only after transaction is completed on the bus

DqAdv534MasterReceiveCommand
CRC

receives data transmitted from the slave to the master, 

enveloped in CRC

DqAdv534ReadBMFIFOCRC reads bus monitor data in a secure fashion. If FPGA CRC 

check failed, the data is discarded.

DqAdv534GetStatus retrieves per port status

DqAdv534CalcCustomTiming Calculates parameters for a custom baud rate between 

2kHz and 100kHz for non-standard I2C devices 

DqAdv534MasterSendNChanCRC Sends data at the same time to multiple ports defined in the 

port mask. The function does CRC check for all ports 

requested and then simultaneously starts transaction

DqAdv534MasterWriteTxPhyFIFO Writes to the PHY FIFO - lowest level FIFO. Write is per-

formed in the form of atomic commands on I2C bus

DqAdv534BusControl configuration per port for enabling/disabling: DC/DC, inter-

nal loopback, and parallel pull-up resistors

DqAdv534WriteCLOFIFO Not fully implemented or tested

DqAdv534ReadCLIFIFO Not fully implemented or tested

Table 3-1  Summary of Low-level API Functions for DNx-I2C-534 (Cont.)

Function Description
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 3 23

Programming with the Low-Level API
Code examples specifically for the I2C-534 have 534 specified in the name, 
(i.e., Sample534.c). 

I2C-534 can be operated using the immediate (point-to-point) data acquisition 
protocol. Sample534.c provides an example of acquiring data using this 
mode.

3.4 Configuring 

I2C Interface

The I2C-534 master and slave ports are configured using the 
DqAdv534SetConfig() API. 

int DqAdv534SetConfig(int hd, int devn, int port, 
pI2C534CFG pCfg);

Parameters consist of the following:

• int hd - handle to the IOM

• int devn – device number in the layer stack

• int port – port to apply configuration parameters to

• pI2C534CFG pCfg – structure for programming port configuration

Configuration options are set using the pI2C534CFG structure, as described 
below. 

Note that the <flags> member is used to specify which parameters are able to 
be changed. Members can accept a single value and some accept a logically 
grouped combination of constants. Refer to the PowerDNA API Reference 
Manual for descriptions of each parameter.

    typedef struct {
    uint32 flags;       // select active parameters to set/change
    uint32 clock;       // clock frequency, 100k, 400k and 1Mbit supported;
                        // 0 = custom parameters
    float ttl_level;    // set line voltage (3.3V and 5.1V for now)
    uint32 tx_lines;    // enable termination and loopback
    MCTPARAM mctprm     // custom timing parameters

    // Master configuration
    uint32 master_cfg;              // master configuration bitset
    uint32 master_idle_delay;       // delay in MM mode before acquiring bus
                                    //   in 15ns increments
    uint32 master_byte_delay;       // delay between bytes sent by master 
                                    //   in 1us resolution
    uint32 master_max_sync_delay;   // maximum delay in uS slave 
                                    //   could delay clock
    uint32 master_datasz_unfifo;    // <reserved>
    uint32 master_to_cfg;           // Maximum timeout delay in uS 
                                       //   before releasing bus (0 == default) 
    uint32 master_wait_bm_fifo_ms;  // Maximum wait for BM FIFO to receive
                                    //    all expected words, ms
    uint32 master_xdcp_device_type; // <reserved>

    // Slave configuration
    uint32 slave_cfg;               // slave configuration bitset
    uint32 slave_addr;              // select 7/10 slave address and 10-bit
                                    // address mode
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 3 24

Programming with the Low-Level API
    uint32 slave_data;              // data to reply when slave Tx FIFO 
                                    //    is empty
    uint32 slave_sync_dly;          // length of ACK in 15.15ns clocks
                                    //   (acknowledge cycle stretch)
    uint32 slave_ack_dly;           // 12-bit how long we wait for 
                                    //   master ACK (in clocks)
    uint32 slave_max_ack;           // Slave RX max count register 
                                    //   (# of words per /ACK)
    uint32 slave_tx_reg_size;       // in unFIFO mode the size of bytes
                                    //   to transmit to master, 1..4
} I2C534CFG, *pI2C534CFG;

<flags> define what parts of the configuration structure are valid. If the master 
needs to be programmed DQ_L534CFG_MASTER_VALID flag is required. The 
same applies to the slave functionality with DQ_L534_SLAVE_VALID bit. 
<flags> also allows to set up the clock, voltage level and termination. 
Parameters which are not set are replaced with the default values.

