

DNx-MF-101
User Manual

 Multifunction I/O Board
for the PowerDNA Cube and RACK Series Chassis

March 2025

PN Man-DNx-MF-101

© Copyright 2025 United Electronic Industries, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
by any means, electronic, mechanical, by photocopying, recording, or otherwise without prior written
permission.
Information furnished in this manual is believed to be accurate and reliable. However, no responsibility
is assumed for its use, or for any infringement of patents or other rights of third parties that may result
from its use.

All product names listed are trademarks or trade names of their respective companies.

Contacting United Electronic Industries

For a list of our distributors and partners in the US and around the world, please contact a member of our
support team:

Support:
Telephone: (508) 921-4600
Fax: (508) 668-2350
Also see the FAQs and online “Live Help” feature on our web site.

Internet Support:
Support: uei.support@ametek.com
Website: www.ueidaq.com

Product Disclaimer:
WARNING!

DO NOT USE PRODUCTS SOLD BY UNITED ELECTRONIC INDUSTRIES, INC. AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.
Products sold by United Electronic Industries / AMETEK are not authorized for use as critical
components in life support devices or systems. A critical component is any component of a life support
device or system whose failure to perform can be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or effectiveness. Any attempt to purchase any United
Electronic Industries / AMETEK product for that purpose is null and void and United Electronic
Industries / AMETEK accepts no liability whatsoever in contract, tort, or otherwise whether or not
resulting from our or our employees' negligence or failure to detect an improper purchase.

Specifications in this document are subject to change without notice. Check with UEI for
current status.

Mailing Address: Shipping Address:
249 Vanderbilt Avenue
Norwood, MA 02062
U.S.A.

24 Morgan Drive
Norwood, MA 02062
U.S.A.

http://www.ueidaq.com

DNx-MF-101 Multifunction I/O Board i
Table of Contents

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Table of Contents
Chapter 1 Introduction . 1

1.1 Organization of this Manual . 1

1.2 Manual Conventions . 2

1.3 Naming Conventions . 2

1.4 Related Resources . 2

1.5 Before You Begin . 3

1.6 DNx-MF-101 Features . 4
1.6.1 Analog Input . 4
1.6.2 Analog Output. 4
1.6.3 Digital I/O . 4
1.6.4 Communication Ports . 5
1.6.5 Guardian Diagnostics . 5
1.6.6 Isolation & Over-voltage Protection . 5
1.6.7 Environmental Conditions. 6
1.6.8 Accessories . 6
1.6.9 Software Support . 6

1.7 Technical Specifications . 7
1.7.1 Analog Input . 7
1.7.2 Analog Output. 8
1.7.3 Industrial Digital I/O . 9
1.7.4 TTL Digital I/O. 9
1.7.5 Counter/Timer. 10
1.7.6 Serial Port . 10
1.7.7 I2C Port. 10
1.7.8 General . 11

Chapter 2 I/O Functional Descriptions . 12

2.1 Analog Input . 12
2.1.1 Analog Input Diagnostics . 13

2.2 Analog Output . 13
2.2.1 Analog Output Diagnostics . 14

2.3 Digital I/O. 14
2.3.1 Industrial Digital I/O . 14
2.3.2 TTL Digital I/O. 17
2.3.3 Counters . 17

2.4 Serial Port . 21
2.4.1 What is a Serial Port? . 21
2.4.2 Serial Transactions . 22
2.4.3 Minor and Major Frames. 23
2.4.4 Flow Control . 23
2.4.5 Loopback Diagnostics. 23

2.5 I2C Port . 24
2.5.1 About I2C Transactions . 24
2.5.2 Master Module . 25
2.5.3 Slave Module . 26

DNx-MF-101 Multifunction I/O Board ii
Table of Contents

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

2.5.4 Loopback Testing . 28

2.6 Indicators and Connectors. 29

2.7 Pinout . 30

2.8 Wiring Guidelines . 32
2.8.1 Analog Input Wiring . 32
2.8.2 Industrial Digital Output Wiring . 33
2.8.3 Serial Port Wiring. 34
2.8.4 I2C Port Wiring . 36

Chapter 3 PowerDNA Explorer . 37

3.1 Introduction . 37

3.2 Analog Input . 39
3.2.1 Configure AI Subsystem. 39
3.2.2 Read AI Data . 39

3.3 Analog Output . 41
3.3.1 Write AO Data. 41
3.3.2 Read AO Guardian Diagnostics . 42

3.4 Industrial Digital Input . 43

3.5 Industrial Digital Output . 45
3.5.1 Configure PWM . 45
3.5.2 Write to Digital Output. 47

3.6 RS-232/422/485 Port . 48
3.6.1 Configure Serial Port . 48
3.6.2 Send/Receive Data. 49

3.7 I2C Port . 51
3.7.1 Configure I2C Port . 51
3.7.2 Read Command Example. 52
3.7.3 Write Command Example. 53
3.7.4 Read Temperature Sensor . 54

3.8 Counter/Timer . 56
3.8.1 Configure Count Mode and Sources . 56
3.8.2 Quadrature Mode . 57
3.8.3 Bin Counter Mode. 58
3.8.4 PWM Output Mode . 58
3.8.5 Frequency Mode. 59

3.9 Logic-Level DIO. 61
3.9.1 Configure TTL Port . 61
3.9.2 Read TTL Port . 62
3.9.3 Write TTL Data . 63

Chapter 4 Programming with High-level API . 64

4.1 About the High-level API . 64

4.2 Example Code . 65

4.3 Create a Session . 65

4.4 Assemble the Resource String . 65

DNx-MF-101 Multifunction I/O Board iii
Table of Contents

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.5 Configure the Timing . 68

4.6 Start the Session . 69

4.7 Analog Input Session. 69
4.7.1 Add Input Channels . 69
4.7.2 Enable Voltage Divider . 70
4.7.3 Add Timestamp. 70
4.7.4 Configure Moving Average . 70
4.7.5 Read Data. 71

4.8 Analog Output Session . 71
4.8.1 Configure Output Channels . 71
4.8.2 Write Data. 72
4.8.3 Read Diagnostic Data. 72

4.9 Industrial Digital Input Session . 73
4.9.1 Configure Input Channels . 73
4.9.2 Read Data. 74
4.9.3 Read Input Voltages . 75

4.10 Industrial Digital Output Session . 75
4.10.1 Configure Output Channels . 75
4.10.2 Write Data. 78
4.10.3 Read Output Voltages . 78

4.11 TTL Digital Input Session . 78
4.11.1 Configure Input Port . 78
4.11.2 Read Data. 78

4.12 TTL Digital Output Session . 79
4.12.1 Configure Output Port. 79
4.12.2 Write Data. 79

4.13 Counter Input Session . 80
4.13.1 Add Input Channels . 80
4.13.2 Route Counter to DIO Pins . 80
4.13.3 Counter Input Modes . 81
4.13.4 Read Count Data . 82

4.14 Counter Output Session . 83
4.14.1 Add Output Channels . 83
4.14.2 Route Counter to DIO Pins . 83
4.14.3 Counter Output Modes . 83
4.14.4 Write Output Parameters . 83

4.15 Diagnostics Session . 85
4.15.1 Add Input Channels . 85
4.15.2 Read Data. 86

4.16 Serial Port Session . 87
4.16.1 Configure the Port. 87
4.16.2 Read Data. 89
4.16.3 Write Data. 89

4.17 I2C Port Session . 90
4.17.1 Configure the Master Module . 90
4.17.2 Configure the Slave Module . 91
4.17.3 Read Data. 92

DNx-MF-101 Multifunction I/O Board iv
Table of Contents

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.17.4 Write Data. 94

4.18 Stop the Session . 94

Chapter 5 Programming with Low-level API . 96

5.1 About the Low-level API . 96

5.2 Example Code . 96

5.3 Data Acquisition Modes. 97
5.3.1 Async Events Mode . 98

5.4 Point-by-Point API . 98
5.4.1 Analog I/O. 98
5.4.2 Digital I/O . 99
5.4.3 Counters . 100
5.4.4 Serial Port . 102
5.4.5 I2C Port. 104

5.5 Async Events API . 107

5.6 RtDMap API. 108
5.6.1 DMap Tutorial . 108

5.7 RtVMap API (Analog IO) . 111
5.7.1 VMap Tutorial . 111

5.8 RtVMap API (Serial) . 115
5.8.1 VMap Tutorial (Serial). 115

5.9 AVMap API . 118
5.9.1 AVMap Tutorial . 118

Appendix A Accessories . 121
A.1 MF-101 STP Board and Cable . 121
A.2 General Purpose STP Board and Cable . 124
A.3 Test Adapter . 124

DNx-MF-101 Multifunction I/O Board v
List of Figures

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

List of Figures
Chapter 1 Introduction . 1

Chapter 2 I/O Functional Descriptions . 12
2-1 Block Diagram of DNx-MF-101 Analog Input...13
2-2 Block Diagram of DNx-MF-101 Analog Output..13
2-3 Block Diagram of DNx-MF-101 Industrial Digital I/O ...14
2-4 Simplified Circuit Diagram of an Industrial DIO Channel ...15
2-5 Typical PWM Soft Start cycle ..16
2-6 PWM Push/Pull output modes...17
2-7 Internal Structure of DNx-MF-101 Counter..19
2-8 Block Diagram of DNx-MF-101 Serial Port ..21
2-9 Example of Serial Transaction...22
2-10 Major Frame with Variable-length Minor Frames...23
2-11 Block Diagram of DNx-MF-101 I2C Port..24
2-12 I2C Master Writing Two Bytes(7-bit Address)..24
2-13 I2C Master Reading Two Bytes (7-bit Address) ..25
2-14 Slave RX Data Format...27
2-15 Photo of DNR-MF-101 Board ..29
2-16 Pinout Diagram for DNx-MF-101 ...30
2-17 Analog Input Wiring ...32
2-18 Improper Analog Input Wiring ..32
2-19 Industrial Digital Output Wiring ..34
2-20 RS-232 Wiring ...34
2-21 RS-422 and RS-485 Full Duplex Wiring ..35
2-22 RS-485 Half Duplex Wiring..35
2-23 I2C Wiring..36

Chapter 3 PowerDNA Explorer . 37
3-1 PowerDNA Explorer for DNx-MF-101..38
3-2 PowerDNA Explorer AI Tab ...40
3-3 PowerDNA Explorer AO Tab, Output Subtab..41
3-4 PowerDNA Explorer AO Tab, Guardian Subtab ..42
3-5 PowerDNA Explorer DI Tab...44
3-6 PowerDNA Explorer DO Tab, PWM Subtab..46
3-7 PowerDNA Explorer DO Tab, Output Subtab..47
3-8 PowerDNA Explorer Serial Tab, Configuration Subtab ...49
3-9 PowerDNA Explorer Serial Tab, Send/Receive Subtab ..50
3-10 PowerDNA Explorer I2C Tab, Configuration Subtab ...51
3-11 Write Slave FIFO Command..52
3-12 Read Command ..53
3-13 Write Command...54
3-14 Setup Address for Temperature Sensor ..54
3-15 Send Command to Read Temperature Sensor ...55
3-16 PowerDNA Explorer CT Tab, Quadrature Mode ...57
3-17 PowerDNA Explorer CT Tab, Bin Counter Mode...58
3-18 PowerDNA Explorer CT Tab, PWM Output Mode...59
3-19 PowerDNA Explorer CT Tab, Frequency Mode...60
3-20 PowerDNA Explorer TTL Tab, Configuration Subtab ..61
3-21 PowerDNA Explorer TTL Tab, Input Subtab..62
3-22 PowerDNA Explorer TTL Tab, Output Subtab...63

Chapter 4 Programming with High-level API . 64

DNx-MF-101 Multifunction I/O Board vi
List of Figures

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Chapter 5 Programming with Low-level API . 96

Appendix A Accessories . 121
A-1 Photo of DNA-STP-MF-101 screw terminal board with DNA-CBL-MF-1M cable121
A-2 DNA-STP-MF-101 Pinout ..123
A-3 Pinout and Photo of DNA-STP-62 Screw Terminal Panel124

DNx-MF-101 Multifunction I/O Board vii
List of Tables

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

List of Tables
Chapter 1 Introduction . 1
1-1 Analog Input Specifications ..7
1-2 Analog Output Specifications ...8
1-3 Industrial Digital I/O Specifications ...9
1-4 TTL Digital I/O Specifications ...9
1-5 Counter/Timer Specifications ...10
1-6 RS-232/422/485 Port Specifications...10
1-7 I2C Port Specifications ...10
1-8 General and Environmental Specifications...11

Chapter 2 I/O Functional Descriptions . 12
2-1 DNx-MF-101 Counter Registers ...20
2-2 I2C Bus Conditions...27
2-3 LED Indicators ..29
2-4 Analog I/O Pin Descriptions..31
2-5 Industrial Digital I/O Pin Descriptions ...31
2-6 Logic-level Digital I/O Pin Descriptions...31

Chapter 3 PowerDNA Explorer . 37

Chapter 4 Programming with High-level API . 64
4-1 DAQ Modes Supported by UeiDaq Framework..68
4-2 Analog Input Ranges (Volts)...69
4-3 Diagnostic Channel Numbers...85
4-4 High-level API for Serial Port Configuration..87
4-5 High-level API for Master Port Configuration..90
4-6 High-level API for Slave Port Configuration..91

Chapter 5 Programming with Low-level API . 96
5-1 DAQ Modes Supported by the Low-level API...97
5-2 Low-level Analog I/O API..98
5-3 Low-level Digital I/O API ...99
5-4 Low-level Counter API..100
5-5 Counter Configuration Parameters ...100
5-6 Low-level Serial Port API ..102
5-7 Serial Port Configuration Parameters...103
5-8 Low-level I2C Port API ...104
5-9 I2C Configuration Parameters ..105
5-10 Raw Mode Commands ...106
5-11 Low-level Asynchronous Events API ..107
5-12 DMap Channels..108
5-13 VMap Channels ..111
5-14 VMap Subsystems and Channels for Serial Communication115
5-15 AVMap Channels..118

Appendix A Accessories . 121

DNx-MF-101 Multifunction I/O Board
Chapter 1 1

Introduction

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Chapter 1 Introduction

This manual outlines the feature set and use of the DNx-MF-101, a multifunction
board with analog and digital I/O, an I2C port, and a serial port.

The following sections are provided in this chapter:

• Organization of this Manual (Section 1.1)

• Manual Conventions (Section 1.2)

• Naming Conventions (Section 1.3)

• Related Resources (Section 1.4)

• Before You Begin (Section 1.5)

• DNx-MF-101 Features (Section 1.6)

• Technical Specifications (Section 1.7)

1.1 Organization
of this Manual

This DNx-MF-101 User Manual is organized as follows:

• Introduction
Chapter 1 summarizes the features and specifications of the
DNx-MF-101.

• I/O Functional Descriptions
Chapter 2 describes the device architecture, logic, and connectivity of
the DNx-MF-101 subsystems.

• PowerDNA Explorer
Chapter 3 shows how to explore DNx-MF-101 features through a GUI-
based application.

• Programming with High-level API
Chapter 4 describes how to configure the DNx-MF-101, read data, and
write data with the Framework API.

• Programming with Low-level API
Chapter 5 provides an overview of C commands for configuring and
using the DNx-MF-101.

• Accessories
Appendix A provides a list of accessories available for use with the
DNx-MF-101.

DNx-MF-101 Multifunction I/O Board
Chapter 1 2

Introduction

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

1.2 Manual
Conventions

The following conventions are used throughout this manual:

Tips are designed to highlight quick ways to get the job done or to
reveal good ideas you might not discover on your own.

CAUTION! advises you of precautions to take to avoid injury, data
loss, and damage to your boards or a system crash.

NOTE: Notes alert you to important information.

1.3 Naming
Conventions

The DNA-MF-101, DNR-MF-101, and DNF-MF-101 board versions are
compatible with the UEI Cube, RACKtangle, and FLATRACK chassis
respectively. These boards are electronically identical and differ only in
mounting hardware. The DNA version stacks in a Cube chassis, while the DNR
and DNF versions plug into the backplane of a Rack chassis. Throughout this
manual, the term DNx-MF-101 refers to both Cube and Rack products.

1.4 Related
Resources

This manual only covers functionality specific to the DNx-MF-101. To get started
with your Cube or Rack, please see the documentation included with the
software installation. On Windows, these resources can be found from the
desktop by clicking Start » All Programs » UEI

UEI’s website includes other user resources such as application notes, FAQs,
tutorials, and videos. In particular, the glossary of terms may be helpful when
reading through this manual: https://www.ueidaq.com/glossary

Additional questions? Please email UEI Support at uei.support@ametek.com or
call 508-921-4600.

Typeface Description Example
bold field or button names Click Scan Network
» hierarchy to get to a specific menu item File » New
fixed source code to be entered verbatim session.CleanUp()

<brackets> placeholder for user-defined text pdna://<IP address>

italics path to a file or directory C:\Program Files

https://www.ueidaq.com/glossary
https://www.ueidaq.com/glossary

DNx-MF-101 Multifunction I/O Board
Chapter 1 3

Introduction

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

1.5 Before You
Begin

No Hot Swapping!
Before plugging any I/O connector into the Cube or RACKtangle, be sure to
remove power from all field wiring. Failure to do so may cause severe damage
to the equipment.

Check Your Firmware
Ensure that the firmware installed on the Cube or Rack CPU matches the UEI
software version installed on your PC. The IOM is shipped with pre-installed
firmware and a matching software installation. If you upgrade your software
installation, you must also update the firmware on your Cube or RACK CPU.
See “Firmware Update Procedures.pdf” for instructions on checking and
updating the firmware. These instructions are located in the following
directories:

• On Linux: PowerDNA_Linux_<x.y.z>/docs

• On Windows:
Start » All Programs » UEI » DNx Firmware Update Procedures

DNx-MF-101 Multifunction I/O Board
Chapter 1 4

Introduction

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

1.6 DNx-MF-101
Features

The DNx-MF-101 Multifunction I/O Board is an ideal measurement solution for a
variety of automotive, aerospace and power generation applications. This
multifunction I/O board includes the following channels:

• 16 single-ended or 8 fully differential analog inputs

• 2 analog outputs

• 16 industrial digital I/O bits

• 6 TTL digital bits (4 I/O, 1 input, 1 output)

• 2 counter/timers, routable to TTL or industrial digital I/O

• 1 RS-232/422/485 port

• 1 I2C port

1.6.1 Analog Input The DNx-MF-101 is equipped with 16 independently configurable analog input
channels and an 18-bit A/D converter. Inputs are buffered to eliminate
multiplexer-based settling time issues. Each channel supports a sampling rate
of up to 2000 samples/s (32 kS/s aggregate), and channels can be paired to
measure in differential mode.

The board offers software-selectable A/D ranges between ±80 V to ±0.156 V.
The upper end eliminates the need for external signal conditioning, while the
lower end allows for precise measurements down to 1.19 microvolts resolution.

To improve noise immunity, an Embedded Averaging engine automatically
acquires as many samples as possible for the given gain/speed and calculates
the average.

1.6.2 Analog Output Two 16-bit analog output channels are independently configurable as either
voltage output or current output. Users may choose among software selectable
ranges up to ±10 V or 0-20 mA.

For applications requiring higher output current or voltage, please refer to the
DNx-AO-308-35x series boards.

1.6.3 Digital I/O The DNx-MF-101 includes 16 channels of industrial digital I/O and 6 channels of
logic-level I/O (4 configurable as input or output in pairs, 1 input, and 1 output).

1.6.3.1 Industrial Bits The industrial digital I/O subsystem operates across a wide range, from 3.3 V to
55 VDC. Each industrial bit is independently configurable as either input or
output. Voltage is supplied in groups of 4 bits (up to 4 different VCCs across 16
bits).

Inputs: Each input is sensed with a dedicated 200 kHz A/D converter. High and
low thresholds are therefore programmable and state changes can be detected
with 5 microsecond resolution. Programmable pull up/down resistors allow
inputs to monitor contacts connected to a supply voltage or ground. In the
absence of an external supply voltage, the lines are weakly pulled up to an
internal 60V supply (via a 2 MΩ resistor); this ensures that inputs allow the full
0-55 V range, but can be easily overdriven by an external source.

DNx-MF-101 Multifunction I/O Board
Chapter 1 5

Introduction

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Outputs: Each output may be configured as either current sourcing (connect
output to Vcc) or sinking (connect output to Gnd). Outputs are rated for
continuous operation at 500 mA with an output voltage drop of less than 600 mV.
Each channel is protected with a 1.25 Amp fast-blow fuse.

Industrial digital outputs are equipped with an optional pulse-width modulated
(PWM) “soft-start” or “soft-stop” feature. This allows power to be applied/
removed gradually, greatly increasing the reliability of devices like incandescent
bulbs where thermal shock reduces life expectancy. The ‘soft-start” parameters
are selectable on a per-channel basis.

PWM can also be configured to run continuously for low speed, high voltage/
current applications. The board supports pulse-width resolution up to 16-bits and
frequency up to 10 kHz.

1.6.3.2 TTL Bits A total of 6 logic-level channels are provided: four channels are configurable as
input or output in pairs, one is a dedicated input, and one is a dedicated output.
Outputs use 5 V logic, but inputs are compatible with either 2.5 V, 3.3 V, or 5 V.

1.6.3.3 Counters Two 32-bit counters perform up/down counting. Several flexible modes are
available including event counting, pulse-width/period measurements, and
quadrature decoding. Counter inputs and outputs can be routed to your choice
of industrial DIO or TTL DIO pins.

1.6.4 Communication
Ports

Two serial communication ports round out the board’s capabilities: one meets
RS-232/422/485 standards and the other is designed for I2C.

1.6.4.1 RS-232/422/
485

The serial port is software configurable to RS-232, 422, or 485. The on-board
UART supports programmable baud rates from 300 baud to 2 Mbaud, character
width, parity, and stop bits.

1.6.4.2 I2C The I2C port is fully compliant with UM10204. The port may be configured as
either a Master, Slave, or Bus Monitor running at either Standard, Fast, or Fast+,
or a custom rate from 2 kHz to 100 kHz. SDA and SCL pins are pulled up to +5V
TTL with built-in 4.99 kΩ resistors

1.6.5 Guardian
Diagnostics

The DNx-MF-101 includes the following built-in diagnostic features:

• Analog Inputs - monitor PGA and report out-of-range error with every
data sample

• Analog Outputs - monitor output voltage, supply voltage, and tempera-
ture on each channel and timestamp the start of each scan

• Industrial Digital Outputs - monitor output voltage and timestamp the
start of each scan

• I2C Port - monitor the master using the slave module

1.6.6 Isolation &
Over-voltage
Protection

The DNx-MF-101 offers 350 Vrms of isolation between itself and other I/O
boards as well as between the I/O connections and the chassis. The analog and
digital sections of this board are also isolated.

DNx-MF-101 Multifunction I/O Board
Chapter 1 6

Introduction

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

1.6.7 Environmental
Conditions

Like all UEI I/O boards, the board offers operation in extreme environments and
has been tested to 5g vibration, 100g shock, from -40 to +85 °C temperatures
and will function at altitudes up to 70,000 feet.

1.6.8 Accessories The DNx-MF-101 is supported by UEI’s DNA-CBL-MF-1M splitter cable and
DNA-STP-MF-101 screw terminal panel. The shielded cable runs the digital and
analog signals through separate bundles to minimize noise. The STP board
includes terminals for all I/O pins, a DB-9 connector for the serial port, an RJ-11
connector for the I2C port, and a built-in CJC temperature sensor. For those
wishing to create their own cables, all connections are through a standard 62-pin
“D” connector, allowing OEM users to build custom cabling systems with off-the-
shelf components.