If DQ_L534CFG_MASTER_VALID or DQ_L534_SLAVE_VALID bits are set, 
values of <master_cfg> fields are used for programming the board, otherwise 
these fields are ignored.

By using this strategy configuration calls can be additive, so each following call 
adds or changes a parameter in the card configuration. Calling 
DqAdv534Enable()with the bit set to the programmed port in <port_mask> 
causes new parameters to take effect.

To reset configuration back to the initial state call DqAdv534SetConfig() with 
DQ_L534CFG_CLEAR bit set in <flags>.

3.4.1 Setting Up 
Custom Clock 
Rate

The DNx-I2C-534 supports custom rates between 2kHz and 100kHz. This rate 
is intended for use with custom, slower devices implemented on CPU.

One of the members in the I2C534CFG structure is MCTPARAM mctprm. While 
it is possible to calculate and use completely custom timing parameters and 
program clock rate anywhere from 1kHz to above 1MHz, the current 
implementation limits custom clock rates to between 2kHz and 100kHz.

NOTE: master and slave controllers on the same port share clock frequency 
settings

To set up a custom clock rate use DQ_L534CFG_CLOCK_CUST in <clock> field 
(DQ_L534CFG_CLOCK bit needs to be set in the <flags> as well).

Then call a helper function DqAdv534CalcCustomTiming() and pass a 
pointer pMCTPARAM to MCTPARAM mctprm in pI2C534CFG pCfg. <divider> 
divides 100kHz clock for up to 50, calculates and stores proper timing 
parameters into mctprm. The following call to DqAdv534SetConfig() 
programs these timing parameters on the card.

As an example the following diagram shows operation with the divider equal to 
2.5, i.e. 40kHz.
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 3 25

Programming with the Low-Level API
Figure 3-1 Read Command with custom clock rate set to 40.0kHz 

3.4.2 CRC-Enabled 
Functions

DNx-I2C-534 supports a set of functions that give additional CRC checking 
called “secure shell”. All these functions include CRC suffix at the end of the 
function name:

DqAdv534MasterSendCommandCRC()
DqAdv534MasterReceiveDataCRC()
DqAdv534ReadBMFIFOCRC()
DqAdv534MasterSendNChanCRC()

In addition, the following functions verify parameters using the CRC mechanism 
as well:

DqAdv534SetConfig()
DqAdv534Enable()

CRC guarding of parameters and data works as follows:

1. Arguments of the function are stored into the request packet and

CRC16 CCITT is calculated

2. Request packet is sent to the IOM firmware where CRC of the input

parameters and data is calculated and compared with CRC passed from

the requester.

3. If CRCs do not match, no operation is performed and firmware replies

back with the error code DQ_CRC_CHECK_FAILED

4. Library replies to the caller with an error
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 3 26

Programming with the Low-Level API
In addition to this, DqAdv534MasterSendCommandCRC() and 
DqAdv534MasterSendNChanCRC() generate CRC16 CCITT code to be 
passed with the command data. 

Each master command has the following structure:

[0] Command

[1] CRC16 CCITT

[2] Data...

When command is formed by the function call and data written to the buffer to 
be transmitted function calculated CRC for each command and stores it into the 
buffer. On the firmware side, function code writes received data into the FIFO 
and then reads back calculated CRC of the written data and compares it with the 
one calculated by the FPGA. If they match, an “execute” command is issued. 
However, the FPGA will ignore this command should it find CRC code mismatch 

as well. This protocol secures data to be sent on an I2C bus from the function 
call to the FPGA pin. 