1.6.9 Software
Support

The DNx-MF-101 includes a software suite supporting Windows, Linux, QNX,
VXWorks, RTX, and most other popular real-time operating systems. Windows
users may use the UeiDaq Framework, which provides a simple and complete
software interface to all popular programming languages and DAQ applications
(e.g., LabVIEW, MATLAB). All software includes example programs that make it
easy to copy-and-paste the I/O software into your applications.

DNx-MF-101 Multifunction I/O Board
Chapter 1 7

Introduction

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

1.7 Technical
Specifi-
cations

The following tables list the technical specifications for the DNx-MF-101 board.
All specifications are for a temperature of 25°C±5°C unless otherwise stated.

1.7.1 Analog Input
Table 1-1 Analog Input Specifications

Number of channels 16 single-ended or 8 fully differential
Input configuration Multiplexed
ADC resolution 18 bits
Sampling rate 2000 samples/second per channel
High voltage mode Resolution Accuracy (at 25°C)
 ±80 V 610 µV ±24 mV
 ±20 V 153 µV ±6 mV
 ±5 V 38.1 µV ±2.5 mV
 ±1.25 V 9.54 µV ±700 µV
 Input impedance > 1.13 MΩ Diff / 1565 kΩ SE
 Input offset current < 72 µA
Overvoltage protection ± 100 Vdc
Low voltage mode Resolution Accuracy (at 25°C)
 ±10 V 76.3 µV ±1.125 mV
 ±2.5 V 19.1 µV ±300 µV
 ±0.625 V 4.77 µV ±170 µV
 ±0.156 V 1.19 µV ±115 µV
 Input impedance > 10 MΩ
 Input offset current ±1 nA max, ±0.5 nA typical
 Overvoltage protection ± 100 Vdc
Common mode rejection 100 dB typical (differential mode)
Isolation 350 Vrms (analog in and out share one gnd)

DNx-MF-101 Multifunction I/O Board
Chapter 1 8

Introduction

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

1.7.2 Analog Output
Table 1-2 Analog Output Specifications

Number of channels 2 channels
Resolution 16-bit resolution
Voltage Output mode
 Voltage output ranges ±10 V, ±5V at ±5 mA
 Output accuracy 3 ppm/°C typical, 10 ppm/°C max
 ±10 V ±3 mV
 ±5 V ±1.5 mV
 Output impedance < 0.1 Ω not including any cables
Current Output mode
 Current outputs 0-20 mA, 4-20 mA, -1-22 mA
 Output accuracy 3 ppm/°C typical, 10 ppm/°C max
 0-20 mA ±3 µA
 4-20 mA ±2.6 µA
 -1-22 mA ±3.5µA
 Maximum load resistance 750 Ω
Update rate 2000 updates/sec max, per channel
Settling time 100 µS to 0.03%
Isolation 350 Vrms (analog in and out share one gnd)

DNx-MF-101 Multifunction I/O Board
Chapter 1 9

Introduction

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

1.7.3 Industrial
Digital I/O

1.7.4 TTL Digital I/O

Table 1-3 Industrial Digital I/O Specifications
Number of channels 16 bits
I/O direction independently selectable per bit
Digital Input
 Input range 0-55 VDC
 Input high / low voltage Programmable from 0-55 VDC
 Input impedance > 1.1 MΩ

 Input open circuit state 98 kΩ pull-up or pull-down resistors are software
enabled.

 Input protection ±100 VDC
 Input clock rate 200 kHz
 Guardian input accuracy ±275 mV (15 ppm/°C)
 Input throughput 1 kHz max
Digital Output

 Configurations Current sink/source, Ground/open, or Vcc/open
(Vcc is user provided in banks of 4 bits)

 Output drive 500 mA per channel, continuous
 Output protection 1.25 Amp fast-blow fuse on each output
 Output voltage drop < 600 mV at 500 mA (Incl std 3’ cable)
 Output Off impedance > 1.1 MΩ
 Output Off leakage current < 50 µA (with 55 V input)
 Output throughput 1000 updates per second, max

 PWM output 0 to 100% in 0.0015% increments (16-bit
resolution)

 PWM cycle rate up to 10 kHz

Table 1-4 TTL Digital I/O Specifications
Number of channels 6 bits

I/O direction 4 bits selectable in groups of 2
1 bit input, 1 bit output

Logic level 5 V logic

DNx-MF-101 Multifunction I/O Board
Chapter 1 10

Introduction

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

1.7.5 Counter/Timer

1.7.6 Serial Port

1.7.7 I2C Port

Table 1-5 Counter/Timer Specifications
Number of counters 2
Resolution 32 bits

Max frequency
66 MHz for internal input clock
16.5 MHz for external input clock
33 MHz for outputs

Min frequency no lower limit

Internal 66 MHz timebase
Initial accuracy: ±10 ppm
Temp drift: ±15 ppm over full temp range
Time drift: ±5 ppm year one, then lower

Pulse-width/period accuracy 2 internal clock cycles (30 ns) on one or multiple
periods

External gate/trigger inputs 1 per counter, programmable polarity

Table 1-6 RS-232/422/485 Port Specifications
Number of Ports 1 port
Configuration software selectable RS-232, 422 or 485
Max baud rate RS-232: 256 kb/s, RS-422/485: 2 Mb/s
Baud rate selection 300 to 2 Mbaud, 0.01% or better accuracy
RS-232/485 transceiver MAX3160E with fail-safe RS-485 RX term
FIFO size 2048-word TX, 2048-word RX

Table 1-7 I2C Port Specifications
Number of Ports 1 port
Configuration Master, Slave or Bus Monitor capability
Interface specification Complies with UM10204

Max SCL speed 1 Mbit/S (compliant with SM: 100kb, FM: 400 kb
and FM+: 1Mb

Logic Level 5V
Baud rate base clock 66 MHz, 24 MHz or PLL Based

FIFO size Master Mode: 1024/1024 input/output
Slave Mode: 512/512 input/output

DNx-MF-101 Multifunction I/O Board
Chapter 1 11

Introduction

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

1.7.8 General

*Shock and vibration specifications assume appropriate mounting/installation.

Table 1-8 General and Environmental Specifications

Electrical Isolation

350 Vrms
 All analog signals share one ground
 All digital/communications signals share
 one ground
 All analog and digital signals are isolated
 from the chassis and all other I/O boards

Power Consumption < 5 W (not including output loads)
Operating Temp. (tested) -40 °C to +85 °C
Operating Humidity 95%, non-condensing
*Vibration IEC 60068-2-6
 IEC 60068-2-64

5 g, 10-500 Hz, sinusoidal
5 g (rms), 10-500 Hz, broadband random

*Shock IEC 60068-2-27 100 g, 3 ms half sine, 18 shocks @ 6 orientations
30 g, 11 ms half sine, 18 shocks @ 6 orientations

Altitude 70,000 feet, maximum
MTBF 140,000 hours
Weight 5.6 oz (160 grams)

DNx-MF-101 Multifunction I/O Board
Chapter 2 12

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Chapter 2 I/O Functional Descriptions

This section describes the device architecture and hardware of each of the
DNx-MF-101 board’s functional blocks. The following sections are provided in
this chapter:

• Analog Input (Section 2.1)

• Analog Output (Section 2.2)

• Digital I/O (Section 2.3)

• Serial Port (Section 2.4)

• I2C Port (Section 2.5)

• Indicators and Connectors (Section 2.6)

• Pinout (Section 2.7)

• Wiring Guidelines (Section 2.8)

2.1 Analog Input The DNx-MF-101 supports 8 fully differential analog input channels. As shown
in Figure 2-1, the input lines are connected to 1/8th voltage dividers
(140 kΩ/1 MΩ) which may be switched on or off. These dividers allow the board
to accept input voltages up to +/- 80 V.
Each input is buffered to reduce multiplexer settling time issues and increase
accuracy for high impedance sources. A multiplexer passes the inputs one by
one into a programmable gain amplifier (PGA). The 18-bit A/D converter
samples the multiplexed channel and performs signal averaging for further noise
reduction.
If desired, each differential channel may be configured as 2 single-ended
channels for a maximum of 16 single-ended channels. In single-ended mode, an
on-board multiplexer connects the negative terminal of the differential A/D
converter to ground. When using single-ended mode, we recommend
configuring the analog input channels to use a moving average to aid in
compensating for any noise that may be present. Both the UeiDaq Framework
and low-level API provide support for configuring analog inputs to use moving
averages.
The I/O circuitry is optically isolated from the control logic.

DNx-MF-101 Multifunction I/O Board
Chapter 2 13

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Figure 2-1 Block Diagram of DNx-MF-101 Analog Input

2.1.1 Analog Input
Diagnostics

The DNx-MF-101 monitors the PGA output and reports if the currently sampled
channel exceeds the input range. Over-voltage suggests that data for this
sample and the next could be invalid.

2.2 Analog
Output

As shown in Figure 2-2, the DNx-MF-101 is equipped with two analog output
channels. Each channel may be independently configured to output either
voltage or current through its own dynamic 16-bit D/A converter. All analog input
and output channels share the same ground and same reference but are
isolated from the control logic.The FPGA writes to both DACs simultaneously
and the two output channels are synchronized within 1.5 µs.

Figure 2-2 Block Diagram of DNx-MF-101 Analog Output

DNx-MF-101 Multifunction I/O Board
Chapter 2 14

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

2.2.1 Analog Output
Diagnostics

Each output channel is equipped with a diagnostic 12-bit ADC built into its DAC.
The diagnostic ADC reports DAC overload and has 4 read back channels:

• DAC temperature

• Voltage on AOut

• Voltage on AGnd

• Supply voltage
In voltage output mode, the supply voltage should read approximately 15 V. In
current output mode, the supply voltage is dynamically regulated to 4.95 V or
(IOUT × RLOAD + headroom), whichever is greater. The headroom has a
minimum value of 2.3 V.

2.3 Digital I/O The DNx-MF-101 digital I/O subsystem includes 16 industrial I/O channels, 4
TTL I/O channels, a dedicated TTL input, and a dedicated TTL output. Each
industrial I/O channel is independently configurable, while TTL I/O channels are
configurable in pairs. All digital I/O signals are isolated from the FPGA.

2.3.1 Industrial
Digital I/O

Figure 2-3 shows a simplified block diagram of the ADC-based digital I/O
subsystem. DIO channels may be configured as either input or output.
Inputs are buffered to protect against input loading and simultaneously sampled
at 200 kHz by 14-bit A/D converters (one ADC per DIO channel). The control
logic compares the ADC voltage to user-defined High and Low thresholds and
returns the digital state. Inputs may also be debounced with programmable
delays. The source impedance of digital inputs should be 5k Ω or below.

NOTE: While the ADC can technically read in the DIn lines as if they were
analog inputs, this is not a recommended use of these channels.

.

Figure 2-3 Block Diagram of DNx-MF-101 Industrial Digital I/O

DNx-MF-101 Multifunction I/O Board
Chapter 2 15

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Outputs are switched by a FET-based circuit (Figure 2-4) and require an
external DC power supply. Up to 4 different +DVcc’s may be supplied to the
DNx-MF-101 board. Users should ensure that each +DVcc can supply enough
current for all four channels it powers, up to 500 mA max/channel.

Figure 2-4 Simplified Circuit Diagram of an Industrial DIO Channel

As illustrated in Figure 2-4, each output is set to LOW, HIGH, or OFF by a high-
side/low-side pair of FETs. When the FPGA writes a 1 on the Dout_HIGH line,
the high-side FET turns on and connects the DIO pin to +DVcc (current
sourcing). When a 1 is written to the DOut_LOW line, the low-side FET connects
the DIO pin to DGnd (current sinking). The control logic prevents both FETs from
being on currently. When both high- and low-side FETs are disabled, the pin can
be used as a dedicated input.
Each pin’s open-circuit state is software programmable to DVcc, Gnd, or DVcc/
2. This is achieved by connecting the pin to an internal 98 kΩ pull-up resistor, 98
kΩ pull-down resistor, or both resistors respectively.

NOTE: The industrial digital output channels do NOT include built-in anti-
kickback diodes. If the channel is used to source or sink an inductive
load, we recommend connecting an external diode to protect the FETs
against induced voltage spikes (see Section 2.8.2 for wiring
information).

If +DVcc is disconnected, the positive rail is automatically pulled up to an internal
+60 V supply by a 2 MΩ resistor. The internal supply prevents accidental floating
inputs and allows digital inputs to work properly without a user-supplied +DVcc.
A user-supplied +DVcc is only required for digital outputs.

DNx-MF-101 Multifunction I/O Board
Chapter 2 16

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

When pulled up to the +60 V supply, an unused DIO pin will have some voltage
under 60 V (varies with the number of DO pins driving HIGH). The large 2 MΩ
pull-up resistance protects user equipment from this voltage. To set the unused
pin to zero, you can add an external 100 kΩ pull-down resistor.

2.3.1.1 Pulse Width
Modulation

The DNx-MF-101 offers built-in pulse width modulation (PWM) on industrial
digital outputs. PWM mode, frequency, duty cycle, and push/pull mode are per
channel configurable.
PWM modes include:

• Continuous PWM - The duty cycle is constant over the entire period of
operation. A typical application for this feature is a dimmer for an
incandescent indicator light in which the average voltage applied to a
bulb is increased or decreased by varying the PWM duty cycle.

• Soft Start - As shown in Figure 2-5, a soft start increases the PWM duty
cycle gradually from 0% up to the configured steady-state value. This
feature is useful in preventing premature burnout of devices (such as
incandescent bulbs) caused by too rapid heating on startup.

• Soft Stop - Soft stop is the opposite of soft start. The duty cycle
decreases gradually down to 0% when the output transitions from HIGH
to LOW. The typical application for soft stop mode is a soft start
operation that is implemented with inverted logic.

Figure 2-5 Typical PWM Soft Start cycle

DNx-MF-101 Multifunction I/O Board
Chapter 2 17

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

A PWM output can be configured to switch one or both FETs in the channel. A
break-before-make interval prevents both FETs from being on at the same time,
as shown in Figure 2-6.

Figure 2-6 PWM Push/Pull output modes

It is also possible to generate pulse trains using the counters described in
Section 2.3.3. However, the built-in PWM system is easier to use and therefore
recommended for industrial digital outputs.

2.3.1.2 Digital Output
Diagnostics

Because DOut and DIn share the same pin, the board can readback DOut
voltage through the Din ADC. The board does not currently support output
current monitoring, but it does provide over-current protection using a 1.25 A
fast-blow fuse on each output channel.

2.3.2 TTL Digital I/O The TTL bits use 5 V logic levels (an input between 2 V and 5 V is a HIGH, while
a voltage below 0.8 V is a LOW). The DNx-MF-101 is capable of single read/
write into the registers as well as continuous clock reads and writes. PWM
signals can be generated on TTL outputs via the counter subsystem described
in Section 2.3.3.

2.3.3 Counters Industrial and TTL DIO pins may be routed to two 32-bit counters in order to
perform a number of customizable operations including:

• Timer: count off a user-defined time interval

• Event Counter: count the number of rising or falling edges on a signal

• Bin Counter: count the number of pulses in the specified time interval

• Pulse-Width/Period: measure the width of the positive and/or negative
parts of the input signal

• Timed Pulse Period Measurement: measure average frequency of
incoming pulses over a user-defined time interval

• Quadrature Decoder: measures relative position from a quadrature
encoder sensor

• PWM Generator: output a pulse-width-modulated waveform and
update its period and duty cycle on the fly

Push and Pull: switch both FETs; break-before-make is visible

Push: switch only high-side FET

Pull: switch only low-side FET

DNx-MF-101 Multifunction I/O Board
Chapter 2 18

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

As shown in Figure 2-7, each counter has three lines:
• Input clock (CLKIN): takes in the signal to be measured

• Output clock (CLKOUT): drives one or more digital output pins accord-
ing to the counter’s mode of operation

• Gate/Trigger input (GATE): takes in a gating signal, start/stop/restart
trigger, or the quadrature encoder direction

Both input lines are connected to de-bouncers to eliminate unwanted spikes in
the signals. The counter counts up to 2^32 and can be clocked by either CLKIN,
a 66 MHz internal base clock, or a divided version of either clock.

NOTE: If the counter is routed to industrial digital inputs, the measurement
resolution is limited by the 200 kHz DIn ADC clock rate (e.g., pulse width
will be returned in 2.5 µs increments). TTL-level inputs do not use the
ADC and can therefore be measured down to 15 ns.

The counter’s behavior is defined according to the values of the registers shown
in Figure 2-7 and described in Table 2-1. Refer to Chapter 4 and Chapter 5 for
information about configuring the counting modes.

DNx-MF-101 Multifunction I/O Board
Chapter 2 19

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Figure 2-7 Internal Structure of DNx-MF-101 Counter

66 MHz base
 clock

CLKIN

CLKOUT

GATE

PS

Output Control Logic
CR

IER Interrupt
Enable register

ISR Interrupt
Status register

ICR Interrupt
Clear register

CTR Control
register

CCR Counter
Control register

PC Period Count
Register

CR0 Compare Reg 0

CR1 Compare Reg 1

LR Load Register

CRH Capture Register HI

CRL Capture
Register LOW

TBR
Timebase Register

STR Status
Register

Output FIFO
256x32-bits

Input FIFO
256x32-bits

De-bouncer
for CLKIN
and GATE

inputs

32-bit prescaler
 DBC/DBG

Creates CLKOUT waveform

Configured to
divide either

Main Counter Register

66 MHz or CLKIN

200 kHz ADC
 clock

DNx-MF-101 Multifunction I/O Board
Chapter 2 20

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Table 2-1 DNx-MF-101 Counter Registers

Reg Name Description

CCR Counter Control
Register

defines the operation mode of the counter and
prescaler

CR Main Counter Register stores the count; counts upward in all modes
except for quadrature decoder mode which
allows both up and down counting

CR0 Compare Register 0 defines how long CLKOUT stays low

CR1 Compare Register 1 defines how long CLKOUT stays high

CRH Capture Register HIGH used when the counter measures parameters
of the CLKIN signal

CRL Capture Register LOW used when the counter measures parameters
of the CLKIN signal

CTR Control Register enables/disables the counter, enables/disables
inversion mode for I/O pins and buffered FIFO
operation

ICR Interrupt Mask Register clears interrupt condition(s) after a CPU
processes them

DBC CLKIN De-bouncing
Register

defines number of 66MHz clock cycles for
which the Input Clock signal must be stable

DBG GATE De-bouncing
Register

defines number of 66MHz clock cycles for
which the Gate signal must be stable

IER Interrupt Enable
Register

enables/disables interrupt generation; 16
interrupt conditions are available

ISR Interrupt Status
Register

reports status of the enabled interrupts

LR Load Register stores the initial value from which the counter
starts counting

PC Period Count Register used when measuring a signal that is too fast
to read every period; data from CR is supplied
only when measured data has accumulated
over N periods

STR Status Register reports current status of the counter operation

TBR Timebase Register defines the measurement time interval in
certain modes

DNx-MF-101 Multifunction I/O Board
Chapter 2 21

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

2.4 Serial Port The DNx-MF-101 offers a fully isolated serial interface which is software-
configurable as RS-232 or RS-485 (half or full-duplex). The board is also
compatible with RS-422 networks when used in RS-485 full-duplex mode. A
block diagram of the serial subsystem is shown in Figure 2-8. A MAX3160E
transceiver translates voltage levels on the TX and RX lines to logical 0’s and
1’s. The data stream to/from the MAX3160E is controlled by an emulated UART
16550 serial controller, which reads/writes data from 2048-word FIFOs.

Figure 2-8 Block Diagram of DNx-MF-101 Serial Port

The remainder of this section is intended as a review of serial port concepts to
supplement the programming chapters.

2.4.1 What is a
Serial Port?

A serial port transfers data one bit at a time over a given line. RS-232/422/485
standards define the hardware connection between sender and receiver, such
as the number of lines, the wiring scheme, and the signal’s electrical
characteristics. Please see Section 2.8.3 for wiring diagrams.

2.4.1.1 RS-232
Overview

An RS-232 interface provides a bidirectional, full-duplex, serial connection from
1 transmitter to 1 receiver over short distances. RS-232 requires three wires:
RX, TX, and a common ground. Voltages on TX and RX are bipolar (±5V on the
DNx-MF-101) and measured relative to the ground wire An example TX signal
is shown in Figure 2-9. The EIA/TIA RS-232-C (1969) standard recommends
distances of less than 50 feet at signaling rates below 19200 baud; noise
becomes a problem as baud rate and line length increase.

2.4.1.2 RS-422
Overview

The RS-422 specification was designed to provide a unidirectional, full-duplex,
serial connection from 1 transmitter to up to 10 receivers. RS-422 requires four
wires for balanced differential signaling: Rx+, Rx-, Tx+, and Tx-. The MAX3160E
transceiver drives outputs at 0V and 5V, as shown in Figure 2-9, and reads in
voltages up to ±7V per the specification. The voltage difference between the two
+/- wires represents the signal value, rather than the voltage level of just one
wire. This approach eliminates a significant amount of noise and permits higher
data rates and cable lengths compared to RS-232. While RS-422 was designed
to support a multi-drop topology, in practice it is most commonly used as a long-
distance substitute for RS-232 point-by-point topologies.

DNx-MF-101 Multifunction I/O Board
Chapter 2 22

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

2.4.1.3 RS-485
Overview

An RS-485 interface provides a bidirectional serial connection between 32
transmitters and 32 receivers. A twisted wire pair is required for balanced
differential signaling: Data+ and Data-. The MAX3160E transceiver transmits
data at 0V and 5V and accepts voltages over the required common mode range
of -7V to +12V. The user designs the access protocol, which usually involves
one “master” device that coordinates one slave device (of 31) to transmit at a
time.

2.4.2 Serial
Transactions

The UART 16550 controller takes characters to be transmitted from a 2048 x 8-
bit word TX FIFO and assembles them into UART frames by adding start, parity,
stop bits, delays. Received characters are parsed from the frame and stored in
a 2048 x 8-bit word RX FIFO.
A typical UART data frame is illustrated in Figure 2-9. The frame consists of:

• Start Bit: Signals that data bits will follow.

• Data Bits: Characters are sent LSB first. Default character width is 8
bits but may be reduced to 5, 6, or 7 bits.

• Parity Bit: Optional error correction bit that checks whether the number
of 1’s in the data is odd or even.

• Stop Bit: Sets line to the idle state so that the next Start Bit can be seen.

The serial port on the DNx-MF-101 is capable of baud rates up to 256Kbits/s for
RS-232 and 2Mbits/s for RS-422/485. This rate includes the start, parity, and
stop bits.

Figure 2-9 Example of Serial Transaction

DNx-MF-101 Multifunction I/O Board
Chapter 2 23

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

2.4.3 Minor and
Major Frames

UART frames, as described above, can be grouped together into a minor frame.
Minor frames can be assembled into a major frame, and the transmitter can be
configured to auto-repeat the major frame. The delays between when the next
character, minor frame, and major frame are sent to the TX FIFO are all
programmable.

Figure 2-10 Major Frame with Variable-length Minor Frames

2.4.4 Flow Control Flow control is useful in situations where the transmitter sends data faster than
the receiver process it.The DNx-MF-101 serial port supports hardware
handshaking in RS-232 mode. The Request to Send (RTS) pin is asserted when
the DNx-MF-101 is ready to receive data. RTS is de-asserted when the RX FIFO
has filled up to a configurable watermark level. Before sending data, the
DNx-MF-101 checks if the receiver has set the Clear to Send (CTS) pin to a
positive voltage level.

2.4.5 Loopback
Diagnostics

When enabled, the loopback feature connects RX to TX internally and disables
external signals from being generated. Software and port settings can then be
tested independent of external devices and wiring.

DNx-MF-101 Multifunction I/O Board
Chapter 2 24

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

2.5 I2C Port The DNx-MF-101 I2C port is designed to meet UM10204 specification. The port
may be configured to run as a Master, Slave, or Bus Monitor.
As shown in Figure 2-11, the port includes a master and slave module which are
internally connected to the same serial clock line (SCL) and serial data line
(SDA). Both SDA and SCL are bidirectional lines which are internally connected
to the positive supply voltage via a 4.99 kΩ termination resistor. When the I2C
bus is free, both lines are pulled up to HIGH. The port supports 5 V TTL logic
levels.