When data is sent back, data CRC is calculated again for the reply and stored 
alongside with it in the packet. Library verifies that the received reply CRC 
matches calculated CRC.

There are three specific errors which can be returned by CRC-secured 
functions:

DQ_CRC_CHECK_FAILED - received/transmitted parameters failed CRC 
secure shell check

DQ_DEVICE_BUSY - FIFO cannot accept more data because it encountered 
CRC or command failure during the previous call. In this case the user needs to 
call DqAdv534Flush() to reset output FIFOs

DQ_DATA_ERROR - this error is only possible when <flags> in 
DqAdv534MasterSendCommandCRC() has 
DQ_L534_MSENDCRC_DOUBLECHECK_CRC bit set. In this case every command 
word written into the FPGA is read back and verified against already verified 
command words in the CPU memory. Generally this check is not required to 
guarantee validity of the data down to the pin.

3.4.3 Command and 
Raw Mode 
Functions

There are two ways the master can control I2C bus - command and raw modes. 
Command mode issues fully enveloped, CRC-secured commands which are 
performed on the FPGA and a status and/or data is returned. The second way is 
to fill the FPGA FIFO with atomic transactions on the bus - what is called “raw” 
mode. The FPGA cannot secure raw mode commands with CRC by the nature 
of the operation (library and firmware can still secure command and data down 
to the FPGA registers)

In the command mode the following commands are supported:

#define DQ_L534_CMD_TDELAY     (1<<28)    //Insert NOP command for delay
                                          //sequence
#define DQ_L534_CMD_STOP       (2<<28)    //STOP - issue a stop condition
                                          // once bus is available
#define DQ_L534_CMD_ST_WRITE   (3<<28)    //START+WRITE (including write
                                          // multiple)
#define DQ_L534_CMD_ST_READ    (4<<28)    //START+READ (including read
                                          // multiple)
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 3 27

Programming with the Low-Level API
#define DQ_L534_CMD_ST_WRRD    (5<<28)    //START+WRITE+RESTART+READ
                                          //(including read multiple)
#define DQ_L534_CMD_XDCP_READ  (6<<28)    //START+WRITE+READ (for Renesas
                                          // XDCP protocol - ex. X9119)
#define DQ_L534_CMD_XDCP_WRITE (7<<28)    //START_WRITE+WRITE (for Renesas
                                          // XDCP protocol - ex. X9259)

Two XDCP™ commands are created for Renesas devices which use their own 

I2C protocol conventions. Each of these commands can be issued in CRC-
secured mode.

If a user doesn’t want or doesn’t need to secure command with CRC or needs to 
send more than one command to one port in a single call, it can be 
accomplished with the combination of DqAdv534BuildCmdData() to create an 
array of data (in this case use DQ_L534_MSENDCRC_IGNORE_CRC flag to 
suppress CRC check) and DqAdv534MasterWriteTxFIFO().

Use master_cfg |= DQ_L534MCFG_RAWMODE in pCfg parameter of 
DqAdv534SetConfig() call to enable raw mode instead of command mode of 
operations.

In raw mode master TX FIFO is written with atomic commands (using 
DqAdv534MasterWriteTxPhyFIFO() call):

I2C_MRAW_PHY_TX1(B)      // PHY: Set SDA to 1 for one clock (use B = 0)
I2C_MRAW_PHY_TX0(B)      // PHY: Set SDA to 0 for one clock (use B = 0)
I2C_MRAW_PHY_RX(B)       // PHY: Set SDA to 1 for one clock, return SDA at the falling edge
                         // of the clock (use B = 0)
I2C_MRAW_PHY_START(B)    // PHY: START condition on the bus (use B = 0)
I2C_MRAW_PHY_STOP(B)     // PHY: STOP condition on the bus (use B = 0)
I2C_MRAW_PHY_RELEASE(B)  // PHY: Release bus without creating START or STOP conditions
                         // (use B = 0)
I2C_MRAW_DLY_2NUS(B)     // MASTER: Delay execution for 2^n uS (n is in 5 LSBs, B = 0..31)
I2C_MRAW_DLY_NX8US(B)    // MASTER: Delay execution for n*8uS (n is in 8 LSBs, B = 0..255)
I2C_MRAW_BYTE_SEND(B)    // MASTER: Transmit ddd data to the I2C bus 
                         // (ddd is in 8 LSBs B = 0..255)
I2C_MRAW_BYTE_RECEIVE(B) // MASTER: Read byte of data from the I2C bus and save to the RX
                         // FIFO (B = 0)
I2C_MRAW_ACK_WAIT(B)     // MASTER: Wait for the ACK, NACK ends sequence (B = 0 )
I2C_MRAW_SEQ_END(B)      // MASTER: Last command in the sequence, write starts execution 
                         // (B = 0)

DqAdv534MasterWriteTxPhyFIFO() writes command sequence into master 

PHY FIFO - the lowest accessible level of I2C state machine implemented on the 
FPGA. This allows almost unlimited flexibility to control the bus. Please notice 
that clock stretching and timeout parameters set in DqAdv534SetConfig() 
remain in full effect.

As an example, a “START+WRITE+RESTART+READ” (i.e. 
DQ_L534_CMD_ST_WRRD command) sequence is presented below:

I2C_MRAW_PHY_START(0);      // start
I2C_MRAW_BYTE_SEND(0xA0);   // address + write
I2C_MRAW_ACK_WAIT(0);       // slave ACK
I2C_MRAW_BYTE_SEND(0xF0);   // register
I2C_MRAW_ACK_WAIT(0);       // slave ACK
I2C_MRAW_PHY_RELEASE(0);    // release + start = restart
I2C_MRAW_PHY_START(0);
I2C_MRAW_BYTE_SEND(0xA1);   // address + read
I2C_MRAW_ACK_WAIT(0);       // slave ACK
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 3 28

Programming with the Low-Level API
I2C_MRAW_BYTE_RECEIVE(0);   // receive
I2C_MRAW_PHY_TX1(0);        // master NACK
I2C_MRAW_PHY_STOP(0);       // stop
I2C_MRAW_SEQ_END(0);

You can find more examples of raw mode operation in Sample534.

3.5 XDCP™ 
Device 
(Renesas 
X9119)

Renesas X9119 digital potentiometer supports XDCP™ protocol which shares 

physical and electrical characteristics with I2C protocol, however read command 
is accomplished differently. Instead of writing address byte and reading data 
from the slave, the master has to write address byte, then instruction byte and 
only after that it reads data.

3.5.1 Write Wiper 
Counter 
Register

A write into the wiper counter register is defined as the following taken from the 
datasheet:

Selecting zero address, a write to the wiper register should look like:

0x50 0xA0 0x1 0xB0 (decimal value of 432 = 0x1B0 is selected)

We use the following command to write to the X9119 (please refer to 
master_ren_x9119() from Sample534MasterDigiPots.c):

wr_address = X9119_ID_ADDRESS(X9119_ADDRESS);
n_bytes = x9119_word_3(X9119_WR_WIPER, wiper_pos, set_wiper);
ret = DqAdv534MasterSendCommandCRC(hd, devn, m_port,
                                   DQ_L534_MSENDCRC_WAIT_FOR_BM,
                                   DQ_L534_CMD_ST_WRITE|wr_address, 
                                   0, n_bytes, set_wiper, 
                                   &transmitted, &available, 
                                   &crc_stat);

Where <set_wiper> contains 10-bit data for the potentiometer.The diagram 
below confirms execution.
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 3 29

Programming with the Low-Level API
Figure 3-2 Write to Wiper Counter Register using XDCP™

3.5.2 Read Wiper 
Counter 
Register

A read from the wiper counter register consists of writing one byte with the 
address then writing a byte with the instruction opcode following reading of two 
bytes from the X9119 IC.