Please refer to the UM10204 specification for details regarding I2C electrical
characteristics and signal timing.

Figure 2-11 Block Diagram of DNx-MF-101 I2C Port

2.5.1 About I2C
Transactions

I2C is a synchronous serial communications protocol which allows a master to
control multiple slave devices on the bus. Each transaction is initiated by the
master and addressed to a specific slave. A typical transaction executes as
follows:

Figure 2-12 I2C Master Writing Two Bytes(7-bit Address)

DNx-MF-101 Multifunction I/O Board
Chapter 2 25

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Figure 2-13 I2C Master Reading Two Bytes (7-bit Address)

1. The master initiates a data transfer on the bus with a START command
(a HIGH to LOW transition on the SDA line while SCL is HIGH).

2. The master generates clock pulses to clock the data through the transaction.
3. The master issues a 7- or 10-bit address to address a specific slave.
4. The master issues a R/W bit to indicate whether the slave is to write data or

read data. It then relinquishes the SDA line to listen for an acknowledge
(ACK) from the slave.

5. The addressed slave acknowledges its address by pulling the SDA line LOW.
If SDA remains HIGH, the request was not acknowledged (NACK).

6. If the command was a WRITE, as shown in Figure 2-12, the master serially
transmits 8-bit data words to the slave. Each byte is acknowledged by the
slave.

7. If the command was a READ, as shown in Figure 2-13, the master releases
the SDA line and allows the slave to transmit an 8-bit data word. The master
issues an ACK after each byte until it has received the expected number of
bytes. It issues NACK after the last byte.

8. When the transfer is complete, the master issues a STOP command
(a LOW to HIGH transition on the SDA line while SCL is HIGH). A STOP
command can be issued at any time by the master.

2.5.2 Master Module I2C masters control the physical I2C bus; masters start and stop a transfer and
generate the clock signals on the SCL pin. Each master includes a transmitter
that sends data onto the SDA line, plus a receiver that receives data from the
SDA line.

2.5.2.1 Master
Commands

The UEI API provides built-in master commands including:
• TDELAY: Insert a time delay (NOP command).

• STOP: Stop transaction once bus is available.

• START+WRITE: Write up to 255 bytes to the slave.

• START+READ: Read up to 255 bytes from the slave.

• START+WRITE+ReSTART+READ: Write followed immediately by a read
without a stop condition in between. Read up to 255 bytes in one com-
mand.

DNx-MF-101 Multifunction I/O Board
Chapter 2 26

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

In addition to using the built-in commands, users programming with low-level
API may assemble raw command sequences and write to the bus with almost
unlimited flexibility (see Chapter 5).

2.5.2.2 Master
Transmitter

The master module stores commands and outgoing data in the 1024 x 32-bit
word master TX FIFO. The built-in WRITE command packs 3 data bytes into
each word. Therefore, after accounting for command-specific words, the master
TX FIFO can hold roughly 3000 data bytes.

2.5.2.3 Master
Receiver

The master module stores incoming data from the slave in the 1024 x 9-bit word
master RX FIFO. Each 9-bit word includes the 8-bit data word and a STOP bit in
its MSB. The STOP bit is set for the last word received by the READ command.
Example:

In this example, the master requests 4 bytes of data from the slave TX FIFO
(0xaa, 0xbb, 0xcc, 0xdd). This is the output after reading from the master RX
FIFO:

Master: received=4 available=0
[0]=aa [1]=bb [2]=cc [3]=1dd

2.5.2.4 Multi-Master
Mode

The DNx-MF-101 master supports Multi-Master mode.

Multi-master mode is when more than one master can attempt to control the I2C
bus at the same time without corrupting the message. Masters decide which
master will own the bus through Arbitration and Clock Synchronization, as per
UM10204 specification.

2.5.3 Slave Module An I2C slave includes a receiver that reads master commands and data, as well
as a transmitter that sends data in response to a master request. Generally the
DNx-MF-101 slave module is used to emulate a device on the bus for some
external master, to test master software, or to monitor bus conditions. The slave
may be configured with either a 7-bit or 10-bit address.

2.5.3.1 Slave
Transmitter

Upon receiving a WRITE command, the slave transmitter serially outputs data
bytes from a 512 x 8-bit word TX FIFO. In addition, users may preload a 32-bit
TX data padding register with 4 bytes of data. If the slave TX FIFO is empty, the
slave sends the TX register data on repeat until new data is available in the
FIFO.

Example:

In this example, the slave TX FIFO contains two data bytes (0xaa and 0xbb) and
the slave TX register was loaded with 0x12345678. The master requests 8 bytes
and sees the following data in the master RX FIFO:

Master: received=8 available=0
[0]=aa [1]=bb [2]=56 [3]=78 [4]=12 [5]=34 [6]=56 [7]=178

(As described in Section 2.5.2.3, the 1 in front of the last word indicates the end
of the read.)

DNx-MF-101 Multifunction I/O Board
Chapter 2 27

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

2.5.3.2 Slave Receiver Upon receiving a READ command, the slave receiver stores incoming data in a
512 x 12-bit word RX FIFO. By default, each 12-bit word includes the bus
condition in the upper 4-bits, as shown in Figure 2-14. The bus condition, as
listed in Table 2-2, includes the master command and whether the data or
address was acknowledged.

Figure 2-14 Slave RX Data Format

Example:

In this example, the slave address is 0x2A, and it was written with 4 bytes of data
(0x01, 0x02, 0x03, 0x04). Here is the output after executing this transaction with
UEI’s low-level example code.

Slave: received=7 available=0
[0]=100 [1]=454 [2]=601 [3]=602 [4]=603 [5]=804 [6]=300

The received words break down as follows:
• 100: 1 | 00000000 → START | no data
• 454: 4 | 0101010 | 0 → ACK | slave address | WRITE command
• 601: 6 | 00000001 → ACK | first piece of data
• 602: 6 | 00000010 → ACK | 2nd piece of data
• 603: 6 | 00000011 → ACK | 3rd piece of data
• 804: 8 | 00000100 → all data received | 4th piece of data
• 300: 3 | 00000000 → STOP | no data

Table 2-2 I2C Bus Conditions

Value Description Bits 7...0

0 reserved n/a

1 START transaction n/a

2 ReSTART transaction n/a

3 STOP transaction n/a

4 address was ACK slave address + R/W bit

5 address was NACK slave address + R/W bit

6 data was ACK data

7 data was NACK data

8 NACK to indicate last byte last data byte in transaction

9 clock stretching error n/a

DNx-MF-101 Multifunction I/O Board
Chapter 2 28

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Suppressing Bus Conditions

The slave can be configured to store only data bytes in order to conserve FIFO
space (only supported in low-level API). Here is the output of the previous
example when bus conditions are suppressed.

Slave: received=4 available=0
[0]=601 [1]=602 [2]=603 [3]=804

2.5.3.3 Clock
Stretching

The DNx-MF-101 supports stretching of the clock, as defined in the UM10204
specification. Clock stretching is a procedure used by the slave to delay the next
byte of data from transferring immediately. Though the master controls the
transaction, the slave has the capability of forcing the master into a wait state by
holding the SCL line LOW until ready for another byte of data.

2.5.3.4 Slave as a Bus
Monitor

When the I2C port is running in Master Mode, the slave module may be
configured as a Bus Monitor for diagnostic purposes. The Bus Monitor slave
does not respond to the master; its purpose is to read all activity on the I2C bus
including data and bus conditions (Section 2.5.3.2). The received data is stored
in the slave module’s 512 x 12-bit word RX FIFO.

2.5.4 Loopback
Testing

Because the board’s master and slave modules are always internally connected,
master software can be easily tested without needing to connect another slave
device. The internal slave module is fully functional (i.e. can send and receive
data to the master, ACK, and stretch the clock).

DNx-MF-101 Multifunction I/O Board
Chapter 2 29

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

2.6 Indicators
and
Connectors

Figure 2-15 shows the locations of the LEDs and connectors on the
DNx-MF-101. The LED indicators are described below in Table 2-3.

Figure 2-15 Photo of DNR-MF-101 Board

Table 2-3 LED Indicators

LED Name Description

RDY READY: board is powered up and operational

STS

STATUS:
OFF: Configuration mode (e.g. configuring channels, running in
Point-by-Point mode)
ON: Operation mode (e.g. running in DMap or VMap mode)

DB-62 (female)
62-pin I/O connector

RDY LED
 STS LED

DNR bus
connector

DNx-MF-101 Multifunction I/O Board
Chapter 2 30

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

2.7 Pinout Figure 2-16 illustrates the pin configuration for the DNx-MF-101 board.
Connections are made through a standard DB-62 female connector.
Signals are isolated in three groups:

• Analog I/O (in blue): AIn returns on AGnd, AOut 0 returns on AGnd 0,
and AOut 1 returns on AGnd 1. Refer to Table 2-4.

• Industrial DIO (in red): referenced to DGnd.
Refer to Table 2-5.

• TTL DIO, I2C, and Serial (in black): referenced to Gnd.
Refer to Table 2-6.

Figure 2-16 Pinout Diagram for DNx-MF-101

No Hot Swapping!

Before plugging any I/O connector into the Cube or RACKtangle, be sure to
remove power from all field wiring. Failure to do so may cause severe damage
to the equipment.

UEI’s DNA-CBL-MF-1M cable is designed to ensure good noise performance
(see Section A.1). If you design your own cables, we recommend separating the
three isolated groups (analog I/O, industrial DIO, and TTL-level DIO) using
dedicated wiring and shielding.

DNx-MF-101 Multifunction I/O Board
Chapter 2 31

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Table 2-4 Analog I/O Pin Descriptions

Pin Name Pin # Description
A

na
lo

g
In

AGnd 59-60 Ground for analog inputs.

AIn n/m+ 37-42,
58, 62

Single-ended channel n or positive terminal of differential analog input
channel m. Ground any unused pins.

AIn n/m- 16-21,
57, 61

Single-ended channel n or negative terminal of differential analog input
channel m. Ground any unused pins.

A
na

lo
g

O
ut

AOut n 35-36 Signal pin for analog output channel n.

AGnd n 14-15

Ground for analog output channel n.
AGnd, AGnd 0, and AGnd 1 are internally connected, but AGnd 0/1 are
matched to AOut 0/1 respectively on the PCB to minimize noise and
voltage drops across the outputs.

Table 2-5 Industrial Digital I/O Pin Descriptions

Pin Name Pin # Description

In
du

st
ria

l D
IO DIO-n 4-11,

47-54 Signal pin for FET-based industrial digital I/O channel n.

DV n-m 26, 28,
30, 32

User-supplied Vcc for DIO channels n-m. Up to 4 different Vcc’s can be
supplied to the port in blocks of 4 channels.

DGnd 25, 27,
29, 31 Ground for industrial DIO port.

Table 2-6 Logic-level Digital I/O Pin Descriptions

Pin Name Pin # Description

TT
L

D
IO

TTL n 12-13,
55-56 Signal pin for logic-level digital I/O channel n.

Trig In 46 An additional TTL input line or as a start trigger for the layer.

Trig Out 45 An additional TTL output line or to signal that the layer has been started.

+5V-TTL 24 Provides a constant +5 V with max output current 20 mA.

I2 C

I2C SCL 2 Clock line for the I2C port.

I2C SDA 3 Data line for the I2C port.

Se
ria

l

RS-232 RS-422 full duplex RS-485 half-duplex

RTS232/TX485+ 1 Request to Send
(RTS) Send (Tx+) Data (+)

TX232/TX485- 22 Send (Tx) Send (Tx-) Data (-)

CTS232/RX485- 43 Clear to Send (CTS) Receive (Rx-) n/a

RX232/RX485+ 44 Receive (Rx) Receive (Rx+) n/a

Gnd 23,
33-34 Ground for TTL DIO, I2C, and Serial.

DNx-MF-101 Multifunction I/O Board
Chapter 2 32

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

2.8 Wiring
Guidelines

The following wiring schemes are recommended when connecting external
devices to the DNx-MF-101.

2.8.1 Analog Input
Wiring

The recommended approach for analog input wiring depends on if the signal
source is grounded or floating. Grounded signals are connected to the earth,
such as signal generators or an RTD bridge circuit powered by a desktop power
supply. Floating signals are isolated from the earth; examples include
thermocouples, batteries, or instruments with isolated outputs.

Figure 2-17 Analog Input Wiring

2.8.1.1 Grounded
Signals

As shown in Figure 2-17, all grounded signals should have the signal source
ground wired directly to AGnd on the DNx-MF-101. All AIn pins are measured
relative to the same AGnd. In differential mode, the AIn+ and AIn- inputs are
referenced to AGnd and then subtracted to remove voltages common to both
channels.

2.8.1.2 Floating
Signals

Generally speaking, floating differential inputs should have AIn- connected to
AGnd via a resistor. If there is no connection to AGnd, the input voltages may
float to a value that exceeds the amplifier’s common mode range.

Figure 2-18 Improper Analog Input Wiring

Signal Type Single-Ended Mode Differential Mode

Grounded

Floating

DNx-MF-101 Multifunction I/O Board
Chapter 2 33

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

A resistor between 10 kΩ < R < 100 kΩ is small enough to provide a path to
ground for input bias current, while large enough to allow AIn- to float relative to
the voltage reference. The external resistor may be disregarded if the 1/8th
divider is turned ON; this scales down input voltages to be safely within the
common mode range.

NOTE: Unused AIn pins should be tied to ground. This can be done internally
by enabling the 1/8th divider on unused channels. Disconnected AIn
pins will cause the PGA to saturate, which can lead to incorrect readings
on subsequent channels in the multiplexer scan list. Other unused pins
on the board may be left disconnected.

2.8.2 Industrial
Digital Output
Wiring

When using the industrial digital output subsystem, ensure that DVcc is
connected to the user’s power supply (0-55VDC). A disconnected DVcc will not
damage the DNx-MF-101 but may cause unexpected digital input readings as
the outputs switch ON/OFF.
A load may be wired to the output in any of the following configurations:

• Push Mode: DNx-MF-101 acts as a switch between DVcc and the out-
put, sourcing current to the load when the switch is on. An example cir-
cuit is shown in Figure 2-19a.

• Pull Mode: DNx-MF-101 acts as a switch between the output pin and
DGnd, sinking current from the load when the switch is on. An example
circuit is shown in Figure 2-19b.

• Push-Pull Mode: DNx-MF-101 connects the output to either DVcc or
DGnd, never both at the same time. An example dual-channel circuit is
shown in Figure 2-19c. Current flows through the solenoid when one
channel is set HIGH and the other channel is set LOW. The current is
easily reversed by inverting the outputs.

Note that the diagrams in Figure 2-19 include an optional external anti-kickback/
flyback diode. UEI recommends adding the diode when driving inductive loads
such as relays or solenoids. Without the diode, a large voltage spike can occur
across the inductive load when its supply current is suddenly shut off, potentially
damaging the FET switch inside the DNx-MF-101. The anti-kickback diode
provides an alternate path for the current and clamps the voltage spike to a safe
value.
The diode in Push Mode or Pull Mode can be a general purpose diode rated to
handle the steady-state current through the inductor and the desired switching
speed. Connect the Push Mode or Pull Mode diode parallel to the load.
In Push-Pull Mode, we suggest using a bidirectional transient-voltage-
suppression (TVS) diode such as the P6KE68CA. Connect the TVS diode from
the FET line to Gnd.

DNx-MF-101 Multifunction I/O Board
Chapter 2 34

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Figure 2-19 Industrial Digital Output Wiring

2.8.3 Serial Port
Wiring

The DNx-MF-101 may be wired according to either RS-232, RS-422, or RS-485
standards.

2.8.3.1 RS-232 In Figure 2-20, the DNx-MF-101 is wired to an external RS-232 device with
optional CTS and RTS lines for flow control. All lines are measured relative to
Gnd.

Figure 2-20 RS-232 Wiring

a.) Push Mode b.) Pull Mode

c.) Push-Pull Mode

DNx-MF-101 Multifunction I/O Board
Chapter 2 35

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

2.8.3.2 RS-422/485
Full Duplex

In Figure 2-21, the board is connected as a master in a RS-485 full duplex
network. This configuration is also compatible with RS-422. Because signals are
measured differentially, the + and - wires are twisted together (e.g., Rx+ and
Rx-) so that noise affects the pair equally. The far ends of the cables typically
require a termination resistor, shown as 120 Ω resistors in Figure 2-21.
Otherwise, signal reflections off of the unterminated ends could interfere with the
incoming signal and corrupt the data. The DNx-MF-101 provides an on-chip
91 Ω terminator that can be enabled for RS-422/485 modes.
As usual, Gnd should be connected to the reference of each external device.

Figure 2-21 RS-422 and RS-485 Full Duplex Wiring

2.8.3.3 RS-485 Half
Duplex

Figure 2-22 shows the wiring for a RS-485 half-duplex network. In RS-485 half-
duplex mode, the Rx+ and Rx- pins on the DNx-MF-101 are left open because
Tx and Rx are connected internally. If an external device on the network does
not have an internal Tx/Rx connection, Tx+ should be wired to Rx+ and Tx-
wired to Rx-. This external Tx/Rx wiring is not required on the DNx-MF-101. As
with full-duplex mode, the wire pair should be twisted together and termination
resistors added as needed.

Figure 2-22 RS-485 Half Duplex Wiring

DNx-MF-101 Multifunction I/O Board
Chapter 2 36

I/O Functional Descriptions

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

2.8.4 I2C Port
Wiring

Figure 2-23 shows an example I2C network with external 2 kΩ pull-up resistors.
The external pull-up resistors are optional depending on your application. At low
baud rates, the built-in 4.99 kΩ resistors in the DNx-MF-101 are typically strong
enough to restore the signal to logical HIGH before the line is driven LOW.
At fast baud rates (i.e. 400 kbaud and 1 Mbaud), we recommend adding external
pull-up resistors to the far ends of the cable. The resistors connect between
each signal line and +5V TTL as shown in Figure 2-23. The choice of resistor is
application-specific and depends on factors such as the cable length and the
total bus capacitance. A lower resistance value increases the rise speed but also
increases power consumption.

Figure 2-23 I2C Wiring

DNx-MF-101 Multifunction I/O Board
Chapter 3 37

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Chapter 3 PowerDNA Explorer

This chapter provides the following information about exploring the DNx-MF-101
with the PowerDNA Explorer application.

• Introduction (Section 3.1)

• Analog Input (Section 3.2)

• Analog Output (Section 3.3)

• Industrial Digital Input (Section 3.4)

• Industrial Digital Output (Section 3.5)

• RS-232/422/485 Port (Section 3.6)

• I2C Port (Section 3.7)

• Counter/Timer (Section 3.8)

• Logic-Level DIO (Section 3.9)

3.1 Introduction PowerDNA Explorer is a GUI-based application for communicating with your
RACK or Cube system. You can use it to start exploring a system and individual
boards in the system. PowerDNA Explorer can be launched from the Windows
startup menu:
Start » All Programs » UEI » PowerDNA » PowerDNA Explorer

The DNx-MF-101 is supported in PowerDNA version 5.0.0.29+.

When using PowerDNA Explorer to configure DNx-MF-101 boards, resetting the
IOM or changing the DNx-MF-101 configuration outside of PowerDNA Explorer
(e.g., via C code or Labview) is not recommended; PowerDNA Explorer will not
display changed parameters until Scan Network or Reload Configuration is
clicked again (see Figure 3-1 below for button locations).

DNx-MF-101 Multifunction I/O Board
Chapter 3 38

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Figure 3-1 PowerDNA Explorer for DNx-MF-101

When the DNx-MF-101 is selected in the left-hand panel, the right-hand panel
contains a tab for each subsystem:

• AI: read analog inputs

• AO: configure analog outputs and read diagnostic ADCs

• DI: read digital inputs and diagnostic ADCs

• DO: configure industrial digital outputs, including PWM

• Serial: send and receive RS-232/422/485 messages

• I2C: send I2C master commands, write data to the slave TX FIFO, and
read data received by the master or slave

• CT: configure counter/timer sources and counting modes

• TTL: configure TTL digital outputs and read input port

NOTE: PowerDNA Explorer only supports basic DNx-MF-101 functionality, and
only one subsystem can be active at any given time. Refer to Chapter 4,
“Programming with High-level API” or Chapter 5, “Programming with
Low-level API” in order to access additional features and to use multiple
subsystems simultaneously.

Scan Network Reload Configuration

DNx-MF-101 Multifunction I/O Board
Chapter 3 39

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

3.2 Analog Input To explore the analog input subsystem, select the AI tab (Figure 3-2) and click
the Enable Analog Input button.

3.2.1 Configure AI
Subsystem

The following settings apply to all 16 analog input channels:
• Input Range: programs the gain and voltage divider to achieve the

selected range (refer to Table 4-2).

• Moving Average: sets the number of samples used for the moving
average. You must store the configuration for the new moving average
to take effect. To save the configuration, click Store Configuration.

• Use Differential Mode for All Channels: configures all channels to
differential mode.

3.2.2 Read AI Data To start data acquisition, click the Read Input Data button. The channel table
contains the following columns:

• AInX: read-only display of the channel number.

• Name: a name or note that you wish to give to the channel.

• Differential: sets the individual channel to differential mode. For
example, in Figure 3-2 channels AIn0 and AIn1 read differential data
from pins AIn0+/0 and AIn1+/-, while channels AIn2:13 read single-
ended data from pins AIn4:15.

• Value: displays the analog input data in volts.

NOTE: If the range is set to [-10, 10], [-2.5, 2.5], [-0.625, 0.625], or [-0.15625,
0.15625] (i.e., divider is disabled), ensure that all unused AIn pins are
wired to AGnd.

DNx-MF-101 Multifunction I/O Board
Chapter 3 40

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Figure 3-2 PowerDNA Explorer AI Tab

Store Configuration Read Input Data

DNx-MF-101 Multifunction I/O Board
Chapter 3 41

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

3.3 Analog
Output

To explore the analog output subsystem, select the AO tab and click the Enable
Analog Output button.

3.3.1 Write AO Data The AO Output subtab (Figure 3-3) contains the following:
• Output Range: sets the voltage or current range for both channels.

When you select a new range, the output value automatically
reconfigures to midrange.

• AOutX: read-only display of the channel number.

• Name: a name or note that you wish to give to the channel.

• Value: slider and numeric text field for setting the voltage or current of
the corresponding output channel. The valid value range is shown in the
Output Range display. The output value is written instantaneously
when the slider is released or after pressing Enter in the numeric field.

Figure 3-3 PowerDNA Explorer AO Tab, Output Subtab

DNx-MF-101 Multifunction I/O Board
Chapter 3 42

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

3.3.2 Read AO
Guardian
Diagnostics

The AO Guardian subtab (Figure 3-4) provides access to diagnostic ADC data
for both output channels. To read the Guardian diagnostic values, click the Read
Input Data button.
The Guardian subtab contains the following columns:

• AInX: read-only display of the analog output channel number.

• Name: a name or note that you wish to give to the channel.

• Temp (C): DAC temperature

• Vsense+ (V): Voltage on AOutX

• Vsense- (V): Voltage on AGndX

• Vdpc+ (V): Supply voltage

Figure 3-4 PowerDNA Explorer AO Tab, Guardian Subtab

Read Input Data

DNx-MF-101 Multifunction I/O Board
Chapter 3 43

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

3.4 Industrial
Digital Input

To explore the industrial digital input subsystem, open the DI tab (Figure 3-5)
and click the Enable Digital Input button.
Click Read Input Data to start data acquisition.
The DI tab contains the following settings and displays:

• 0 Level: slider and numeric text field for setting the logic level low
threshold (between 0 to 55 V). The logic level changes from 1 to 0 when
the input voltage transitions below the 0 Level. Click Store
Configuration for the changes to take effect.