For address = 0 we expect writing 0x51 (read bit set) then 0x80 following reading 
back two bytes 0x1 (notice that bits [7..2] of the first read byte are not defined) 
and 0xB0. 0x1B0 was the digital potentiometer position written in the previous 
write.

We use the following command to read wiper position from the X9119 (notice it 
is formed differently than for write. Please refer to master_ren_x9119() from 
Sample534MasterDigiPots.c):

rd_address = L534_XDCP_CLO_ID_M(X9119_ID)|
             L534_XDCP_CLO_BYTE1(X9119_ADDRESS)|
             L534_XDCP_CLO_BYTE1_RD|
             L534_XDCP_CLO_BYTE2(X9119_RD_WIPER);
n_bytes = 2; 
ret = DqAdv534MasterSendCommandCRC(hd, devn, m_port,   
                                  DQ_L534_MSENDCRC_WAIT_FOR_BM,
                                  DQ_L534_CMD_XDCP_READ | rd_address, 0, 
                                  n_bytes, read_wiper, &transmitted, 
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 3 30

Programming with the Low-Level API
                                  &available, &crc_stat);
Oscilloscope confirms read sequence and the position of acknowledges (notice 
that two are slave and two are master ACKs)

Figure 3-3 Read from Wiper Counter Register using XDCP™

3.5.3 Write-Restart-
Read 
Command

Sometimes a write-restart-read is used to retrieve data. This command writes 
one byte to an address first and then performs read of a specified number of 
bytes from the device. Lack of STOP condition between these two separate 
commands tells slave device to treat them as a single transaction. For example, 
Maxim DS3930 digital potentiometer requires writing register number first and 
reading back its content in a single write-restart-read transaction.

The following code shows how to set this up (please refer to 
master_max_ds3930() from Sample534MasterDigiPots.c):

read_bytes = 1;
write_bytes = ds3930_get_pot_1wr(pot_num, set_wiper);
ret = DqAdv534MasterSendCommandCRC(hd, devn, m_port,
                                       DQ_L534_MSENDCRC_WAIT_FOR_BM,
                                       DQ_L534_CMD_ST_WRRD|address, 
                                       write_bytes, read_bytes, set_wiper, 
                                       &transmitted, &available, 
                                       &crc_stat);
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 3 31

Programming with the Low-Level API
Figure 3-4 Write-restart-read zoomed-in scope capture

3.6 Bus Monitor 
Functionality

DNx-I2C-534 implements both master and slave functionality on each port. 

Generally I2C is expected to answer (i.e acknowledge and/or transmit data in 
response of master clocking) only when device and register addresses matches 
those supported by the slave. However, in our case the slave implements a 
special mode of operation which is called bus monitor (BM). Bus monitor can be 
implemented on any port.

NOTE: Selecting cfg.master_cfg |= DQ_L534MCFG_SECURE_SHELL 
mode automatically enables BM mode on the same port as the master. 
However, it is up to the user where to connect SDAM and SCLM pins to MDAM 

and MCLM lines. It can be done remotely at the end of the I2C physical bus with 
appropriate wiring or directly on the connector by enabling loopback in software 
adding cfg.tx_lines |= DQ_L534_CFG_RL_LOOPBK bit in to the 
configuration. There is even deeper loopback available by setting bit 
DQ_L534CFG_FPGA_LOOPBK in the same <tx_lines> field to connect master 
and slave signals on the same port without ever leaving the FPGA. This mode is 
specifically designed for debugging software while DNx-I2C-534 layer is 
connected to an actual device to avoid device damage.

Using DqAdv534MasterSendCommandCRC() or 
DqAdv534MasterSendNChanCRC() a flag 
DQ_L534_MSENDCRC_WAIT_FOR_BM can be used to wait until all data is 
accumulated in BM FIFO before returning from the function call. The data from 
BM FIFO can be read using DqAdv534ReadBMFIFOCRC() with the data 
secured by CRC or a faster call to DqAdv534SlaveReadRxFIFO().
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 3 32

Programming with the Low-Level API
If the loopback is enabled BM FIFO can be read on the same port. With the 
external wiring a slave on any port can be set up to act as a BM. To do that, flag 
slave_cfg = DQ_L534CFG_ENABLE_BM needs to be set in the slave 
configuration. 

If there is no actual slave present on the bus, then there is nobody available to 
drive ACK and master will terminate transaction once timeout period expires. To 
test master command on the bus without an external device user can use 
DQ_L534CFG_ACK_BM flag in the same <slave_cfg> field. This flag tells slave to 
simulate slave ACK condition when the slave is in BM mode.

The data from the BM is 12-bits wide (in uint16). Bits [7..0] contain address or 
data word and bits [11..8] contain bus conditions. Chapter 1 details format of the 
BM data word.

3.7 Slave 
Functionality

DNx-I2C-534 implements basic slave functionality. Generally, slave functionality 
is used to emulate a device on the bus for some external master and receive 
command/data from the master.

With write commands, if 7 or 10-bit address matches with programmed slave 
address <slave_addr> field (<slave_cfg> has DQ_L534CFG_10BIT flag set in 
case of 10-bit address) received data ends up in the slave receive FIFO where 
it can be read using DqAdv534SlaveReadRxFIFO().

 With read command (addressing stays the same) there are two ways to feed 
data back to a master:

1. Using a slave Tx FIFO which is filled using 
DqAdv534SlaveWriteTxFIFO(). If the master reads more bytes than the 
FIFO contains the last byte is repeated until new data is available in the FIFO.

2. Very often user needs to emulate a device (i.e. accelerometer or 
ADC) which returns 1  to 4 bytes of data upon a read command from a certain 
address. To enable this “Un-FIFO” or register mode add slave_cfg |= 
DQ_L534CFG_SLAVE_UNFIFO and set <slave_data> field for the initial data 
(all 32-bits are used, byte order is 0x[byte0[byte1][byte2][byte3])

In register mode the value I2C slave replies to the master with can be changed 
with:

DqAdv534SetConfig() with <flags> set to DQ_L534CFG_SDATA_ADDR with 
fields <slave_addr> and <slave_data> filled and slave address and data will be 
immediately updated.

3.8 Controlling 
DC/DC

Each DNx-I2C-534 port has its own DC/DC which can be turned on and off 
through software. By default, all DC/DCs are on.

Function DqAdv534BusControl() allows to control the state of the DC/DC on 
an as-needed basis to save power or to reset slave device in case it is powered 
from the I2C-534 port itself.

Set <flags> parameter to DQL_IOCTL534_BUSCON_DCDC and pass a port mask 
of the on and off DC/DCs in <parameter[0]>. After turning DC/DC off and on you 
might need to reset the FIFOs using DqAdv534Flush() with 
DQL_IOCTL534_FLUSHALL parameter. 
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 3 33

Programming with the Low-Level API
Since all I2C state machines reside on the non-isolated FPGA side configuration 
reprogramming or re-enabling is not required. Another useful feature of 
DqAdv534BusControl() with flag DQL_IOCTL534_BUSCON_LBENTERM is to 
select loopback and termination (i.e. enabling an additional 1.5k pull-up resistor 
or connecting master and slave lines of the same port at the connector) on the 
fly without the need to reconfigure the board.
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board
Chapter 3 34

Programming with the Low-Level API
April 2020  www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.



DNx-I2C-534 I2C Interface Board 
Appendix A 35

April 2020 www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.

Appendix

A.1  Accessories The following cables and STP boards are available for the I2C-534 board.

DNA-CBL-37

3ft, 37-way flat ribbon cable; connects I2C-534 to panels to DNA-STP-37.