• 1 Level: Slider and numeric text field for setting the logic level high
threshold (between 0 to 55 V). The logic level changes from 0 to 1 when
the input voltage transitions above the 1 Level. Click Store
Configuration for the changes to take effect.

• DInX: read-only display of the channel number.

• Name: a name or note that you wish to give to the channel.

• Guardian: displays the voltage data from the channel’s ADC.

• State: displays the current state of the channel. This state is determined
by comparing the ADC voltage to the configured 0 Level and 1 Level.

• State Debounced: displays the debounced state of the channel. This
logic level must have held steady over the number of samples defined in
the “Debouncer” column. Click Store Configuration for the changes to
take effect.

• Debouncer: numeric text field to set the debouncing interval for the
channel. This is the number of ADC samples required for a debounced
state change (max 65535).

DNx-MF-101 Multifunction I/O Board
Chapter 3 44

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Figure 3-5 PowerDNA Explorer DI Tab

Store Configuration Read Input Data

DNx-MF-101 Multifunction I/O Board
Chapter 3 45

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

3.5 Industrial
Digital Output

To explore the industrial digital output subsystem, open the DO tab and click the
Enable Digital Output button.

3.5.1 Configure
PWM

The DO PWM subtab (Figure 3-6) configures the following output channel
properties:

• PWM Period: the period of the pulse-width modulated output in
microseconds. Type in a number between 5 and 254,200, press the
Enter key, and click the Store Configuration button.

• DOutX: read-only display of the channel number.

• Name: a name or note that you wish to give to the channel.

• Mode: one of the following PWM modes:
• PWM Disabled: disables PWM on the output channel
• PWM Output: enables PWM on the output channel
• Soft-Start: When Output is switched from LOW to HIGH, the duty

cycle gradually increases from 0% to the percentage specified in the
Duty Cycle column over the specified Duration.

• Soft-Stop: When Output is switched from HIGH to LOW, the duty cycle
gradually decreases from the percentage specified in the Duty Cycle
column to 0% over the specified Duration.

• Push/Pull: one of the following modes:
• Off: No push-pull setting
• Push: act as sourcing switch
• Pull: act as sinking switch
• Push-pull: connect as both push and pull, but never at same time

(circuit shown in Figure 2-19c)
• Duty Cycle (%): Defines the duty cycle for “PWM Output” mode and the

soft start and soft stop modes.

• Duration (ms): Defines the duration of the full “Soft-Start” or “Soft-Stop”
cycle in milliseconds. This duration should be set longer than the PWM
period.

DNx-MF-101 Multifunction I/O Board
Chapter 3 46

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Figure 3-6 PowerDNA Explorer DO Tab, PWM Subtab

DNx-MF-101 Multifunction I/O Board
Chapter 3 47

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

3.5.2 Write to Digital
Output

The DO Output subtab (Figure 3-7) contains the following columns:
• Ch X: read-only display of the channel number.

• Name: a name or note that you wish to give to the channel.

• High: sets the output state to 1 (high-side FET turned on, low-side FET
turned off)

• Low: sets the output state to 0 (high-side FET turned off, low-side FET
turned on)

• Tri: configures the channel as input-only (both FETs turned off)
.

Figure 3-7 PowerDNA Explorer DO Tab, Output Subtab

DNx-MF-101 Multifunction I/O Board
Chapter 3 48

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

3.6 RS-232/422/
485 Port

To explore the RS-232/422/485 subsystem, open the serial tab and click Enable
Serial.

3.6.1 Configure
Serial Port

The Configuration subtab (Figure 3-8) contains the following settings:
• Mode: Configures the port mode to RS-232, RS-485 Full Duplex

(compatible with RS-422), or RS-485 Half Duplex.

• Baud: Sets the baud rate in bits per second (bps). The minimum
supported value is 300 bps. RS-232 mode supports rates up to 256
kbps, while RS-422/485 mode supports rates up to 2 Mbps.

• Parity: Sets the parity bit to None, Even Parity, or Odd Parity.

• Data Bits: Sets the number of data bits transferred with each frame.

• Stop Bits: Sets the number of STOP bits.

• Break Enabled: Holds the TX line at logic low.

• Loopback Enabled: Connects RX and TX internally and disables
external signals.

• Timeout: Defines the timeout period in milliseconds when no data is
seen on the RX line

• Terminate Messages By String: A Read stops after this string has
been found.

Press the Enter key after typing numerical inputs and click Store Configuration
to write settings to hardware.
Click the Start Bus button to enable the serial port.

NOTE: If you change the port configuration, new settings do not take effect until
you stop and restart the bus.

DNx-MF-101 Multifunction I/O Board
Chapter 3 49

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Figure 3-8 PowerDNA Explorer Serial Tab, Configuration Subtab

3.6.2 Send/Receive
Data

The Send/Receive subtab (Figure 3-9) sends/receives either ASCII or Hex
characters, as selected in the “Format” dropdown menu.

• To Send Data: Type either an ASCII string or Hex characters (separated
by a space) into the text field next to the Send button. Click Send to
write the data to the TX FIFO.

• To Receive Data: The “Bytes Requested” field sets the number of bytes
to request from the RX FIFO. This value takes effect immediately. Click
Read Input Data and view the received messages in the display. If the
RX FIFO has less data than requested, or if the termination string is
encountered, the returned message will be filled in with 0x00. The Clear
button clears the message display.

Figure 3-9 shows the results of a simple loopback test. In this example,
Loopback is enabled, three bytes of data are written to the TX FIFO, and two
bytes of data are requested from the RX FIFO per read.

Store Configuration

DNx-MF-101 Multifunction I/O Board
Chapter 3 50

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Figure 3-9 PowerDNA Explorer Serial Tab, Send/Receive Subtab

Read Input Data

DNx-MF-101 Multifunction I/O Board
Chapter 3 51

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

3.7 I2C Port To explore the I2C subsystem, open the I2C tab and click Enable Serial.

3.7.1 Configure I2C
Port

The I2C Configuration subtab (Figure 3-10) contains the following settings:
• Clock: Sets the clock rate to 100 kHz, 400 kHz, or 1 MHz. Both the

slave and master modules run at the same clock rate.

• Enable Master: Enables the DNx-MF-101 master module.

• Enable Slave: Enables the DNx-MF-101 slave module.
• Enable BM Mode: Configures the slave module as a Bus Monitor.
• Address: Sets the slave address in hex format (7-bit default).
• 10-Bit: Configures the slave address as a 10-bit value.
• Default Data: This data (specified in hex format) is loaded into the

slave's 32-bit TX register and is automatically sent when the slave
TX FIFO is empty.

Press the Enter key after typing numerical inputs and click Store Configuration
to write settings to hardware. You can optionally Reload Configuration to read
back and confirm the configuration.

Click the Start Bus button to enable the I2C port. Note that you must stop and
restart the bus after changing the configuration.

Figure 3-10 PowerDNA Explorer I2C Tab, Configuration Subtab

Store Configuration

DNx-MF-101 Multifunction I/O Board
Chapter 3 52

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

3.7.2 Read
Command
Example

The following loop-back test writes to the slave module’s TX FIFO and reads
back the data using the master module.
1. Enable both master and slave modules as shown in Figure 3-10. In this

example, the slave address is set to 0x4A and its TX register is loaded with
0x12, 0x34, 0x56, and 0x78.

2. As shown in Figure 3-11, use the “Write Slave FIFO” command to write 0xaa
and 0xbb to the slave TX FIFO. Click Send Command.

Figure 3-11 Write Slave FIFO Command

DNx-MF-101 Multifunction I/O Board
Chapter 3 53

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

3. As shown in Figure 3-12, use the “Read” command to request 8 bytes from
the slave at address 0x4A. Click Send Command and view the received
data in the display window. The master receives the slave TX FIFO data,
followed by the slave TX register data when the FIFO is empty. The display
also shows the commands and data received by the slave (see Section
2.5.3.2). In this case no data was written to the slave.

Figure 3-12 Read Command

3.7.3 Write
Command
Example

The following loop-back test uses the master module to write data to the slave
module. The data is then read back from the slave’s RX FIFO.
1. Enable both master and slave modules as shown in Figure 3-10. In this

example, the slave address is set to 0x4A.

DNx-MF-101 Multifunction I/O Board
Chapter 3 54

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

2. As shown in Figure 3-13, use the “Write” command to write 0xaa, 0xbb,
0xcc, and 0xdd to the slave at address 0x4A. Click Send Command and
view the slave RX FIFO data in the display window. The received data
includes bus conditions as described in Section 2.5.3.2.

Figure 3-13 Write Command

3.7.4 Read
Temperature
Sensor

The DNx-TADP-101 and DNA-STP-MF-101 accessories connect an ADT7420
temperature sensor to the I2C port. The temperature sensor address is 0x48. To
read the temperature sensor:
1. As shown in Figure 3-14, send a “Write” command to setup the address

pointer. Write 0x00 to read from the Tmsb register on the ADT7420.

Figure 3-14 Setup Address for Temperature Sensor

DNx-MF-101 Multifunction I/O Board
Chapter 3 55

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

2. As shown in Figure 3-15, send a “Read” command requesting two bytes.
The ADT7420 encodes the temperature in a 13-bit number (discard the three
LSBs). See the ADT7420 datasheet and/or the “Test Adapters User Manual”
for information about converting the raw data to temperature.

Figure 3-15 Send Command to Read Temperature Sensor

DNx-MF-101 Multifunction I/O Board
Chapter 3 56

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

3.8 Counter/
Timer

To explore the counter/timer modules, open the CT tab and click Enable
Counter/Timer.

3.8.1 Configure
Count Mode
and Sources

The DNx-MF-101 includes two independent counter/timer modules. Counter/
timer configuration and operation depends on the selected mode. PowerDNA
Explorer supports the following modes:

• Quadrature: counts pulses on the external Input. The count increases
or decreases depending on the Gate signal. (Section 3.8.2)

• Bin Counter: counts pulses on the external input over a 1 second
interval. (Section 3.8.3)

• PWM Output: generates a square wave on the Output. (Section 3.8.4)

• Frequency: measures the frequency of the external Input over a user-
configured time interval. (Section 3.8.5).

You can route the counter’s Gate, Input, and Output lines to any FET-based DIO
or TTL DIO source listed in the dropdown menu. Click Store Configuration to
program the source settings in hardware.

NOTE: When using FET-based sources as the Input or Gate, always configure
digital input levels on the DI tab (Section 3.4) and click Read Input Data
to enable the DI ADC.

DNx-MF-101 Multifunction I/O Board
Chapter 3 57

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

3.8.2 Quadrature
Mode

Quadrature Mode counts pulses on the Input Source. The count increases or
decreases depending on the Gate Source. Output Source is unused in this
mode.
The CT tab with Quadrature Mode settings is shown in Figure 3-16.
Click Store Configuration to write settings to hardware.
After you Start the counter, data is returned in the Relative Position field. This
represents the number of pulses on the Input Source in hexadecimal format.
Data starts from 0xffffffff and counts up if the value from Gate Source=1. The
data counts down if Gate Source=0.

Figure 3-16 PowerDNA Explorer CT Tab, Quadrature Mode

Store Configuration Read Input Data

DNx-MF-101 Multifunction I/O Board
Chapter 3 58

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

3.8.3 Bin Counter
Mode

Bin Counter Mode counts pulses on the Input Source over a 1 second interval.
Output Source is unused in this mode.
The CT tab with Bin Counter Mode settings is shown in Figure 3-17.
Click Store Configuration to write settings to hardware.
After you Start the counter, data is returned in the following displays:

• Counter Value: number of pulses over 1 second time interval

Figure 3-17 PowerDNA Explorer CT Tab, Bin Counter Mode

3.8.4 PWM Output
Mode

PWM Output Mode generates a square wave on the Output Source. Gate and
Input Sources are unused in this mode.
The CT Tab with PWM Output Mode settings is shown in Figure 3-18. It includes
the following:

• Duty Cycle: Sets the duty cycle of the Output square wave.

• Output Frequency: Sets the desired frequency of the Output square
wave, between 1 and 10,000 Hz.

Store Configuration Read Input Data

DNx-MF-101 Multifunction I/O Board
Chapter 3 59

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Press the Enter key after typing numerical inputs and click Store Configuration
to write settings to hardware.
After you Start the counter, PWM is output corresponding to the settings
applied.

NOTE: For FET-based digital outputs, it is easier to generate PWM signals
directly through the DO subsystem (Section 3.5).

Figure 3-18 PowerDNA Explorer CT Tab, PWM Output Mode

3.8.5 Frequency
Mode

Frequency Mode measures the frequency of the Input Source over a user-
configured time interval.The Output Source is unused in this mode.
The CT Tab with Frequency Mode settings is shown in Figure 3-19 It includes
the following:

• Measurement Period: Time interval for the frequency measurement,
between 1 and 32,537,631 microseconds.

Press the Enter key after typing numerical inputs and click Store Configuration
to write the settings to hardware.

Store Configuration

DNx-MF-101 Multifunction I/O Board
Chapter 3 60

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

After you Start the counter, data is returned in the following displays:
• Measured Frequency: measured Input frequency in Hz.

Figure 3-19 PowerDNA Explorer CT Tab, Frequency Mode

Store Configuration

DNx-MF-101 Multifunction I/O Board
Chapter 3 61

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

3.9 Logic-Level
DIO

To explore the TTL-level digital I/O subsystem, open the TTL tab and click
Enable TTL.

3.9.1 Configure TTL
Port

The Configuration subtab (Figure 3-20) contains the following columns:
• TTLX: read-only display of the channel number.

• Name: a name or note that you wish to give to the channel.

• In/Out: radio button configures a channel pair as either Input or Output.
DIO 0 and 1 are configured together, as are DIO 2 and 3. Click Store
Configuration to program the new configuration.

Figure 3-20 PowerDNA Explorer TTL Tab, Configuration Subtab

Store Configuration

DNx-MF-101 Multifunction I/O Board
Chapter 3 62

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

3.9.2 Read TTL Port Click the Read Input Data button to read the state of all four TTL channels. The
TTL Input subtab (Figure 3-21) contains the following columns:

• TTLX: read-only display of the channel number.

• Name: a name or note that you wish to give to the channel.

• State: displays the logic state of the channel

Figure 3-21 PowerDNA Explorer TTL Tab, Input Subtab

Read Input Data

DNx-MF-101 Multifunction I/O Board
Chapter 3 63

PowerDNA Explorer

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

3.9.3 Write TTL Data The TTL Output subtab (Figure 3-22) contains the following columns:
• TTLX: read-only display of the channel number.

• Name: a name or note that you wish to give to the channel.

• State: toggles the logic state of the channel. You can only write data on
channels configured for Output.

Figure 3-22 PowerDNA Explorer TTL Tab, Output Subtab

DNx-MF-101 Multifunction I/O Board
Chapter 4 64

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Chapter 4 Programming with High-level API

This chapter provides the following information about programming the
DNx-MF-101 using the UeiDaq Framework API:

• About the High-level API (Section 4.1)

• Example Code (Section 4.2)

• Create a Session (Section 4.3)

• Assemble the Resource String (Section 4.4)

• Configure the Timing (Section 4.5)

• Start the Session (Section 4.6)

• Analog Input Session (Section 4.7)

• Analog Output Session (Section 4.8)

• Industrial Digital Input Session (Section 4.9)

• Industrial Digital Output Session (Section 4.10)

• TTL Digital Input Session (Section 4.11)

• TTL Digital Output Session (Section 4.12)

• Counter Input Session (Section 4.13)

• Counter Output Session (Section 4.14)

• Diagnostics Session (Section 4.15)

• Serial Port Session (Section 4.16)

• I2C Port Session (Section 4.17)

• Stop the Session (Section 4.18)

4.1 About the
High-level API

UeiDaq Framework is object oriented and its objects can be manipulated in the
same manner from different development environments, such as C++, Python,
MATLAB, LabVIEW, and more. The Framework is supported in Windows 7 and
up. It is generally simpler to use compared to the low-level API, and it includes a
generic simulation device to assist in software development. Therefore, we
recommend that Windows users use the Framework unless unconventional
functionality is required. Users programming for a non-Windows operating
system should instead use the low-level API (Chapter 5).

For more detail regarding the Framework’s architecture, please see the “UeiDaq
Framework User Manual” located under:

Start » All Programs » UEI

For information on the Framework’s classes, structures, and constants, please
see the “UeiDaq Framework Reference Manual” located under:

Start » All Programs » UEI

DNx-MF-101 Multifunction I/O Board
Chapter 4 65

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.2 Example
Code

UeiDaq Framework is bundled with examples for supported programming
languages. The example code is located under:

C:\Program FIles (x86)\UEI\Framework

The examples can be accessed via the Windows Start Menu. For example:

Start » All Programs » UEI » Visual C++ Examples

Unlike the low-level examples, Framework examples are board-agnostic, e.g.,
the “AnalogInBuffered” example works across all UEI analog input layers which
support the Advanced Circular Buffer (ACB) data acquisition mode.

Each high-level example follows the same basic structure listed in the following
steps. Subsystem configuration (Step 3) and reading and writing of data (Step 6)
are specific to particular subsystems so that information is presented in sections
that are tailored to that subsystem.

1. Create a session (Section 4.3).

2. Assemble the resource string (Section 4.4).

3. Configure the session for a particular device and subsystem
(Section 4.7 through Section 4.17).

4. Configure the timing (Section 4.5).

5. Start the session (Section 4.6).

6. Read or write data (Section 4.7 through Section 4.17).

7. Stop the session (Section 4.18).

This chapter presents examples using the C++ API, but the concepts are the
same no matter which programming language you use. The “UeiDaq
Framework User Manual” provides additional information about programming in
other languages.

4.3 Create a
Session

The session object manages all communications with the DNx-MF-101.
Therefore, the first step is always to create a new session.

NOTE: If you want to use multiple subsystems on the DNx-MF-101 (for example
simultaneous analog input and output), you will need to create a new
session for each subsystem. Therefore, example sessions for each
subsystem will be given unique names.

4.4 Assemble the
Resource
String

Each session is dedicated to a specific subsystem within the device. Framework
uses a resource string to link the session to the hardware. The resource string
syntax is similar to a web URL; it should not have any spaces and is case
insensitive.

“<device class>://<IP address>/<device number>/<subsystem><channel list>”

//create a session object

CUeiSession mySession;

DNx-MF-101 Multifunction I/O Board
Chapter 4 66

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

The components of a resource string are as follows:

• <device class> - By default, Framework examples open with a generic
simulated device. To use the DNx-MF-101, set the device class to
pdna.

• <IP address> - IP address of the IOM.

• <device number> - position of the DNx-MF-101 within the chassis, rel-
ative to the other I/O boards.

• <subsystem> - one of the following DNx-MF-101 subsystems:
• Ai: analog input session (Section 4.7)
• Ao: analog output session to generate voltage and/or current

(Section 4.8)
• Di0: industrial digital input session to configure all 16 lines

(Section 4.9)
• Diline0: industrial digital input session to configure selected lines

(Section 4.9)
• Do0: industrial digital output session to configure all 16 lines

(Section 4.10)
• Doline0: industrial digital output session to configure selected lines

(Section 4.10)
• Di1: TTL digital input session (Section 4.11)
• Do1: TTL digital output session (Section 4.12)
• Ci: counter input session to count events or measure pulse width and

period (Section 4.13)
• Co: counter output session to generate pulses and pulse trains

(Section 4.14)
• Diag: diagnostic session to read from analog output and DIO ADCs

(Section 4.15)
• Com: serial port session to send/receive RS-232/422/485 data

(Section 4.16)

• I2C: session to send/receive I2C master/slave data (Section 4.17)
• <channel list> - desired lines or ports within the selected subsystem,

either as a comma-separated list of numbers or a range. If the
subsystem name ends in a number, separate the subsystem and
channel list with a forward slash.

Example 1

Here are two valid resource strings for selecting analog input lines 0,1,2,3 on
device 1 at IP address 192.168.100.2:

• “pdna://192.168.100.2/Dev1/Ai0,1,2,3”

• “pdna://192.168.100.2/Dev1/Ai0:3”

DNx-MF-101 Multifunction I/O Board
Chapter 4 67

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Example 2

The following resource string selects TTL digital input port 0 on device 1 at IP
address 192.168.100.2:

• “pdna://192.168.100.2/Dev1/Di1/0”

Refer to Section 4.7 through Section 4.17 for details on configuring the different
types of subsystems.

DNx-MF-101 Multifunction I/O Board
Chapter 4 68

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.5 Configure the
Timing

The UeiDaq Framework supports Point-by-Point data acquisition mode for all
DNx-MF-101 functions. AVMap mode is supported for analog inputs. Additional
DAQ modes are supported by the low-level API (Chapter 5).

Point-by-Point mode transfers one sample at a time to or from each configured
channel of the I/O board. The delay between samples is controlled by the host
application (e.g., by using a Sleep function), thus limiting the data transfer rate
to a maximum of 100 Hz. This mode is also known as immediate mode or simple
mode.

Point-by-Point mode uses Simple IO timing.

AVMap mode allows acquisition of a variable number of samples per configured
analog input channel instead of a single sample.

AVMap mode requires timing to be configured by calling
ConfigureTimingForAsyncVMapIO():

Configure each session in the application with the appropriate timing mode.

NOTE: ConfigureTimingForMessagingIO() is only supported by SL-50x
and CAN boards. It is NOT available on the DNx-MF-101.

Table 4-1 DAQ Modes Supported by UeiDaq Framework

DAQ Mode AIn AOut DIn DOut TTL CT Serial I2C

Point-by-Point        

ACB

RtDMap

RtVMap

ADMap

AVMap 

//configure timing for Point-by-Point DAQ mode

mySession.ConfigureTimingForSimpleIO();

//configure timing for AVMap DAQ mode
//use an internal clock, 50 Hz date rate into FIFO, digital edge is
//ignored for analog inputs, FIFO watermark of 100 scans, period is not
//used when watermark is used

aiSession.ConfigureTimingForAsyncVMapIO(UeiTimingClockSourceInternal,
 50.0, UeiDigitalEdgeRising, 100, 0);

DNx-MF-101 Multifunction I/O Board
Chapter 4 69

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.6 Start the
Session

After a session is configured, you can start the session manually:

If you don’t explicitly start the session, it will start automatically the first time you
try to transfer data.

4.7 Analog Input
Session

The session may be configured to access the analog input (Ai) subsystem.

4.7.1 Add Input
Channels

The CreateAIChannel() method adds a new channel for each analog input
specified in the resource string. Single-ended inputs are numbered 0...15 and
differential-ended inputs are numbered 0...7. It is possible to call
CreateAIChannel() multiple times to add channels with different gains or
input modes.

The min and max parameters in CreateAIChannel() configure the channel
gain. Table 4-2 shows the supported min/max values and their corresponding
gain settings. For example, setting [min, max] to either [-10, 10] or [-80, 80]
configures the gain to x1.

When reading input channels, saturation or clipping can occur if the gain is too
high, making the value appear stuck at the highest or lowest value. Try a lower
gain value, or begin with x1. If you accidentally create a channel with
unsupported values, the board will be programmed with the closest supported
gain.

//Start the session.

mySession.Start();

//Configure ch[0:2] to read differential inputs 0, 1, and 2.
//Set gain to 1x (-10 V to 10 V range when voltage divider is disabled).

aiSession.CreateAIChannel(“pdna://192.168.100.2/Dev1/Ai0:2”,
-10, 10, UeiAIChannelInputModeDifferential);

//Configure ch[7:15] to read the remaining inputs in single-ended mode.

aiSession.CreateAIChannel(“pdna://192.168.100.2/Dev1/Ai7:15”,
-10, 10, UeiAIChannelInputModeSingleEnded);

Table 4-2 Analog Input Ranges (Volts)

Gain Without divider With divider

x1 [-10, 10] [-80, 80]

x4 [-2.5, 2.5] [-20, 20]

x8 [-0.625, 0.625] [-5,5]

x64 [-0.15625, 0.15625] [-1.25, 1.25]

DNx-MF-101 Multifunction I/O Board
Chapter 4 70

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

NOTE: To use the input ranges in the “With divider” column, you must also
enable the voltage divider (see Section 4.7.2 below). Setting [min, max]
to [-80, 80], [-20, 20], [-5, 5], or [-1.25, 1.25] only programs the gain; it
does not automatically enable the divider.

4.7.2 Enable
Voltage
Divider

When enabled, the voltage divider reduces the voltage on the channel by a
factor of 8. It is also a convenient way to tie unused input pins to ground, as is
required on the DNx-MF-101 (see Section 2.8.1.2). The divider is enabled/
disabled individually for each channel.

NOTE: Use the GetChannel() method to obtain a pointer to a channel,
rather than CUeiAIChannel* aichannel =
aiSession.CreateAIChannel(). CreateAIChannel() returns a
pointer to only the first channel in the list.

4.7.3 Add
Timestamp

Timestamp the data by adding a ts channel as the last channel in the resource
string: “pdna://192.168.100.2/Dev1/Ai0:2,ts”. The units will be in
seconds. Note that there are no spaces in a properly formatted resource string.

4.7.4 Configure
Moving
Average

Enabling the moving average can smooth out noise from the sensor input line.
The number of samples used for the moving average may be set to 0, 2, 4, 8,
16, 32, 64, 128, or 256. The default window size is 0 (turned off/average every
sample). Moving average samples are acquired at the analog input subsystem
clock rate (default 2 kHz).

//Enable voltage divider on every channel in the session.

for (int ch = 0; ch < aiSession.GetNumberOfChannels(), ch++)
{

CUeiAIChannel* aichannel =
dynamic_cast<CUeiAIChannel*>(aiSession.GetChannel(ch));

aichannel->EnableVoltageDivider(true);
}

//Set moving average window size to 128 samples.

aichannel->SetMovingAverageWindowSize(128);

DNx-MF-101 Multifunction I/O Board
Chapter 4 71

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.7.5 Read Data Reading data is done using a reader object. An Analog Raw Reader returns the
calibrated binary data and an Analog Scaled Reader returns the data converted
to volts. The following example code shows how to create a scaled reader object
and read input voltages.

4.8 Analog
Output
Session

The session may be configured to access the analog output (Ao) subsystem.

4.8.1 Configure
Output
Channels

The two analog outputs on the DNx-MF-101 are independently configurable as
either voltage or current outputs.

4.8.1.1 Voltage Output Use the CreateAOChannel() method to add a new voltage output channel to
the session. The channel is linked to the output line(s) specified in the resource
string.

Voltage output ranges (V):

• [-5, 5]

• [-10, 10]

If you accidentally create a channel with unsupported min or max values, the
board will be programmed with the closest supported range.

//Create a reader object and link it to the session’s data stream.

CUeiAnalogScaledReader aiReader(aiSession.GetDataStream());

//Buffer must be large enough to contain one sample per channel.

double data[100];

//For point-to-point, read one sample per channel.

aiReader.ReadSingleScan(data);

//For AVMap, read available scans.

aiReader.ReadMultipleScans(100, data);

//Configure ch[0] to output voltage on AOut 0 in the -10V to 10V range.

aoSession.CreateAOChannel(“pdna://192.168.100.2/Dev1/Ao0”, -10, 10);

DNx-MF-101 Multifunction I/O Board
Chapter 4 72

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.8.1.2 Current
Output

Use the CreateAOCurrentChannel() method to add a new current output
channel.

Current output ranges (mA):

• [0, 20]

• [4, 20]

• [-1, 22]

4.8.2 Write Data Writing data is done using a writer object. An Analog Raw Writer sends binary
data straight to the D/A converter. An Analog Scaled Writer accepts data in units
of volts or milliamps, depending on the channel configuration, and automatically
converts the scaled data to binary.

The following example code shows how to create a scaled writer object and
write a single set of data. Assume both channels are configured for voltage
output in the ± 10V range.

NOTE: The DNx-MF-101 does not support the CreateAOWaveform()
method. Instead, you must manually generate waveform data and load
it into the data buffer.

4.8.3 Read
Diagnostic
Data

You can read temperature and voltage from the analog output ADCs through a
separate Diagnostic session (Section 4.15).

//Configure ch[1] to output current on AOut 1 in the 4mA to 20mA range.

aoSession.CreateAOCurrentChannel(“pdna://192.168.100.2/Dev1/Ao1”,
4, 20);

//Create a writer object and link it to the session’s data stream.

CUeiAnalogScaledWriter aoWriter(aoSession.GetDataStream());

//Buffer contains one value per channel.

double data[2] = {-2.5, 7.5};

//Write -2.5V to ch[0] and 7.5V to ch[1]

aoWriter.WriteSingleScan(data);

DNx-MF-101 Multifunction I/O Board
Chapter 4 73

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.9 Industrial
Digital Input
Session

The session may be configured to access the industrial digital input (Di0 or
Diline0) subsystem.

4.9.1 Configure
Input
Channels

The CreateDIIndustrialChannel() method adds FET-based digital input
channels, sets their hysteresis thresholds, and programs a debouncer to
eliminate glitches and spikes.

NOTE: When configuring DNx-MF-101 channels as both industrial digital inputs
and industrial digital outputs, the inputs must be configured before the outputs.

• resource - Resource string specifying the port (Section 4.9.1.1) or
the line (Section 4.9.1.2)

• lowThreshold – Logic level changes from 1 to 0 when the input
voltage falls below the low hysteresis threshold.*

• highThreshold – Logic level changes from 0 to 1 when the input
voltage rises above the high hysteresis threshold.*

• minPulseWidth – Debouncer only allows a state change when the
input has remained stable at the new level for this number of
milliseconds. Use 0.0 to disable the debouncer. The maximum
allowable value for minPulseWidth width is 327 ms. If a larger value is
passed to this method, a value of 327 ms will be used.

*If the signal is in between the low and high thresholds, the detector maintains
the previous logic level.

4.9.1.1 Adding a Port Using Di0 in the resource string adds the entire digital input port to one
channel.

You can reconfigure individual lines using methods in the
CUeiDIIndustrialChannel class.

CUeiDIIndustrialChannel* CreateDIIndustrialChannel(std::string resource,
double lowThreshold, double highThreshold, double minPulseWidth);

//Get pointer to input port (channel index = 0) and configure DIO0:15
//with low threshold=2.0 V, high threshold=3.0 V, and
//debouncing interval=1.0 ms.

CUeiDIIndustrialChannel* diPort = diSession.CreateDIIndustrialChannel
 (“pdna://192.168.100.2/Dev1/Di0”,
 2.0, 3.0, 1.0);

//Change DIO7 configuration to low threshold=1.5 V, high threshold=3.5 V,
//and debouncing interval=2.0 ms.

diPort->SetLowThreshold(7, 1.5);
diPort->SetHighThreshold(7, 3.5);
diPort->SetMinimumPulseWidth(7, 2.0);

DNx-MF-101 Multifunction I/O Board
Chapter 4 74

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.9.1.2 Adding
Selected Lines

Alternatively, you can configure a subset of lines by specifying Diline0 in the
resource string and appending the desired line numbers. Note that all digital
input channels should be initially configured in a single call to
CreateDIIndustrialChannel().
Calling CreateDIIndustrialChannel() multiple times on the same session
will result in only the channels in the final call being added to the session.

This will create a number of CUeiDIIndustrialChannel instances equal to
the number of specified digital input lines. Per-channel configuration can then be
performed on the channels. The order of channels is the same order in which the
channels appeared in the resource string. Note that the <line> parameter
when setting channel parameters is always 0 when using the "DiLine" session
type. The following example sets the low threshold for each of the digital input
lines specified in the resource string above.

4.9.2 Read Data Reading data is done using a Digital Reader object. This is created using the
session's data stream object.
Digital data is stored in a 16-bit integer buffer. The reader reads from all lines in
the port, even if Diline configured only a subset of lines.

//Configure DIO2:3 and DIO7:10, initially with the same hysteresis
//thresholds debounce interval.

CUeiDIIndustrialChannel* diLines = diSession.CreateDIIndustrialChannel
(“pdna://192.168.100.2/Dev1/Diline0/2:3,7:10”, 2.0, 3.0, 1.0);

//Set channel index 0 (line 2 in the resource string) low threshold to 0 V

((CUeiDIIndustrialChannel*)diSession.GetChannel(0))->SetLowThreshold(0, 0.0);

// Set channel index 1 (line 3 in the resource string) low threshold to 1 V

((CUeiDIIndustrialChannel*)diSession.GetChannel(1))->SetLowThreshold(0, 1.0);

// Set channel index 2 (line 7 in the resource string) low threshold to 2 V

((CUeiDIIndustrialChannel*)diSession.GetChannel(2))->SetLowThreshold(0, 2.0);

// Set channel index 3 (line 8 in the resource string) low threshold to 3 V

((CUeiDIIndustrialChannel*)diSession.GetChannel(3))->SetLowThreshold(0, 3.0);

// Set channel index 4 (line 9 in the resource string) low threshold to 4 V

((CUeiDIIndustrialChannel*)diSession.GetChannel(4))->SetLowThreshold(0, 4.0);

// Set channel index 5 (line 10 in the resource string) low threshold to 5 V

((CUeiDIIndustrialChannel*)diSession.GetChannel(5))->SetLowThreshold(0, 5.0);

//Create a reader object and link it to the session’s data stream.

CUeiDigitalReader diReader(diSession.GetDataStream());

DNx-MF-101 Multifunction I/O Board
Chapter 4 75

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.9.2.1 Read DI Port When reading industrial digital input data from a Di0 session, use uInt16 data.
A single uInt16 will be returned with the low/high debounced status mask of all
16 channels.

4.9.2.2 Read Specific
DI Lines

When reading industrial digital input data from a Diline0 session, use uInt16
data. A number of uInt16 values will be returned that will be equal to the
number of configured channels. Only bit 0 of each 16-bit value should be used
(0 is low, 1 is high) .

NOTE: If you are simultaneously running a digital output session, ensure that
the output mask is disabled for the input-only lines. Otherwise, the
reader will return the values written to the port.

4.9.3 Read Input
Voltages

You can read voltage from the DIO ADCs by creating a separate Diagnostic
session (Section 4.15).

4.10 Industrial
Digital Output
Session

The session may be configured to access the industrial digital output (Do0 or
Doline0) subsystem. Because sessions are unidirectional, you will need a
dedicated output session even though output and input share the same physical
port.

4.10.1 Configure
Output
Channels

The CreateDOIndustrialChannel() method adds FET-based digital
output channels and configures PWM on those channels.

NOTE: When configuring DNx-MF-101 channels as both industrial digital inputs
and industrial digital outputs, the inputs must be configured before the outputs.

• resource - Resource string specifying the port (Section 4.10.1.1) or
the line (Section 4.10.1.2)

• pwmMode – Type of pulse train to output (Section 4.10.1.4)

• pwmLengthUs – Total duration of soft start and/or soft stop pulse train
in microseconds; ignored in other PWM modes

• pwmPeriodUs – Period in microseconds; min 5 µs, max 254200 µs

• pwmDutyCycle – Duty cycle between 0.0 and 1.0

//Read state of DIO0:15

uInt16 data;
diReader.ReadSingleScan(&data);

//Read state of DIO0:15

uInt16* digitalState = new uInt16[diSession.GetNumberOfChannels()];
diReader.ReadSingleScan(digitalState);

CUeiDOIndustrialChannel* CreateDOIndustrialChannel(std::string resource,
tUeiDOPWMMode pwmMode, uInt32 pwmLengthUs, uInt32 pwmPeriodUs,
double pwmDutyCycle);

DNx-MF-101 Multifunction I/O Board
Chapter 4 76

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.10.1.1 Add a Port Using Do0 in the resource string adds the entire digital output port to one
channel.

All outputs in the channel are enabled by default. You can selectively enable/
disable outputs with a 16-bit output mask (LSB is DIO0).

NOTE: If you are simultaneously running a digital input session, ensure that the
output mask is disabled (i.e. set to 0) for the input-only channels.

PWM features are configurable on a line-by-line basis.

4.10.1.2 Add Selected
Lines

Alternatively, you can configure a subset of lines by specifying Doline0 in the
resource string and appending the desired line numbers.

This approach creates one channel per line. Unlike a Do0 line, each Doline is
reconfigured using a unique channel index as follows:

//Configure DIO0:15 for output with no PWM. The last 3 parameters are
ignored when PWM is disabled.

doSession.CreateDOIndustrialChannel(“pdna://192.168.100.2/Dev1/Do0”,
UeiDOPWMDisabled, 0, 0, 0);

//Get pointer to output port (channel index = 0)

CUeiDOIndustrialChannel* doPort =
dynamic_cast<CUeiDOIndustrialChannel*>(doSession.GetChannel(0));

//Enables output on DIO0:7. DIO8:15 are configured as input-only.

doPort->SetOutputMask(0xff);

//Configure DIO1 for a soft start; period = 80us and duration = 2000us

doPort->SetPWMMode(1, UeiDOPWMSoftStart);
doPort->SetPWMPeriod(1, 80);
doPort->SetPWMLength(1, 2000);

//Configure DIO2:3 and DIO4:7 with 25% and 50% duty cycles respectively.

doSession.CreateDOIndustrialChannel(“pdna://192.168.100.2/Dev1/Doline0/
2:3”, UeiDOPWMContinuous, 1000, 50, 0.25);

doSession.CreateDOIndustrialChannel(“pdna://192.168.100.2/Dev1/Doline0/
4:7”, UeiDOPWMContinuous, 1000, 50, 0.5);

//Get pointer to DIO4. DIO4 is ch3 in the list created above.

CUeiDOIndustrialChannel* dochannel =
dynamic_cast<CUeiDOIndustrialChannel*>(doSession.GetChannel(3));

//Set DIO3 period to 200 us (pass in 0 for the line parameter)

dochannel->SetPWMPeriod(0, 200);

DNx-MF-101 Multifunction I/O Board
Chapter 4 77

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

However, even if you configured only a subset of lines, the output mask applies
to all 16 lines. You can use the same output mask code shown in
Section 4.10.1.1. It does not matter which channel calls SetOutputMask().

4.10.1.3 Configure
Pull-up/down
Resistors

You can connect a DIO line to Vcc and/or Gnd (Figure 2-4).

• UeiDigitalTerminationNone - no termination

• UeiDigitalTerminationPullUp - enable only pull-up resistor

• UeiDigitalTerminationPullDown - enable only pull-down resis-
tor

• UeiDigitalTerminationPullUpPullDown - enable both pull-up
and pull-down resistor

4.10.1.4 PWM Modes Choose one of the following options for the pwmMode input parameter:

• UeiDOPWMDisabled - disable PWM

• UeiDOPWMSoftStart - generate a pulse train after writing 1 if its
previous state was 0. The PWM duty cycle gradually increases from 0%
to pwmDutyCycle over pwmLengthUs.

• UeiDOPWMSoftStop - generate a pulse train after writing 0 if its
previous state was 1. The PWM duty cycle gradually decreases from
pwmDutyCycle to 0% over pwmLengthUs.

• UeiDOPWMSoftBoth - generate a pulse train for both a low-to-high
and high-to-low transition.

• UeiDOPWMContinuous - continuously generates a pulse train with
pwmDutyCycle. When writing to digital outputs, ensure that a 1 is
written to any output that is configured for UeiDOPWMContinuous
mode.

• UeiDOPWMGated - generates a pulse train with pwmDutyCycle only
when a 1 is written to the output.

4.10.1.5 Configure
PWM Push/
Pull

You can specify which FETs are switched by the PWM output:

• UeiDOPWMOutputPush - switch only high-side FET

• UeiDOPWMOutputPull - switch only low-side FET

• UeiDOPWMOutputPushPull - switch both FETs

• UeiDOPWMOutputOff - no PWM applied to either FET

//Connect pull-up resistor between DIO1 and Vcc.

doPort->SetTermination(1, UeiDigitalTerminationPullUp);

//Enable PWM on only high-side FET of DIO1.

doPort->SetPWMOutputMode(1, UeiDOPWMOutputPush);

DNx-MF-101 Multifunction I/O Board
Chapter 4 78

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.10.2 Write Data Writing data is done using a a Digital Writer object. Digital data is written as a
16-bit integer. The writer updates all lines in the port, even if Doline configured
only a subset of lines. FET-based outputs should be enabled using
SetOutputMask(), else the data for those bits will be ignored.

4.10.3 Read Output
Voltages

You can monitor digital outputs using an analog input session, as described in
Section 4.9.3.

4.11 TTL Digital
Input Session

The session may be configured to access the TTL digital input (Di1) subsystem.

4.11.1 Configure
Input Port

The DNx-MF-101 has only one TTL input port, so the resource string should
specify port 0 as shown in the code below. The TTL input port includes all four
TTL lines and the TRIGIN line. Unlike an industrial digital session, you cannot
configure a TTL session to only access a subset of lines.

4.11.2 Read Data Reading data is done using a Digital Reader object. Digital data is stored in a 16-
bit integer buffer. Bits 0:3 are TTL lines 0:3 and Bit 4 is TRIGIN. The other bits
are currently reserved.

//Create a writer object and link it to the session’s data stream.

CUeiDigitalWriter doWriter(doSession.GetDataStream());

//Write a 1 on DIO15:8 and a 0 on DIO7:0.

uInt16 data = 0xff00;
doWriter.WriteSingleScan(&data);

//Configure session to read the TTL input port.

ttliSession.CreateDIChannel(“pdna://192.168.100.2/Dev1/Di1/0”);

//Create a reader object and link it to the session’s data stream.

CUeiDigitalReader diReader(ttliSession.GetDataStream());

//Read state of all lines in the port. A scan returns a 16-bit integer.

uInt16 data[1];
diReader.ReadSingleScan(data);

DNx-MF-101 Multifunction I/O Board
Chapter 4 79

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.12 TTL Digital
Output
Session

The session may be configured to access the TTL digital output (Do1)
subsystem.

4.12.1 Configure
Output Port

The DNx-MF-101 has only one TTL output port, so the resource string should
specify port 0 as shown in the example below. The TTL output port includes all
four TTL lines and the TRIGOUT line. TRIGOUT is always enabled. TTL outputs
are enabled or disabled in pairs (TTL0-1 and TTL2-3) using a bitwise mask that
can be set by calling SetOutputMask(). If you try to enable only one line in a
pair, both outputs will be enabled. Failure to enable the TTL lines will result in the
data for those bits being ignored.

4.12.2 Write Data Writing data is done using a Digital Writer object. Digital data is written as a
16-bit integer: Bits 0:3 are TTL lines 0:3, Bit 4 is TRIGOUT, and the other bits are
unused. TTL lines must first be enabled as described in Section 4.12.1.

//Configure session to use the TTL output port.

ttloSession.CreateDOChannel(“pdna://192.168.100.2/Dev1/Do1/0”);

//Obtain pointer to the output channel (only one channel in this case).

CUeiDOChannel* dochannel =
dynamic_cast<CUeiDOChannel*>(ttloSession.GetChannel(0));

//Enable output on TTL3 and TTL2. TTL1 and TTL0 are set as input-only.

dochannel->SetOutputMask(0xc);

//Create a writer object and link it to the session’s data stream.

CUeiDigitalWriter doWriter(ttloSession.GetDataStream());

//Set TRIGOUT=1, TTL3=0, TTL2=0, TTL1=1, and TTL0=0.

uInt16 data = 0x12;
doWriter.WriteSingleScan(&data);

DNx-MF-101 Multifunction I/O Board
Chapter 4 80

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.13 Counter Input
Session

The session may be configured to access the counter input (Ci) subsystem.

4.13.1 Add Input
Channels

The CreateCIChannel() method adds counter input channels and sets
basic configuration parameters.

• resource – Resource string for counter 0 or counter 1

• source – Set CLKIN to either the internal 66MHz clock or an external
input pin (Section 4.13.2)

• mode – Counting mode (Section 4.13.3)

• gate – Use either an external or a software gate to enable the counter

• divider – Prescaler divides source signal by this factor; default = 1

• inverted – TRUE to invert source signal

4.13.2 Route Counter
to DIO Pins

The counter’s CLKIN, GATE, and CLKOUT lines can be internally routed to the
following pins:

• fetX - Industrial DIO pins, e.g. “fet3” for DIO3

• ttlX - TTL DIO pins, e.g. “ttl3” for TTL3

• trigin - TRIGIN pin (CLKIN or GATE only)

• trigout - TRIGOUT pin (CLKOUT only)

• syncX - Sync pins 0-3 (CLKIN or GATE only)

The external CLKIN pin is only used when the counter is configured with
source = UeiCounterSourceInput. Similarly, the GATE pin is only used
when the counter is configured with gate = UeiCounterGateExternal.

CUeiCIChannel* CreateCIChannel(std::string resource,
tUeiCounterSource source, tUeiCounterMode mode,
tUeiCounterGate gate, Int32 divider, Int32 inverted);

//Configure counter 0 to count events on an external pin.
//An internal gate starts the count immediately.
//Source is divided by 2 and not inverted.

ciSession.CreateCIChannel(“pdna://192.168.100.2/Dev1/Ci0”,
UeiCounterSourceInput, UeiCounterModeCountEvents,
UeiCounterGateInternal, 2, false);

//Obtain pointer to the input channel (only one channel in this case).

CUeiCIChannel* counter =
dynamic_cast<CUeiCIChannel*>(ciSession.GetChannel(0));

//Route CLKIN to DIO5.
//Route GATE to DIO3.
//Route CLKOUT to TRIGOUT and TTL3.

counter->SetSourcePin(“fet5”);
counter->SetGatePin(“fet3”);
counter->SetOutputPins(“trigout,ttl3”);

DNx-MF-101 Multifunction I/O Board
Chapter 4 81

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

You can set up an optional input debouncer for CLKIN and GATE. The maximum
allowable value for the minimum pulse width is 7.94 ms. If a larger value is
passed to either of these methods, a value of 7.94 ms will be used.

For fetX inputs, you must also create a separate industrial digital input session
(Section 4.9). This configures and starts up the A/D converter.

You do not need a separate session for TTL-level inputs (ttlX, trigin, trigout,
syncX), nor do you need one for outputs. If you are simultaneously running a
digital output session and want to read in external inputs, remember to disable
the output mask on input-only lines. The counter session automatically overrides
digital output session settings on output lines.

NOTE: CLKOUT should always be routed to an external pin, even if the counter
is only used for input. CLKOUT remains high during a counter input
session.

4.13.3 Counter Input
Modes

Choose one of the following options for the mode parameter:

• UeiCounterModeCountEvents - Count pulses on an external pin,
or use as a timer by counting internal clock cycles

• UeiCounterModeBinCounting - Count pulses over a user
specified time interval (Section 4.13.3.1)

• UeiCounterModeMeasurePulseWidth - Count the number of
66 MHz clocks while the input signal is high

• UeiCounterModeMeasurePeriod - Count the number of 66 MHz
clocks over the specified number of periods (Section 4.13.3.2). The
number of clock ticks returned will actually have occurred over the
specified number of periods plus 1, e.g., if 10 periods are specified, then
the returned number of clock ticks will have occurred over 11 periods.

• UeiCounterModeTimedPeriodMeasurement - Measure the
average period over a user-specified time interval (Section 4.13.3.1);
period is returned as a number of 66 MHz clocks

//Allow state change only when inputs have stayed stable for 1.0ms.

counter->SetMinimumSourcePulseWidth(1.0);
counter->SetMinimumGatePulseWidth(1.0);

//Create new session.