DNA-CBL-37S

3ft, 37-way shielded cable; connects I2C-534 to panels to DNA-STP-37.

DNA-STP-37

37-way screw terminal panel.

to JP2

JP2 — 20-position
terminal block:

4

2

CABLE SHIELD

JP3 — 20-position
terminal block:

N/C
N/C

24

22

20

JP1 — DB-37 (male)
37-pin connector:

20 1
21 2
22 3
23 4
24 5
25 6
26 7
27 8
28 9
29 10
30 11
31 12
32 13
33 14
34 15
35 16
36 17
37 18

19

to JP3



Tel:  508-921-4600 www.ueidaq.com Vers: 4.5
Date: 04. 23. 2020  DNx-I2C-534-ManualIX.fm

© Copyright 2020
United Electronic Industries, Inc.

April 2020 www.ueidaq.com
508.921.4600 

© Copyright 2020
United Electronic Industries, Inc.

DNx-I2C-534 I2C Interface Board
 Index 36

Index
B
Block Diagram 7

C
Cable(s) 35
Connectors and Wiring 15
Conventions 2
Creating a Session 16

H
High Level API 16

J
Jumper Settings 7

O
Organization 1

S
Screw Terminal Panels 35
Setting Operating Parameters 7
Specifications 5
Support ii
Support email

support@ueidaq.com ii
Support FTP Site

ftp
//ftp.ueidaq.com ii

Support Web Site
www.ueidaq.com ii


	DNx-I2C-534 — User Manual
	Table of Contents
	List of Figures
	Chapter 1 Introduction
	1.1 Organization of this Manual
	1.2 I2C-534 Board Overview
	1.2.1 I2C Interface
	1.2.2 Guardian Diagnostic Support
	1.2.3 CRC-ensured Data Transfers
	1.2.4 Accessories
	1.2.5 Software Support

	1.3 Features
	1.4 Specification
	1.5 Indicators
	1.6 Device Description
	1.7 I2C Master Description
	1.7.1 I2C Transactions
	1.7.2 Master Commands
	1.7.3 Clock Stretching
	1.7.4 Multi-Master Mode, Arbitration, and Synchronization

	1.8 I2C Slave / Bus Monitor Description
	1.8.1 I2C-534 as an I2C Slave
	1.8.2 I2C-534 Slave as a Bus Monitor
	1.8.3 Slave RX Data Formatting
	1.8.4 I2C-534 Slave Diagnostic Loopback

	1.9 I2C-534 CRC Checker & Status Reporting
	1.10 Termination Pull-up Resistors
	1.10.1 Electrical Specification for I2C Bus

	1.11 Wiring & Connectors (pinout)

	Chapter 2 Programming with the High-Level API
	2.1 About the High-level Framework
	2.2 Creating a session
	2.3 Configuring the Resource String
	2.4 Configuring an I2C Master Port
	2.4.1 Configuring Loopback
	2.4.2 Configuring Termination

	2.5 Configuring an I2C Slave Port
	2.5.1 Configuring Bus Monitoring
	2.5.2 Configuring Clock Stretching

	2.6 Configuring the Timing
	2.7 Reading Data
	2.8 Writing Data
	2.9 Cleaning-up the Session

	Chapter 3 Programming with the Low-Level API
	3.1 About the Low-level API
	3.2 Low-level Functions
	3.3 Low-level Programming Techniques
	3.4 Configuring I2C Interface
	3.4.1 Setting Up Custom Clock Rate
	3.4.2 CRC-Enabled Functions
	3.4.3 Command and Raw Mode Functions

	3.5 XDCP™ Device (Renesas X9119)
	3.5.1 Write Wiper Counter Register
	3.5.2 Read Wiper Counter Register
	3.5.3 Write-Restart- Read Command

	3.6 Bus Monitor Functionality
	3.7 Slave Functionality
	3.8 Controlling DC/DC

	Appendix
	Index