CUeiSession diSession;

//Configure session to read from FET-based digital inputs.
//Low threshold = 2.0V, high threshold = 3.0V, debouncer interval = 1.0ms

diSession.CreateDIIndustrialChannel(“pdna://192.168.100.2/Dev1/Di0”,
2.0, 3.0, 1.0);

//Configure timing for Point by Point DAQ mode.

diSession.ConfigureTimingForSimpleIO();

DNx-MF-101 Multifunction I/O Board
Chapter 4 82

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

• UeiCounterModeQuadratureEncoder - Quadrature encoder
measurement; PWM signal on GATE controls the count direction

• UeiCounterModeDirectionCounter - Count up if GATE is high
and count down if GATE is low

4.13.3.1 Set Capture
Time Interval

The time interval for UeiCounterModeBinCounting and
UeiCounterModeTimedPeriodMeasurement is configured using the
session’s timing object.

4.13.3.2 Set Number of
Periods

In UeiCounterModeMeasurePeriod mode, the counter can be configured
to measure the total duration of N+1 periods.

The counter returns the previous measurement until the specified number of
periods have been counted again.

4.13.4 Read Count
Data

Reading data is done using a reader object. Digital data is stored in a 32-bit
integer buffer.

//Get pointer to session’s timing object.

CUeiTiming* ciTiming = ciSession.GetTiming();

//Set frequency to 0.5 Hz; count is returned every 2.0 sec.

ciTiming->SetScanClockRate(0.5);

//Update the counter when 11 (N+1) periods have elapsed.

counter->SetPeriodCount(10);

//Create a reader object and link it to the session’s data stream.

CUeiCounterReader ciReader(ciSession.GetDataStream());

//Read the current count value.

uInt32 data[1];
ciReader.ReadSingleScan(data);

DNx-MF-101 Multifunction I/O Board
Chapter 4 83

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.14 Counter
Output
Session

The session may be configured to access the counter output (Co) subsystem.

4.14.1 Add Output
Channels

The CreateCOChannel() method adds counter output channels and
configures the shape of the output signal.

• resource – Resource string for counter 0 or counter 1

• source – Set CLKIN to either the internal 66MHz clock or an external
input pin (Section 4.13.2)

• mode – Counting mode (Section 4.14.3)

• gate – Use either an external or a software gate to enable the counter

• tick1 – Number of counts for which output is low

• tick2 – Number of counts for which output is high

• divider – Prescaler divides source signal by this factor; default = 1

• inverted – TRUE to invert source signal

4.14.2 Route Counter
to DIO Pins

Refer to Section 4.13.2 and the methods in the CUeiCOChannel class.

4.14.3 Counter
Output Modes

Choose one of the following options for the mode parameter:

• UeiCounterModeGeneratePulse - Generate a single pulse

• UeiCounterModeGeneratePulseTrain - Generate a continuous
pulse train

• UeiCounterModePulseWidthModulation - Generate a pulse
width modulated waveform (same as GeneratePulseTrain)

4.14.4 Write Output
Parameters

You can write new tick1 and tick2 values to the counter using a writer object.
This is used to change the PWM period and/or duty cycle after the session has
already been started.

CUeiCOChannel* CreateCOChannel(std::string resource,
tUeiCounterSource source, tUeiCounterMode mode,
tUeiCounterGate gate, uInt32 tick1, uInt32 tick2,
Int32 divider, Int32 inverted);

//Configure counter 0 to output pulse train (period=6ms, duty cycle=75%).
//Count ticks of an undivided, uninverted 66MHz source clock.
//An internal gate starts the output immediately.

coSession.CreateCOChannel(“pdna://192.168.100.2/Dev1/Co0”,
UeiCounterSourceClock, UeiCounterModeGeneratePulseTrain,
UeiCounterGateInternal, 100000, 300000,
1, false)

DNx-MF-101 Multifunction I/O Board
Chapter 4 84

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

//Create a writer object and link it to the session’s data stream.

CUeiCounterWriter coWriter(coSession.GetDataStream());

//Buffer must be large enough to contain two 32-bit integers per channel.

uInt32 data[2]={20000, 5000};

//Set tick1 = 20000 (low duration)
//Set tick2 = 5000 (high duration)

coWriter.WriteSingleScan(data);

DNx-MF-101 Multifunction I/O Board
Chapter 4 85

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.15 Diagnostics
Session

The session may be configured to read diagnostic data from the Analog Output
and Industrial DIO subsystems.

4.15.1 Add Input
Channels

The CreateDiagnosticChannel() method adds the diagnostic channels
specified in the resource string. The Diag subsystem supports the channel
numbers listed in Table 4-3 plus a time stamp channel (Section 4.7.3).

//Configure session to read all AOut1 diagnostics.

diagSession.CreateDiagnosticChannel(“pdna://192.168.100.2/Dev1/
Diag4:7”);

Table 4-3 Diagnostic Channel Numbers

Channel # Description

0 DAC temperature on AOut0

1 Voltage on AOut0

2 Voltage on AGnd0

3 DAC supply voltage on AOut0

4 DAC temperature on AOut1

5 Voltage on AOut1

6 Voltage on AGnd1

7 DAC supply voltage on AOut1

8 Voltage on DIO0

9 Voltage on DIO1

10 Voltage on DIO2

11 Voltage on DIO3

12 Voltage on DIO4

13 Voltage on DIO5

14 Voltage on DIO6

15 Voltage on DIO7

16 Voltage on DIO8

17 Voltage on DIO9

18 Voltage on DIO10

19 Voltage on DIO11

20 Voltage on DIO12

21 Voltage on DIO13

22 Voltage on DIO14

DNx-MF-101 Multifunction I/O Board
Chapter 4 86

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

To help keep track of the different channels in a session, you can retrieve an
abbreviated description of each channel with GetAliasName(). The following
example code returns the string ‘temp_aout1’ when used with the channel list
created above.

4.15.2 Read Data Read diagnostic data the same way as you would in an analog input session. An
Analog Raw Reader object returns the calibrated binary data, while an Analog
Scaled Reader returns the data converted to °C or Volts. The following example
code reads scaled temperature and voltage from a session with 4 channels.

23 Voltage on DIO15

Table 4-3 Diagnostic Channel Numbers

Channel # Description

//Retrieve name of first channel in the CreateDiagnosticChannel() list.

diagSession.GetChannel(0)->GetAliasName();

//Create a reader object and link it to the session’s data stream.

CUeiAnalogScaledReader diagReader(diagSession.GetDataStream());

//Buffer must be large enough to contain one sample per channel.

double data[4];

//Read one sample per channel.

diagReader.ReadSingleScan(data);

DNx-MF-101 Multifunction I/O Board
Chapter 4 87

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.16 Serial Port
Session

The session may be configured to access the RS-232/422/485 (Com)
subsystem.

4.16.1 Configure the
Port

The CreateSerialPort() method links the session to the serial port (Port
0), configures basic port settings, and returns a pointer to the port.

You can configure additional DNx-MF-101 serial port settings by calling the
CUeiSerialPort methods summarized in Table 4-4. For example:

//Configure session for RS-232 serial communications @57600 bps.
//Each UART frame has 8 data bits, no parity bit, and 1 stop bit.
//No termination string is set.

CUeiSerialPort* port = serialSession.CreateSerialPort(
“pdna://192.168.100.2/Dev1/Com0”,
UeiSerialModeRS232,
UeiSerialBitsPerSecond57600,
UeiSerialDataBits8,
UeiSerialParityNone,
UeiSerialStopBits1,
“”);

//Connect RX and TX signals internally and disable external signals.

port->EnableLoopback(TRUE);

Table 4-4 High-level API for Serial Port Configuration

Function Description

SetMode Set port to RS-232, RS-422, or RS-485 mode.

SetSpeed Select a predefined baud rate or enable a custom rate.

SetCustomSpeed Set a custom baud rate in bits per seconds.

SetDataBits Set the number of data bits transferred per character. Each character is
always stored as a byte in the FIFO.

SetParity Set the type of parity bit.

SetStopBits Set the number of stop bits.

EnableLoopback Connect RX and TX signals internally and disable external signals.

EnableErrorReporting Send a break, i.e. hold TX line at logic low. No errors are currently
reported.

EnableRxTerminationResistor Enable RS-485 termination resistor (91 Ω) between RX+ and RX-.

EnableTxTerminationResistor Enable RS-485 termination resistor (91 Ω) between TX+ and TX-.

SetCharDelay Set the delay between each character in microseconds.

SetMinorFrameMode Set how characters are grouped into minor frames (Section 4.16.1.2).

SetMinorFrameLength Set the number of characters in a minor frame (only used for fixed
length frame mode).

DNx-MF-101 Multifunction I/O Board
Chapter 4 88

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Refer to the CUeiSerialPort class definition and/or the “UeiDaq Framework
Reference Manual” for more information about these functions and their
accepted input parameters.

4.16.1.1 Configure
Custom Baud
Rate

The following example shows how to program a custom port speed. See
Table 1-6 for the maximum supported speeds.

4.16.1.2 Configure
Minor Frames

The DNx-MF-101 supports three possible ways of defining a minor frame:

1. Fixed Length - each minor frame is a fixed number of characters. For
example:.

2. Zero Character - the end of a minor frame is indicated by an ASCII
NUL character (0x00). The zero character is transmitted when it’s the
last character in a WRITE command.

3. Variable Length - the size of each minor frame is indicated by an extra
character preceding the data characters. For example, if the write buffer
contains writeData={3, 0xa, 0xb, 0xc, 2, 0xd, 0xe}, the fol-
lowing sequence will be transmitted: 0xa, 0xb, 0xc, delay, 0xd, 0xe

SetMinorFrameDelay Set the delay between minor frames in microseconds.

SetMajorFramePeriod Set the repeat period for a major frame in microseconds.

SetTermination

Set the termination string used to define the end of a message (max
128 characters). A READ command stops when the termination string
has been found.

NOTE: Setting the termination string is currently only supported
in low-level API. Framework support is under
development.

EnableHDEchoSuppression Stop RS-422 receiver from reading the transmitted characters.

SetFlowControl

Enable RS-232 hardware flow control.

NOTE: Setting the watermark level is currently only supported in
low-level API. Framework support is under development.

Table 4-4 High-level API for Serial Port Configuration

//Set baud rate to 15000 bits per second.

port->SetSpeed(SerialBitsPerSecondCustom);
port->SetCustomSpeed(15000);

//Insert a 1000us delay after every 20 characters.

port->SetMinorFrameMode(UeiSerialMinorFrameModeFixedLength);
port->SetMinorFrameLength(20);
port->SetMinorFrameDelay(1000);

DNx-MF-101 Multifunction I/O Board
Chapter 4 89

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.16.1.3 Configure
Flow Control

The DNx-MF-101 only supports hardware flow control mode. Data transmission
stops when CTS is low, and RTS goes low when the RX FIFO reaches the RX
watermark level.

If the RX FIFO overflows when RTS Autoflow is enabled, the receiver stops
receiving data until a hard reset is performed.

4.16.2 Read Data Reading data from the RX FIFO is done using a reader object. The following
sample code requests 10 bytes from the RX FIFO and returns the number of
bytes actually read.

The number of returned bytes may be less than the number of requested bytes
if the RX FIFO is short on data or if the termination string has been found. The
termination string can span across multiple READ commands. If one READ
command returns the beginning of the termination string, the next command will
watch for the remainder of the string.

4.16.3 Write Data Writing data to the TX FIFO is done using a writer object. The following example
commands a write of two bytes and returns the number of bytes actually written.

//RX watermark is default 512 characters. Enable hardware flow control.

port->SetFlowControl(UeiSerialFlowControlRtsCts);

//Create a reader object and link it to the session’s data stream.

CUeiSerialReader serialReader(serialSession.GetDataStream());

//Data buffer must be large enough to contain the number of bytes read.

char readData[10];

//Read up to 10 bytes from the RX FIFO.

serialReader.Read(10, readData, &numBytesRead);

//Create a writer object and link it to the session’s data stream.

CUeiSerialWriter serialWriter(serialSession.GetDataStream());

//Load two bytes of data into buffer.

char writeData[2] = {0x53, 0x54};

//Write 0x53 and 0x54 to TX FIFO.
//If numBytesWritten==2, both bytes fit into the TX FIFO.

serialWriter.Write(2, writeData, &numBytesWritten);

DNx-MF-101 Multifunction I/O Board
Chapter 4 90

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.17 I2C Port
Session

The session may be configured to access the I2C subsystem.

4.17.1 Configure the
Master Module

The CreateI2CMasterPort() method links the session to the I2C master
module, configures the port speed, and returns a pointer to the master port. The
DNx-MF-101 has only one port, so the resource string should specify Port 0.

The DNx-MF-101 does not support 3.3V TTL levels or secure shell mode;
therefore, the last two parameters are ignored.

You can configure additional DNx-MF-101 master port settings by calling the
CUeiI2CMasterPort methods summarized below in Table 4-5.

4.17.1.1 Configure
Custom Clock
Rate

The following example programs the port to a custom clock rate. The
DNx-MF-101 supports rates between 2 kHz to 100 kHz. Both master and slave
modules share the same speed.

//Create I2C master port and set clock rate to 100kHz.
//Use 5V TTL levels and disable CRC checking.

CUeiI2CMasterPort* masterport = i2cSession.CreateI2CMasterPort(
“pdna://192.168.100.2/Dev1/I2C0”,
UeiI2CBitsPerSecond100K,
UeiI2CTTLLevel5V,
false);

Table 4-5 High-level API for Master Port Configuration

Function Description

SetSpeed Select a predefined port speed (100kHz, 400kHz, 1MHz) or enable a
custom speed.

SetCustomSpeed Set a custom port speed (2kHz -100kHz).

SetLoopbackMode Enable loopback between master and slave modules.

SetByteToByteDelay
Set the delay between bytes sent by master, i.e. the time between the
falling edge of the ACK clock to the rising edge of the next clock. This
delay is programmed with 1µs resolution up to a max of 490µs.

SetMaxClockStretchingDelay

Set the maximum time that any slave on the bus can stretch the clock. If
a slave is still holding SCL low after this delay has elapsed, the master
stops sending data and returns the bus to an idle state. This delay is a
16-bit value programmed with 1µs resolution.

//Set clock rate to 25kHz.

masterport->SetSpeed(I2CBitsPerSecondCustom);
masterport->SetCustomSpeed(25000);

DNx-MF-101 Multifunction I/O Board
Chapter 4 91

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.17.1.2 Configure
Loopback

You can connect the master and slave modules while still generating external
signals on the I2C bus.

FPGA loopback mode is currently not supported on the DNx-MF-101.

4.17.2 Configure the
Slave Module

The CreateI2CSlavePort() method links the session to the I2C slave
module, configures the slave address, and returns a pointer to the slave port.
The DNx-MF-101 has only one port, so the resource string should specify Port 0.

You can configure additional DNx-MF-101 slave port settings by calling the
CUeiI2CSlavePort methods summarized below in Table 4-6.

//Enable loopback between master and slave modules.

masterport->SetLoopbackMode(UeiI2CLoopbackRelay);

//Create I2C slave port, use 7-bit address, and set address to 0x12.
//Only 5V TTL levels are supported.

CUeiI2CSlavePort* slaveport = i2cSession.CreateI2SlavePort(
“pdna://192.168.100.2/Dev1/I2C0”,
UeiI2CTTLLevel5V,
UeiI2CSlaveAddress7bit,
0x12;

Table 4-6 High-level API for Slave Port Configuration

Function Description

SetSlaveAddressWidth Configure slave to use either a 7-bit or 10-bit address.

SetSlaveAddress Set the slave address.

EnableBusMonitor Use slave as a Bus Monitor (Section 4.17.2.1).

EnableBusMonitorAck Allow acknowledge generation (ACK) in Bus Monitor mode.

SetClockStretchingDelay When clock stretching is enabled, slave extends the ACK time by
this number of 15ns clocks. (Section 4.17.2.2).

EnableAddressClockStretching Allow slave to stretch the clock when evaluating the address from the
master.

EnableTransmitClockStretching Allow slave to stretch the clock when sending data to the master.

EnableReceiveClockStretching Allow slave to stretch the clock when processing data from the mas-
ter.

SetMaxWordsPerAck Set the max number of words the slave will receive from the master
before issuing a NACK.

SetSlaveRegisterData Load data into the slave's 32-bit TX register. (Section 4.17.2.3)

DNx-MF-101 Multifunction I/O Board
Chapter 4 92

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.17.2.1 Configure Bus
Monitoring

The slave port can be configured to store all data on the I2C bus, either with or
without responding to the master.

4.17.2.2 Configure
Clock
Stretching

The slave port can delay the next byte by holding the SCL line LOW during
transactions. You can selectively enable clock stretching for address, transmit,
or receive cycles. The delay is programmed as a 12-bit number in units of 15
nanosecond clocks (max delay time = 62µs).

4.17.2.3 Load Slave TX
Register

You can load up to 4 bytes of data into the slave’s data padding register, which
is transmitted on repeat whenever the slave’s FIFO is empty.

See Section 2.5.3.1 for an example of the transmitted data.

NOTE: UeiI2CSlaveDataModeRegister transmit mode is not supported at
this time. You cannot bypass the FIFO and send data directly from the
TX register.

4.17.3 Read Data Reading data from the I2C Port is done using a reader object. First, create a
reader and set its channel parameter to Port 0:

//Enable bus monitoring mode.

slaveport->EnableBusMonitor(TRUE);

//Disable ACK generation.

slaveport->EnableBusMonitorAck(FALSE);

//Set clock stretching delay to 45ns.

slaveport->SetClockStretchingDelay(3);

//Hold SCL low for 45ns between receiving the address and issuing an ACK.

slaveport->EnableAddressClockStretching(TRUE);

//Hold SCL low for 45ns between receiving the master's ACK and sending
// the next byte.

slaveport->EnableTransmitClockStretching(TRUE);

//Hold SCL low for 45ns between receiving a byte and issuing an ACK.

slaveport->EnableReceiveClockStretching(TRUE);

//Load slave TX register with 0x12345678.

slaveport->SetSlaveRegisterData(0,0x12);
slaveport->SetSlaveRegisterData(1,0x34);
slaveport->SetSlaveRegisterData(2,0x56);
slaveport->SetSlaveRegisterData(3,0x78);

//Create a reader object and link it to the session’s data stream.

CUeiI2CReader i2cReader(i2cSession.GetDataStream(), 0);

DNx-MF-101 Multifunction I/O Board
Chapter 4 93

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

You can use the same reader to read from master and slave RX FIFOs, as
described below.

4.17.3.1 Slave RX Data The following example code requests ten data words from the slave RX FIFO
and returns the number of words actually read.

The ReadSlave() command parses the received 12-bit word (Section 2.5.3.2)
and stores it in a tUeiI2CSlaveMessage data structure:

4.17.3.2 Master RX
Data

The master RX FIFO is empty until the master requests data from the slave. To
obtain data, the master must first send an I2C READ command to the slave
using a writer object:

After the transaction is complete, you can call ReadMaster() to retrieve the
data from the master RX FIFO:

ReadMaster() parses the received 9-bit word (Section 2.5.2.3) and stores it in
a tUeiI2CMasterMessage data structure:

//Read up to 10 data elements from the slave RX FIFO.

tUeiI2CSlaveMessage slaveRxData[10];
i2cReader.ReadSlave(10, slaveRxData, &numElementsRead);

typedef struct _tUeiI2CSlaveMessage{
 tUeiI2CBusCode busCode; //4-bit bus condition
 uInt8 data; //8-bit data
} tUeiI2CSlaveMessage;

//Create a writer object to write commands.

CUeiI2CWriter i2cWriter(i2cSession.GetDataStream(), 0);

//Build I2C READ command.
//10 bytes are requested from the slave at address 0x2A.

tUeiI2CMasterCommand params;
params.type = UeiI2CCommandRead;
params.slaveAddress = 0x2A;
params.numReadElements = 10;

//Write command to I2C bus.

i2cWriter.WriteMasterCommand(¶ms);

//Read up to 10 data elements from the master RX FIFO.

tUeiI2CMasterMessage masterRxData[10];
i2cReader.ReadMaster(10, masterRxData, &numElementsRead);

typedef struct _tUeiI2CMasterMessage{
 uIint8 stopBit; //stop bit marks the last word in the READ
 uInt8 data; //8-bit data
} tUeiI2CMasterMessage;

DNx-MF-101 Multifunction I/O Board
Chapter 4 94

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

4.17.4 Write Data Writing data to the I2C Port is done using a writer object. First, create a writer
and set its channel parameter to Port 0:

You can use the same writer to write to both master and slave TX FIFOs, as
described below.

4.17.4.1 Slave TX Data The following example code commands a write of two bytes to the slave TX
FIFO. and returns the number of bytes actually written. The slave transmits this
data when replying to a master’s READ command.

When the slave TX FIFO is empty, data is sent from the slave TX register (see
Section 4.17.2.3).

4.17.4.2 Master TX Data The master writes data to the slave by sending an I2C WRITE command, as
shown in the following example code:

Up to 255 bytes of data may be loaded into the tUeiI2CMasterCommand
structure. You can send multiple WRITE commands in order to write up to 1024
words into the master TX FIFO.

4.18 Stop the
Session

The session will automatically stop and clean itself up when the session object
goes out of scope or when it is destroyed. To manually stop the session:

//Create a writer object and link it to the session’s data stream.

CUeiI2CWriter i2cWriter(i2cSession.GetDataStream(), 0);

//Load two bytes of data into buffer (only lower 8 bits are used).

uInt16 slaveTxData[2] = {0xaa, 0xbb};

//Write 0xaa and 0xbb to slave TX FIFO.
//If numBytesWritten==2, both bytes fit into the TX FIFO.

i2cWriter.WriteSlaveData(2, slaveTxData, &numElementsWritten);

//Build I2C WRITE command.
//2 bytes are written to the slave at address 0x2A.

tUeiI2CMasterCommand params;
params.type = UeiI2CCommandWrite;
params.slaveAddress = 0x2A;
params.numWriteElements = 2;
params.data[0] = 0xaa;
params.data[1] = 0xbb;

//Write command to I2C bus.

i2cWriter.WriteMasterCommand(¶ms);

//Stop the session.

mySession.Stop();

DNx-MF-101 Multifunction I/O Board
Chapter 4 95

Programming with High-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

To reuse the object with a different set of channels or parameters, you can
manually clean up the session as follows:

//clean up session and free resources

mySession.CleanUp();

DNx-MF-101 Multifunction I/O Board
Chapter 5 96

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Chapter 5 Programming with Low-level API

This chapter provides the following information about programming the
DNx-MF-101 using low-level API:

• About the Low-level API (Section 5.1)

• Example Code (Section 5.2)

• Data Acquisition Modes (Section 5.3)

• Point-by-Point API (Section 5.4)

• Async Events API (Section 5.5)

• RtDMap API (Section 5.6)

• RtVMap API (Analog IO) (Section 5.7)

• RtVMap API (Serial) (Section 5.8)

• AVMap API (Section 5.9)

5.1 About the
Low-level API

The low-level API provides direct access to the DAQBIOS protocol structure and
registers in C. The low-level API is intended for speed-optimization, when
programming unconventional functionality, or when programming under Linux or
real-time operating systems.
When programming in Windows OS, we recommend that you use the UeiDaq
high-level Framework API (see Chapter 4). The Framework simplifies the low-
level API, making programming easier and faster while still providing access to
the majority of low-level API features. Additionally the Framework supports a
variety of programming languages and the use of scientific software packages
such as LabVIEW and MATLAB.
For additional information regarding low-level programming, refer to the
“PowerDNA API Reference Manual” located in the following directories:

• On Linux: <PowerDNA-x.y.z>/docs

• On Windows: C:\Program Files (x86)\UEI\PowerDNA\Documentation

NOTE: The DNx-MF-101 is supported in PowerDNA version 5.0.0.29+. If you’re
unsure if your version supports the board please contact Technical
Support at uei.support@ametek.com.

5.2 Example
Code

Application developers are encouraged to explore the self-documented source
code examples to get started programming UEI products. The example code is
located in the following directories:

• On Linux: <PowerDNA-x.y.z>/src/DAQLib_Samples

• On Windows: C:\Program Files (x86)\UEI\PowerDNA\SDK\Examples

The I/O board number is embedded in the name of the example code. For
example, the Sample101 folder contains example code specific to the
DNx-MF-101. The example code should run out of the box after inputting the
IOM’s IP address and the board’s Device Number (DEVN).

DNx-MF-101 Multifunction I/O Board
Chapter 5 97

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

5.3 Data
Acquisition
Modes

Table 5-1 lists the data acquisition (DAQ) modes available for transferring data
between the DNx-MF-101 and the low-level user application.

• Point-by-Point: Transfers one data point at a time to/from each
configured channel of a single I/O board. Timing is controlled by the
user application, which limits the transfer rate to 100 Hz. Point-by-Point
mode is also known as immediate mode or simple mode.

• Real-Time Data Map (RtDMap): Transfers a packet containing one
data point for each channel in the user-defined map. The newest data is
transferred and old data is discarded. RtDMap is designed for closed-
loop (control) applications and may include channels across multiple I/O
boards.

• Real-Time Variable Map (RtVMap): Transfers a packet containing a
variable number of data points per channel. RtVMap buffers the data
and transfers the oldest data first. RtVMap is designed for closed-loop
(control) applications and may include channels across multiple I/O
boards.

• Asynchronous Variable Map (AVMap): Transfers a packet containing
a variable number of data points per channel. AVMap buffers the data
and transfers the oldest data first. AVMap is designed for closed-loop
(control) applications and may include channels across multiple I/O
boards. With AVMap, a hardware condition, e.g., a timer countdown,
triggers data delivery.

ACB and ADMap are currently not supported on the DNx-MF-101.
Please refer to “FAQ - Data Acquisition Modes” for an overview and comparison
of all the different acquisition modes offered by UEI. The “PowerDNx Protocol
Manual” includes more detailed information about the protocols. Both of these
documents are located in the directories listed in Section 5.1.

NOTE: Multiple subsystems (AIn, AOut, etc.) may be used together as long as
they share the same DAQ mode. It is not possible to mix and match
multiple DAQ modes on a single IO board, e.g., Point-by-Point serial
messaging alongside VMap analog I/O.

Table 5-1 DAQ Modes Supported by the Low-level API

DAQ Mode AIn AOut DIn DOut TTL CT Serial I2C

Point-by-Point        

ACB

RtDMap      

RtVMap   

ADMap

AVMap 

DNx-MF-101 Multifunction I/O Board
Chapter 5 98

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

5.3.1 Async Events
Mode

The DNx-MF-101 supports asynchronous event handling. This event-driven
mode runs in a separate thread alongside the selected DAQ mode. The
firmware sends an event packet when a specific event occurs. Events on the
DNx-MF-101 include:

• DIn periodic status

• DIn pin change of state
You can call any of the DAQ mode functions upon receiving the event.

5.4 Point-by-
Point API

This section summarizes the low-level API used to configure, read from, and
write to the DNx-MF-101 in Point-by-Point DAQ mode. The functions and
parameters are described in detail in the “PowerDNA API Reference Manual”.
Please see Sample101 for a comprehensive example which includes typical
initialization, error handling, and usage of these functions. The example splits
the I/O subsystems into separate cases, making it easy to copy-paste different
subsystems into a true multifunction application.
The information in this section is intended as a supplement to the example code
and the API reference manual.

5.4.1 Analog I/O Table 5-2 lists the low-level API for the DNx-MF-101 analog I/O subsystem. See
Sample101AnalogIn.c and Sample101AnalogOut.c for example code.

Table 5-2 Low-level Analog I/O API

Function Description

A
na

lo
g

 In
pu

t DqAdv101AIRead Return continuously sampled data from input channel.

DqAdv101AISetConfig
Enable/disable voltage divider on input channel and
configure moving average.

A
na

lo
g

O
ut

pu
t

DqAdv101AOWrite
Write either floating point or raw values to output
channel.

DqAdv101AOSetConfig Select voltage or current output mode and set range.

DqAdv101AOWriteWForm Load waveform data into output channel FIFO.

DqAdv101AOEnableWForm Enable/disable a waveform on output channel.

DqAdv101AOReadAdc
Read back voltage and temperature from diagnostic
ADCs.

DNx-MF-101 Multifunction I/O Board
Chapter 5 99

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

5.4.2 Digital I/O Table 5-3 lists the low-level API for the DNx-MF-101 digital I/O subsystems. See
Sample101DigitalIn.c, Sample101DigitalOut.c, and Sample101TTL.c for
example code.

Table 5-3 Low-level Digital I/O API

Function Description

In
du

st
ria

l D
In

DqAdv101DIRead Read the current and debounced states on DIO lines.

DqAdv101DIReadAdc Read voltage on DIO lines.

DqAdv101DISetDebouncer Set debouncing interval for digital inputs.

DqAdv101DISetLevels Set low and high voltage levels for digital inputs.

DqAdv101DISetMovingAverage Set number of samples used to calculate moving
average for every digital input ADC channel.

In
du

st
ria

l D
O

ut DqAdv101DORead Read back the last state written to digital outputs.

DqAdv101DOSetPWM Configure pulse width modulation on digital outputs.

DqAdv101DOSetTermination Configure pull up/down resistors.

DqAdv101DOWrite Set digital output state to 0, 1, or turned off.

TT
L

D
IO

DqAdv101TTLRead Read the state of all TTL lines and TRIGIN.

DqAdv101TTLSetConfig Enable output on TTL lines in pairs.

DqAdv101TTLWrite Set state of TTL outputs and TRIGOUT.

DNx-MF-101 Multifunction I/O Board
Chapter 5 100

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

5.4.3 Counters Table 5-4 lists the low-level API for the DNx-MF-101 digital counter subsystem.
See Sample101CT.c for example code.

5.4.3.1 Configuration
Settings

Each counter can be independently configured using either
DqAdv101CTConfigCounter() or one of the DqAdv101CTCfg___()
functions. DqAdv101CTConfigCounter() is the lowest level configuration
function. However, since not all parameter combinations are supported in all
modes, it is easier to use a DqAdv101CTCfg___() function when possible.
DqAdv101CTCfg___() automatically selects the best counting mode for the
application and only exposes relevant parameters. Table 5-5 lists the counter
configuration parameters.

Table 5-4 Low-level Counter API

Function Description

C
ou

nt
er

s

DqAdv101CTSetSource Connect digital I/O pins to CLKIN and GATE.

DqAdv101CTSetOutput Connect one or more digital outputs to CLKOUT.

DqAdv101CTStartCounter Start counter if not using auto-start mode.

DqAdv101CTClearCounter Reset counter to the initial value in the load register.

DqAdv101CTRead Read data from a counter.

DqAdv101CTWrite Change CLKOUT signal by writing to CR0 and CR1.

DqAdv101CTConfigCounter Configure advanced counter settings.

DqAdv101CTCfgForGeneralCounting Configure counter as a general event counter or timer.

DqAdv101CTCfgForBinCounter
Configure counter to count the number of events in a
specific time interval.

DqAdv101CTCfgForPeriodMeasurment
Configure counter to measure how long CLKIN is high
and how long CLKIN is low over N periods.

DqAdv101CTCfgForHalfPeriod Configure counter to measure pulse width of CLKIN.

DqAdv101CTCfgForTPPM
Configure counter to measure the average period of
CLKIN over the user-defined time interval.

DqAdv101CTCfgForQuadrature
Configure counter as a quadrature decoder; GATE pin
defines direction of counting.

DqAdv101CTCfgForPWM Configure counter for PWM output.

DqAdv101CTCfgForPWMTrain
Configure counter to output a set number of PWM
pulses.

Table 5-5 Counter Configuration Parameters
Parameter Description

startmode Auto-start or start on DqAdv101CTStartCounter()
sampwidth PWM sample width
ps Prescaler value for clock division
pc Period count register; used when measuring multiple periods
cr0 Compare register 0, CLKOUT is low between lr and cr0
cr1 Compare register 1, CLKOUT is high between cr0 and cr1

DNx-MF-101 Multifunction I/O Board
Chapter 5 101

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

5.4.3.2 Counting
Modes

The following modes are selectable in DqAdv101CTConfigCounter():
• Basic timer - counts the number of 66MHz clock cycles (or cycles of

66MHz divided by the prescaler). The output stays low as the counter
counts from lr up to cr0 and then stays high until it reaches cr1. The
counter may be used as a Bin Counter or generate a One-Shot Output
by selecting an appropriate end mode (Section 5.4.3.3).

• External event counter - similar to the Basic Timer, except the clock
source is the debounced CLKIN signal rather than the 66MHz clock.

• Timed Pulse Period Measurement - counts the total number of rising
CLKIN edges over the tbr time interval, as well as the total number of
66MHz clock cycles between the first and last rising edge. The average
period can be computed from these two measurements.

• Half-period capture - counts the number of 66MHz clock cycles over
which CLKIN is high. The pulse width can then be calculated.

• N-period capture - counts the number of 66MHz clock cycles for both
the positive and negative parts of CLKIN until pc-1 number of periods
have elapsed. The average period can then be calculated.

• Quadrature Decoder - counts the number of rising CLKIN edges,
counting up if GATE=1 and down if GATE=0.

All modes except the Quadrature Decoder support an optional hardware trigger.

5.4.3.3 End Modes The following count termination conditions are available:
• Count register reaches CR0 value

• Count register reaches CR1 value

• Count register reaches 0xFFFFFFFF

• Period count register reaches 0

• Timebase register reaches 0

tbr Timebase register; used for timed measurements
dbg Input debouncing gate register; GATE to be stable

dbc
Input debouncing clock register; defines time for CLKIN to be
stable

iie Invert CLKIN pin
gie Invert GATE pin
oie Invert CLKOUT pin
mode Counting mode (Section 5.4.3.2)
trs Use GATE as trigger
enc Auto-clear counter after end_mode and await next trigger

gated
Use GATE to enable/disable counter, if GATE is not already being
used as a trigger

re Restart counter after end_mode condition is met
end_mode Count termination condition (Section 5.4.3.3)
lr Load register; sets initial value of the counter

Table 5-5 Counter Configuration Parameters (Cont.)
Parameter Description

DNx-MF-101 Multifunction I/O Board
Chapter 5 102

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

• GATE goes from high to low

5.4.4 Serial Port Table 5-6 lists the low-level API for the DNx-MF-101 RS-232/422/485 port
subsystem. See Sample101Serial.c for example code.

Table 5-6 Low-level Serial Port API

Function Description

R
S-

23
2/

42
2/

48
5

DqAdv101SerialSetConfig Set configuration properties for the serial port.

DqAdv101SerialClearFIFO Clear the input and/or output FIFOs.

DqAdv101SerialEnable Enable or disable serial port.

DqAdv101SerialReadRxFIFO Read data from the RX FIFO.

DqAdv101SerialReadRxFIFOEx
Read data, timestamps, and status bits from the RX
FIFO.

DqAdv101SerialWriteTxFIFO Write data to the TX FIFO.

DqAdv101SerialSendBreak Transmit a break of a specified duration.

DqAdv101SerialFlowControl Configure RS-232 RTS/CTS hardware flow control.

DNx-MF-101 Multifunction I/O Board
Chapter 5 103

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

5.4.4.1 Configuring
the Serial Port

The DqAdv101SerialSetConfig() function takes in port settings through
an MF101SERIALCFG structure and populates a configuration card.
Supported MF101SERIALCFG structure members are listed in Table 5-7. Some
parameters require a single value and some accept a logically grouped
combination of constants. Refer to the “PowerDNA API Reference Manual” for a
complete description of each parameter.

Note that <flags> defines what other parts of the configuration structure are
valid. For example, the DQ_MF101_SERIAL_CFG_CHAN flag is required to
switch the mode. If DQ_MF101_SERIAL_CFG_CHAN is not included in
<flags>, then the parameter values associated with the flag are ignored and
remain unchanged.
By using this strategy, configuration calls can be additive, so each following call
adds or changes a parameter to the configuration card. Any untouched
parameters are enabled with default values. To reset the entire configuration
back to the default state, call DqAdv101SerialSetConfig() with only the
DQ_MF101_SERIAL_CFG_CLEAR bit set in <flags>.

Table 5-7 Serial Port Configuration Parameters
Parameter Description Flag

flags OR in flags to change associated parameters n/a

baud_rate desired baud rate DQ_MF101_SERIAL_CFG_
BAUD

mode RS-232, 422, or 485 DQ_MF101_SERIAL_CFG_
CHANloopback =1 enable internal loopback

stop_bits number of stop bits
parity type of parity bit
width number of bits in each character
break_en =1 sets serial output to logical 0
term_fs_tx_rx =1 enables RS-485 termination resistors
char_delay_src delay between each character sent to FIFO DQ_MF101_SERIAL_CFG_

CHAR_DELAYchar_delay_us clock source for char_delay_us
frame_delay_mode defines minor frame for frame_delay_us DQ_MF101_SERIAL_CFG_

FRAME_DELAY
frame_delay_length

number of characters in minor frame; only for
FIXEDLEN delay mode

frame_delay_src clock source for frame_delay_us
frame_delay_us delay between minor frames
frame_delay_repeat_us repeat time between major frames
term_buf termination string DQ_MF101_SERIAL_CFG_

TERM_STRINGterm_length length of term_buf to use

timeout
number of clocks without receiving data
before timeout

DQ_MF101_SERIAL_CFG_
TIMEOUT

timeout_clock units for timeout

tx_watermark reserved
DQ_MF101_SERIAL_CFG_
TX_WM

rx_watermark RX FIFO watermark for data flow control
DQ_MF101_SERIAL_CFG_
RX_WM

suppress_hd_echo =1 suppresses echo in RS-422 mode DQ_MF101_SERIAL_CFG_
EXT

add_ts_on_idle
=1 adds timestamp to RX FIFO during idle
state

DNx-MF-101 Multifunction I/O Board
Chapter 5 104

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

The settings on the configuration card take effect when
DqAdv101SerialEnable() is called.

5.4.5 I2C Port Table 5-8 lists the low-level API for the DNx-MF-101 I2C port subsystem. See
Sample101I2C.c for example code.

Table 5-8 Low-level I2C Port API

Function Description

I2 C

DqAdv101I2CSetConfig Configure the I2C master and slave.

DqAdv101I2CFlush Clear the I2C port FIFO(s).

DqAdv101GetStatus Return the status of I2C subsystem.

DqAdv101I2CEnable Enable or disable the I2C port.

DqAdv101I2CBuildCmdData Build master command.

DqAdv101I2CCalcCustomTiming Calculate timing parameters for custom clock rate.

DqAdv101I2CMasterReadRxFIFO Read data from the master RX FIFO.

DqAdv101I2CMasterWriteTxFIFO Write I2C commands to the master TX FIFO
(command mode).

DqAdv101I2CMasterWriteTxPhyFIFO
Write low-level instructions to the master TX FIFO
(raw mode).

DqAdv101I2CSlaveReadRxFIFO Read data from the slave RX FIFO.

DqAdv101I2CSlaveWriteTxFIFO Write data to the slave TX FIFO.

DNx-MF-101 Multifunction I/O Board
Chapter 5 105

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

5.4.5.1 Configuring
the I2C Port

The DqAdv101I2CSetConfig() function takes in master and slave settings
through an MF101I2CCFG structure and populates a configuration card. The
settings on the configuration card take effect when DqAdv101I2CEnable() is
called.
MF101I2CCFG structure members are listed in Table 5-9. Some parameters
require a single value and some accept a logically grouped combination of
constants. All members are uint32, although some values are at most 12 or 16
bits. Refer to the “PowerDNA API Reference Manual” for a complete description
of each parameter.

Note that <flags> defines what other parts of the configuration structure are
valid. For example, the DQ_MF101_I2C_CFG_MASTER_VALID flag is required
to change master_byte_delay. If DQ_MF101_I2C_CFG_MASTER_VALID is
not included in <flags>, then the master configuration parameters are ignored
and remain unchanged.
By using this strategy, configuration calls can be additive, so each following call
adds or changes a parameter to the configuration card. Untouched parameters
are configured to default values. To reset the entire configuration back to the
default state, call DqAdv101I2CSetConfig() with only the
DQ_MF101_I2C_CFG_CLEAR bit set in <flags>.

Custom Clock Settings
DqAdv101I2CSetConfig()also accepts an optional MCTPARAM structure for
configuring custom clock rates. The current implementation limits custom clock
rates to between 2 kHz and 100 kHz. These rates are intended for custom,
slower devices or for systems with a large bus capacitance. MCTPARAM may be
set to 0 if using typical 100 kHz, 400 kHz, or 1 MHz rates.

Table 5-9 I2C Configuration Parameters
Parameter Description Flag

flags OR in flags to change associated parameters n/a
clock clock frequency DQ_MF101_I2C_CFG_

CLOCK

master_cfg select active master settings DQ_MF101_I2C_CFG_
MASTER_VALIDmaster_idle_delay delay before acquiring bus in MM mode, per

15ns
master_byte_delay delay between bytes sent by master (µs)
master_max_sync_delay max time that a slave can delay the clock (µs)
master_to_cfg max timeout before releasing bus (µs)
slave_cfg select active slave settings DQ_MF101_I2C_CFG_

SLAVE_VALIDslave_sync_dly time slave delays clock during ACK, per 15ns
slave_ack_dly time to wait for the ACK clock, per 15ns
slave_max_ack max # of RX words before issuing NACK
slave_addr set 7 or 10-bit slave address DQ_MF101_I2C_CFG_

SDATA_ADDRslave_data data to send when slave TX FIFO is empty

DNx-MF-101 Multifunction I/O Board
Chapter 5 106

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

To set up a custom clock rate, initiate an MCTPARAM structure and use the
DqAdv101I2CCalcCustomTiming() helper function to fill out the structure
with the proper timing parameters. Then, in the MF101I2CCFG structure, use
DQ_MF101_I2C_CFG_CLOCK_CUST for <clock> and make sure the
DQ_MF101_I2C_CFG_CLOCK bit is included in <flags>.

5.4.5.2 Command vs.
Raw Mode

There are two ways the master can control the I2C bus - command and raw
modes.
In command mode, users use DqAdv101I2CBuildCmdData() to construct
uint32 words from a list of pre-defined commands (Section 2.5.2.1). The built
command words are then written to the outgoing FIFO using
DqAdv101I2CMasterWriteTxFIFO().
In raw mode, users use DqAdv101I2CMasterWriteTxPhyFIFO() to write
atomic commands to the master TX FIFO. PHY stands for physical — the lowest
accessible level of the I2C state machine implemented on the FPGA. Available
raw mode commands are listed in Table 5-10.

//Enable custom clock rate.

MF101I2CCFG i2c_cfg = {0};
i2c_cfg.flags = DQ_MF101_I2C_CFG_CLOCK;
i2c_cfg.clock = DQ_MF101_I2C_CFG_CLOCK_CUST;

//Generate timing parameters for 50kHz (=100kHz base clock divided by 2).

MCTPARAM i2c_timing = {0};
DqAdv101I2CCalcCustomTiming(hd, 2, &i2c_timing);

//Write configuration to device.

DqAdv101I2CSetConfig(hd, devn, &i2c_cfg, &i2c_timing);

Table 5-10 Raw Mode Commands
Raw Mode Command Description

I2C_MRAW_PHY_TX1(B) Set SDA to 1 for one clock (use B=0)
I2C_MRAW_PHY_TX0(B) Set SDA to 0 for one clock (use B=0)

I2C_MRAW_PHY_RX(B)
Set SDA to 1 for one clock, return SDA at the
falling edge of the clock (use B=0)

I2C_MRAW_PHY_START(B) START condition on the bus (use B=0)
I2C_MRAW_PHY_STOP(B) STOP condition on the bus (use B=0)

I2C_MRAW_PHY_RELEASE(B)
Release bus without creating START or
STOP conditions (use B=0)

I2C_MRAW_DLY_2NUS(B) Delay for 2^B µS (B=0…31)
I2C_MRAW_DLY_NX8US(B) Delay for B*8 µS (B=0…255)
I2C_MRAW_BYTE_SEND(B) Transmit data byte B to the bus (B=0…255)

I2C_MRAW_BYTE_RECEIVE(B)
Read byte of data from the bus and save to
master RX FIFO (use B=0)

I2C_MRAW_ACK_WAIT(B)
Wait for ACK; NACK ends sequence (use
B=0)

I2C_MRAW_SEQ_END(B)
Ends sequence; bus is idle until this
command initiates the write (use B=0)

DNx-MF-101 Multifunction I/O Board
Chapter 5 107

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Refer to Sample101I2C.c for examples of START+WRITE and START+READ
sequences implemented in raw mode. An example
START+WRITE+ReSTART+READ sequence is shown below.

Example:
START+WRITE+ReSTART+READ sequence in raw mode
I2C_MRAW_PHY_START(0); // start
I2C_MRAW_BYTE_SEND(slave_addr<<1); // address + write
I2C_MRAW_ACK_WAIT(0); // slave ACK
I2C_MRAW_BYTE_SEND(0xF0); // register
I2C_MRAW_ACK_WAIT(0); // slave ACK
I2C_MRAW_PHY_RELEASE(0); // release + start = restart
I2C_MRAW_PHY_START(0);
I2C_MRAW_BYTE_SEND(((slave_addr<<1)|1); // address + read
I2C_MRAW_ACK_WAIT(0); // slave ACK
I2C_MRAW_BYTE_RECEIVE(0); // store byte in master RX FIFO
I2C_MRAW_PHY_TX1(0); // master NACK
I2C_MRAW_PHY_STOP(0); // stop
I2C_MRAW_SEQ_END(0); // write sequence to the bus

To switch from command mode to raw mode, edit the MF101I2CCFG
configuration structure to include the DQ_MF101_I2C_MCFG_RAWMODE bit in
<master_cfg>. The DQ_MF101_I2C_CFG_MASTER_VALID bit should also
be set in <flags>. Please note that clock stretching and timeout parameters in
DqAdv101I2CSetConfig() remain in full effect.

5.5 Async Events
API

Most asynchronous event-handling functions are board-agnostic and described
in the “PowerDNA API Reference Manual”. There is only one function specific to
the DNx-MF-101. Please see SampleAsync101 for an example of how to
configure and retrieve event packets.

Table 5-11 Low-level Asynchronous Events API

Function Description

A
sy

nc

DqAdv101ConfigEvents

Configure the board to send status data upon one of
the following events:

• DIO pin changes state
• Periodically at a user-defined rate

DNx-MF-101 Multifunction I/O Board
Chapter 5 108

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

5.6 RtDMap API Real Time Data Map (RtDMap) mode uses the same API as Point-by-Point
mode for channel configuration (Section 5.4); however, generic DMap functions
are used for reading data. The DMap API is documented in the “PowerDNA API
Reference Manual”.
Refer to SampleRTDMap101 for an example of how to set up a Data Map on the
DNx-MF-101. Table 5-12 lists the DNx-MF-101 channels that can be added to
the DMap.

A basic overview of DMap usage is provided in Section 5.6.1. More information
on RtDMap is available in the “PowerDNx Protocol Manual”.

5.6.1 DMap Tutorial As shown in SampleRtDMap101, a DMap program is structured as follows:
DMap Configuration:

1. Create a DMap.

2. Configure input/output channels.

3. Add input/output channels to the DMap.

4. Configure DNx-MF-101 scan rates.

5. Start the DMap.
DMap Operation:

6. Schedule output data to write upon next refresh.

7. Refresh the DMap.

Table 5-12 DMap Channels

Subsystem Channels Notes

DQ_SS0IN DQ_LNCL_TIMESTAMP Read timestamp.

DQ_MF101_SS_AI
0...15 for single-ended channels Read analog inputs;

See DqAdv101AIRead() for channel
gain configuration details.0...7 for differential channels

DQ_MF101_SS_AO 0...1 Write to analog outputs.

DQ_MF101_SS_DI

DQ_MF101_DMAP_DI_FET_STATE Read FET-based DIO port (16 bits).

DQ_MF101_DMAP_DI_FET_DEB Read debounced FET-based DIO port.

DQ_MF101_DMAP_DI_TTL
Read TTL DIO port;
Bits 0:3 are TTL0:3 and Bit 4 is TRIGIN

DQ_MF101_DMAP_DI_CT_0
Read counter 0;
See Section 5.4.3 and Sample101CT.c for
configuration details.

DQ_MF101_DMAP_DI_CT_1
Read counter 1;
See Section 5.4.3 and Sample101CT.c for
configuration details.

DQ_MF101_SS_DO
DQ_MF101_DMAP_DO_FET Set state of FET-based digital outputs.

DQ_MF101_DMAP_DO_TTL Set state of TTL digital outputs.

DQ_MF101_SS_GUARDIAN
DQ_MF101_DMAP_GUARD_DI_
ADC_CHAN

Read voltage on FET-based DIO;
OR in the desired channel number (0...15).

DNx-MF-101 Multifunction I/O Board
Chapter 5 109

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

8. Read retrieved data from input channels (returned in reply to refresh).
Close Out DMap:

9. Stop and close the DMap.

5.6.1.1 DMap
Configuration

1. To create a new DMap, call DqRtDmapInit(). One copy of the DMap
is stored on the IOM and another is stored on the host. During operation
(Step 8), the IOM will update its version of the map at the rate specified
during initialization.

2. Configure I/O channels using the Point-by-Point API. This tutorial will
focus on analog I/O; additional subsystems are covered in the example
code.

3. Add the channels to the DMap with their corresponding subsystem
names (Table 5-12).

4. By default, all boards in the DMap are clocked at the DMap refresh rate
(set in Step 1). You can override this setting and specify a different
sampling rate for the DNx-MF-101:

//Create and initialize a DMap with a 1000 Hz refresh rate.

DqRtDmapInit(hd, &dmapid, 1000);

//Optionally configure moving average

DqAdv101AISetConfig(hd, DEVN, 0, DQ_MF101_AI_MAV_1);

//Configure 16 single-ended input channels for range +-10V.
//Set up an input channel list.

for(ch=0; ch<16; ch++){
input_cl[ch] = ch | DQ_LNCL_GAIN(DQ_MF101_AI_GAIN_1);

}

//Configure 2 analog output channels for range +-5V.
//Set up an output channel list.

for(ch=0; ch<2; ch++){
DqAdv101AOSetConfig(hd, DEVN, ch, DQ_MF101_AO_RANGE_PN_5V);

 output_cl[ch] = ch;
}

//Add analog input channels to the DMap.

DqRtDmapAddChannel(hd, dmapid, DEVN, DQ_MF101_SS_AI, &input_cl, 16);

//Add analog output channels to the DMap.

DqRtDmapAddChannel(hd, dmapid, DEVN, DQ_MF101_SS_AO, &output_cl, 2);

//Set the device scan rate to 100 Hz.

DqRtDmapSetSamplingRate(hd, dmapid, DEVN, 100);

DNx-MF-101 Multifunction I/O Board
Chapter 5 110

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

5. Start the DMap with the configuration and channels requested above.

5.6.1.2 DMap
Operation

6. DqRtDmapWriteRawData() or DqRtDmapWriteScaledData()
writes output channel values to the host map. The DMap can hold one
data point per channel. However, data is not actually transferred to the
IOM until the DqRtDmapRefresh() call in Step 7.

7. Calling DqRtDmapRefresh() sends the output data from the host to
the IOM. On the reply, the IOM transfers one data point per configured
input channel to the host.

8. Input data can be read from the host’s version of the map using
DqRtDmapReadRawData() or DqRtDmapReadScaledData().

5.6.1.3 Close Out
DMap

9. Stop and clean up the DMap with the calls:

//Start the DMap.

DqRtDmapStart(hd, dmapid);

//Copy AO data to output packet (-2.5V to AOut0 and +7.5V to AOut1).

double fdata[2] = {-2.5, 7.5};
DqRtDmapWriteScaledData(hd, dmapid, DEVN, fdata, 2);

//Send output data and receive input data.

DqRtDmapRefresh(hd, dmapid);

//Read analog input voltage from DMap.

DqRtDmapReadScaledData(hd, dmapid, DEVN, fdata, 16);

DqRtDmapStop(hd, dmapid);

DqRtDmapClose(hd, dmapid);

DNx-MF-101 Multifunction I/O Board
Chapter 5 111

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

5.7 RtVMap API
(Analog IO)

VMap uses the same API as Point-by-Point mode for channel configuration
(Section 5.4); however, generic VMap functions are used for reading data. The
VMap API is documented in the “PowerDNA API Reference Manual”.
Refer to SampleVMap101 for an example of how to set up and run a Variable
Map (VMap) for analog input and output on the DNx-MF-101. Table 5-13 lists all
of the DNx-MF-101 channels that can be added to the VMap.

A basic overview of VMap usage is provided in Section 5.7.1. More detailed
information on RtVMap can be found in the “PowerDNx Protocol Manual”.

5.7.1 VMap Tutorial As shown in SampleVMap101, a VMap program is structured as follows:
VMap Configuration:

1. Create a VMap.

2. Configure input/output channels.

3. Add input/output channels to the VMap.

4. Configure DNx-MF-101 scan rates.

5. Start the VMap.
VMap Operation:

6. Schedule output data to write upon next refresh.

7. Schedule input data to read upon next refresh.

8. Refresh the VMap.

9. Read retrieved data from input channels (returned in reply to refresh).
Close Out VMap:

10.Stop and close the VMap.

5.7.1.1 VMap
Configuration

1. To create a new VMap, call DqRtVmapInit(). One copy of the VMap
is stored on the IOM and another is stored on the host. During operation
(Step 8), the IOM will update its version of the map at the rate specified
during initialization.

Table 5-13 VMap Channels

Subsystem Channels Notes

DQ_MF101_SS_AI
0...15 for single-ended channels Read analog inputs with timestamping;

See DqAdv101AIRead() for channel
gain configuration details.0...7 for differential channels

DQ_MF101_SS_AO 0...1 Write to analog outputs.

//Create and initialize a VMap with a 1000 Hz refresh rate.

DqRtVmapInit(hd, &vmapid, 1000);

DNx-MF-101 Multifunction I/O Board
Chapter 5 112

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

2. Configure analog I/O channels and set a VMap flag for each channel
(required in Step 3):.

3. Add the channels to the VMap with their corresponding subsystem
names (Table 5-13). The DqRtVmapSetChannelList() function
identifies the number of physical channels on the DNx-MF-101.

4. The DNx-MF-101 board is clocked according to the rates set by
DqRtVmapSetScanRate(). Since there are 16 configured channels
plus 1 automatically added timestamp channel, the board’s Input FIFO
fills at IN_SCANRATE*17. OUT_SCANRATE defines the overall rate at
which the board’s Output FIFO empties; you can fill the FIFO with a
chunk of Channel 0 data followed by a chunk of Channel 1 data, or the
two channels can be interleaved.

5. Start the VMap with the configuration and channels requested above.

//Configure 16 single-ended input channels for range +-10V.
//Set up flag array for retrieving FIFO state.

for(ch=0; ch<16; ch++){
in_cl[ch] = ch | DQ_LNCL_GAIN(DQ_MF101_AI_GAIN_1);

 in_flags[ch] = DQ_VMAP_FIFO_STATUS;
}

// Optionally configure voltage divider and moving averages

DqAdv101AISetConfig(hd, DEVN, AI_DIVIDER_MASK, AI_MOVING_AVERAGES);

//Configure 2 analog output channels for range +-5V.
//Set up flag array for retrieving FIFO state.

for(ch=0; ch<2; ch++){
DqAdv101AOSetConfig(hd, DEVN, ch, DQ_MF101_AO_RANGE_PN_5V);

 out_cl[ch] = ch;
}

//Add analog I/O channels to the VMap.

DqRtVmapAddChannel(hd, vmapid, DEVN, DQ_MF101_SS_AI, in_cl, in_flags, 1);
DqRtVmapAddChannel(hd, vmapid, DEVN, DQ_MF101_SS_AO, out_cl, out_flags,
 1);

//Specify number of physical channels per subsystem.

DqRtVmapSetChannelList(hd, vmapid, DEVN, DQ_MF101_SS_AI, in_cl, 16);
DqRtVmapSetChannelList(hd, vmapid, DEVN, DQ_MF101_SS_AO, out_cl, 2);

//Set the device scan rate.

DqRtVmapSetScanRate(hd, vmapid, DEVN, DQ_MF101_SS_AI, IN_SCANRATE);
DqRtVmapSetScanRate(hd, vmapid, DEVN, DQ_MF101_SS_AO, OUT_SCANRATE);

//Start the VMap.

DqRtVmapStart(hd, vmapid);

DNx-MF-101 Multifunction I/O Board
Chapter 5 113

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

5.7.1.2 VMap
Operation

6. DqRtVmapAddOutputData() writes raw Analog Output values to the
host’s version of the map. If passing raw data directly into
DqRtVmapAddOutputData(), you must logical OR the raw data with
DQ_MF101_CLO_AO_CHAN(ch), where ch is the channel number.
DqAdvScaleToRawValue() does this operation automatically. The
DqNtohl() helper function reverses the byte order from little endian
(used with Intel-based host computers) to big endian (network data
representation). This conversion is not handled automatically because
VMap packets can contain data from many different layer types.

Note that data is not actually transferred to the IOM until the
DqRtVmapRefresh() call in Step 8.

7. Use DqRtVmapRqInputDataSz() to schedule a request for data from
the IOM. You can request a variable number of data points per channel.
Note that data is not actually received until the DqRtVmapRefresh()
call in Step 8.

8. The VMap request has been prepared, so the command can be sent
with DqRtVmapRefresh(). During the refresh,

• The host transfers Analog Output data to the board’s Output FIFO in an
Ethernet packet.

• Analog Input data is transferred from the board’s Input FIFO to the host
in one Ethernet packet.

If a FIFO overflow error occurs, try reducing IN_SCANRATE, increasing
OUT_SCANRATE, or increasing the DqRtVmapRefresh() rate.

//Prepare to send 100 data points per output channel.

for (i=0; i<100; i++){
 for(ch=0; ch<2; ch++){

 DqAdvScaletoRawValue(hd, DEVN, out_cl[ch], out_fdata[i*2+ch],
 &out_bdata[i*2+ch]);
 out_bdata[i*2+ch] = DqHtonl(hd, out_bdata[i*2+ch]);
 }
}

//Copy data to the output packet.
//(the AO subsystem was added after AI, so its VMap index = 1)

DqRtVmapAddOutputData(hd, vmapid, 1, 200 * sizeof(uint32),
 &updates_accepted, (uint8*)out_bdata);

//Request 1000 data points per input channel, including timestamp.
//(the AI subsystem was configured first, so its VMap index = 0)

DqRtVmapRqInputDataSz(hd, vmapid, 0, 17000*sizeof(uint32),
 &in_act_size, NULL);

//Send output data and receive input data.

DqRtVmapRefresh(hd, vmapid, 0);

DNx-MF-101 Multifunction I/O Board
Chapter 5 114

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

9. Input data can be read from the host’s version of the map using DqRt-
VmapGetInputData(). On Intel-based host computers, the received
data will need to be converted from big endian to little endian.

5.7.1.3 Close Out
VMap

10.Stop and clean up the VMap with the calls:

//Read analog input and timestamp data from VMap.
//(the AI subsystem was configured first, so its VMap index = 0)

DqRtVmapGetInputData(hd, vmapid, 0, 17000* sizeof(uint32),
 &in_data_size, &in_avl_size, (uint8*)in_bdata)

//Reverse byte order from Network to Host representation.

for (i = 0; i < (in_data_size / (int)sizeof(uint32)); i++) {
 recv_data = DqNtohl(hd, in_bdata[i]);
}

DqRtVmapStop(hd, vmapid);

DqRtVmapClose(hd, vmapid);

DNx-MF-101 Multifunction I/O Board
Chapter 5 115

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

5.8 RtVMap API
(Serial)

VMap uses the same API as Point-by-Point mode for channel configuration
(Section 5.4); however, generic VMap functions are used for reading data. The
VMap API is documented in the “PowerDNA API Reference Manual”.
Refer to SampleVMap101Serial for an example of how to set up and run a
Variable Map (VMap) for serial communication on the DNx-MF-101. Table 5-14
lists the DNx-MF-101 channels that can be added to the VMap.

A basic overview of VMap usage for serial communication is provided in Section
5.8.1. More detailed information on RtVMap can be found in the “PowerDNx
Protocol Manual”.

5.8.1 VMap Tutorial
(Serial)

As shown in SampleVMap101Serial, a VMap program for serial communication
is structured as follows:
VMap Configuration:

1. Prepare configuration and set up channel list.

2. Create a VMap.

3. Add input/output channels to the VMap.

4. Start the VMap.
VMap Operation:

5. Prepare to write and read data upon next refresh.

6. Refresh the VMap.

7. Read input data from host’s version of the VMap.
Close Out VMap:

8. Stop and close the VMap.

5.8.1.1 VMap
Configuration

1. Prepare for serial communication by setting configuration properties,
enabling the serial port, and setting up the channel list and flags.

Table 5-14 VMap Subsystems and Channels for Serial Communication

Subsystem Channels Notes

DQ_MF101_
VMAP_SS_CHAN_IN

DQ_MF101_VMAP_CHAN_IN_SERIAL Read serial input data.

DQ_MF101_
VMAP_SS_CHAN_OUT

DQ_MF101_VMAP_CHAN_OUT_SERIAL Write serial output data.

//Set the configuration properties and enable the serial port.
//Note that SetSerialConfiguration() calls DqAdv101SerialSetConfig()
//and DqAdv101SerialEnable()

SetSerialConfiguration(hd, DEVN);

// Set up the channel list and flags

cl_in[0] = DQ_MF101_VMAP_CHAN_IN_SERIAL;
cl_out[0] = DQ_MF101_VMAP_CHAN_OUT_SERIAL;
flags_in[0] = DQ_VMAP_FIFO_STATUS;
flags_out[0] = DQ_VMAP_FIFO_STATUS;

DNx-MF-101 Multifunction I/O Board
Chapter 5 116

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

2. Create a new VMap, by calling DqRtVmapInit(). One copy of the
VMap is stored on the IOM and another is stored on the host. The
refresh rate parameter is ignored for serial communication.

3. Add the channels to the VMap with their corresponding subsystem
names (Table 5-13), channel lists, and flags.

4. Start the VMap with the configuration and channels requested above.

5.8.1.2 VMap
Operation

Execute the following steps in the VMap Operation section until there is a
terminating condition.

5. Prepare to write and read serial data at the next refresh of the VMap.

6. Refresh the VMap.

7. Read input data from the host’s version of the map using
DqRtVmapReadInput().

//Create and initialize a VMap

DqRtVmapInit(hd, &vmapid, 0);

//Add serial I/O channels to the VMap.

DqRtVmapAddChannel(hd, vmapid, DEVN, DQ_MF101_VMAP_SS_CHAN_IN,
 cl_in, flags_in, 1);
DqRtVmapAddChannel(hd, vmapid, DEVN, DQ_MF101_VMAP_SS_CHAN_OUT,
 cl_out, flags_out, 1);

//Start the VMap.

DqRtVmapStart(hd, vmapid);

//Prepare output data.

len = sprintf((char*)(&out_data[0]), “output string example");

// Write bytes to be sent at next refresh

DqRtVmapWriteOutput(hd, vmapid, DEVN, cl_out[0], len, out_data);

// Request the max number of bytes to receive at next refresh

DqRtVmapRequestInput(hd, vmapid, DEVN, cl_in[0], MAX_RX_MESSAGES);

// Write output data to each TX port FIFO and Read each RX port FIFO

DqRtVmapRefresh(hd, vmapid, 0);

// Read data received during the last refresh
// To treat the data as a string, add a NULL character to the end of
// in_data

DqRtVmapReadInput(hd, vmapid, DEVN, cl_in[0], MAX_RX_MESSAGES,
 &rx_data_size, in_data);

DNx-MF-101 Multifunction I/O Board
Chapter 5 117

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

5.8.1.3 Close Out
VMap

8. Stop and clean up the VMap with the calls:

DqRtVmapStop(hd, vmapid);

DqRtVmapClose(hd, vmapid);

DNx-MF-101 Multifunction I/O Board
Chapter 5 118

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

5.9 AVMap API Asynchronous Variable Map (AVMap) uses the same API as Point-by-Point
mode for channel configuration (Section 5.4); however, generic AVMap
functions are used for reading data.
Refer to SampleAVMap101 for an example of how to set up and run an AVMap
on the DNx-MF-101. The example program also provides more detail on
declaring and initializing the variables used in the following tutorial. Table 5-15
lists the DNx-MF-101 channels that can be added to the AVMap.

5.9.1 AVMap
Tutorial

This section provides a basic overview of AVMap usage. As shown in
SampleAVMap101, an AVMap program is structured as follows:
AVMap Configuration:

1. Create a VMap.

2. Configure input channels, voltage divider, and moving averages.

3. Add input channels to the VMap.

4. Set the channel list and scan rates.

5. Start the VMap.
AVMap Operation:

6. Schedule input data to read upon next refresh.

7. Refresh the VMap and get data
Close Out AVMap:

8. Stop and close the VMap.

5.9.1.1 AVMap
Configuration

1. To create a new AVMap, call DqRtVmapInit().

Table 5-15 AVMap Channels

Subsystem Channels Notes

DQ_MF101_SS_AI
(DQ_SS0IN)

ch | DQ_LNCL_GAIN
 (DQ_MF101_AIGAIN_1)

Channel ORed with the gain bits (bits 8-11)

For differential channels, OR in
DQ_LNCL_DIFF

//Create the VMap

DqRtVmapInit(hd, &vmapid, XMAPRATE);

DNx-MF-101 Multifunction I/O Board
Chapter 5 119

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

2. Configure input channels and optionally configure voltage divider and
moving averages.

3. Add the channels to the VMap with their corresponding subsystem
names (Table 5-15).

4. Set the channel list and scan rate.

5. Start the AVMap.

5.9.1.2 AVMap
Operation

6. Setup to read data out of the VMAP. Note that data is not actually
transferred to the IOM until the DqRtVmapRefresh() call.

//Configure input channels

for (ch = 0; ch < AI_CHANNELS; ch++) {
 //Build AI channel list. For differential bitwise OR in DQ_LNCL_DIFF.
 in_cl[ch] = ch | DQ_LNCL_GAIN(AI_GAIN) /* | DQ_LNCL_DIFF */;
 in_flags[ch] = DQ_VMAP_FIFO_STATUS;
}

//Optionally configure voltage divider and moving averages

DqAdv101AISetConfig(hd, DEVN, AI_DIVIDER_MASK, AI_MOVING_AVERAGES);

//Add channels to the VMap

DqRtVmapAddChannel(hd, vmapid, DEVN, DQ_MF101_SS_AI, in_cl,
 in_flags, 1);

//Set channel list for each device in the VMap and setup scan rate

DqRtVmapSetChannelList(hd, vmapid, DEVN,
 DQ_MF101_SS_AI, in_cl, AI_CHANNELS);
DqRtVmapSetScanRate(hd, vmapid, DEVN,
 DQ_MF101_SS_AI, in_cl, IN_SCANRATE);

//Start the AVMap. Only now the transfer list is transmitted to the IOM

DqRtAXMapStart(hd, vmapid, XMAPMODE, XMAPRATE, XMAPWMRK, 0);

// Setup request for data that will occur on next DqRtVmapRefresh call

DqRtAXMapSlotAllocate(hd, TRUE, vmapid, 0);
DqRtVmapRqInputDataSz(hd,
 vmapid, vmap_in_ch, rq_size, &in_act_size, NULL);

// Update data from the layer

DqRtVmapRefresh(hd, vmapid, 0);
DqRtAXMapEnable(hd, TRUE);
DqCmdTrig(hd);

DNx-MF-101 Multifunction I/O Board
Chapter 5 120

Programming with Low-level API

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

7. Loop through the remaining steps in AVMap Operation.

5.9.1.3 Close Out
AVMap

8. Stop and clean up the AVMap with the calls:

//Refresh Inputs
//Note that DqRtAVmapRefreshInputsExt() can return DQ_WAIT_ENDED, indicating
//that no packet was sent from the IOM to the host within the timeout.

DqRtAVmapRefreshInputsExt(hd, vmapid, &pkttype, &counter, &wm_timestamp, NULL)

// Get data from the last DqRtVmapRefresh call

DqRtVmapGetInputData(hd, vmapid, 0, rq_size, &in_data_size,
 &in_avl_size, (uint8*)in_bdata);

// Iterate through each received sample of each scan

scans_rcvd = scans_rcvd + ((in_data_size / (int)sizeof(uint32)) /
 num_input_channels);

for (i = 0; i < (in_data_size / (int)sizeof(uint32)); i++) {
 // Extract single sample from buffer,
 //convert data to host endian order
 recv_data = DqNtohl(hd, in_bdata[i]);

 // Check if this is a timestamp
 if (recv_data & DQ_MF101_CLI_TIMESTAMP) {
 timestamp = (double)((recv_data & 0x7fffffff) * (1.0 /
 ((BUS_FREQUENCY) / (DQ_LN_10us_TIMESTAMP + 1))));
 fprintf(fo, "%.6f\n", timestamp);
 } else {
 // Verify data is from analog input subsystem
 recv_ss = DQ_MF101_CLI_SS(recv_data);
 switch (recv_ss) {
 case DQ_MF101_CLI_SS_AIN:
 // Extract channel and data from sample
 recv_ch = DQ_MF101_CLI_AI_CHAN(recv_data);
 recv_data = DQ_MF101_CLI_AI_DATA(recv_data);
 // Convert to scaled value and write to file
 Chk4Err(DqAdvRawToScaleValue(hd, DEVN,
 in_cl[recv_ch], recv_data,
 &in_fdata), goto finish_up);
 fprintf(fo, "%.6f,", in_fdata);
 break;
 default:
 break;
 }
 }
}

DqRtAXMapEnable(hd, FALSE);

DqRtVmapStop(hd, vmapid);

DqRtVmapClose(hd, vmapid);

DNx-MF-101 Multifunction I/O Board
Appendix A 121

Accessories

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Appendix A
Accessories

A.1 MF-101 STP
Board and
Cable

The DNA-MF-CBL-STP accessory kit is designed to simplify field wiring to the
DNx-MF-101. The DNA-MF-CBL-STP kit contains two pieces: the DNA-CBL-
MF-1M cable and the DNA-STP-MF-101 screw terminal panel, which may also
be ordered separately if desired.

Figure A-1 Photo of DNA-STP-MF-101 screw terminal board with
DNA-CBL-MF-1M cable

DNA-CBL-MF-1M

This round, heavy-shielded cable attaches to the DNx-MF-101 using a 62-pin
male D-sub connector. The cable splits out analog and digital signals into a 37-
pin female D-sub and a 62-pin female D-sub respectively, which plug directly
into the DNA-STP-MF-101 screw terminal board. Splitting the analog and digital
signals into separate cables ensures good noise performance on the analog sig-
nals even when the digital I/O section might be switching high frequencies or
currents. The cable utilizes twisted pairs to further reduce noise and crosstalk.

The “1M” cable is 1 meter (3.28 ft) long and weighs 0.46 lbs (0.21 kg).

DNx-MF-101 Multifunction I/O Board
Appendix A 122

Accessories

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

DNA-STP-MF-101

The STP-MF-101 is a screw terminal panel which connects to the DNx-MF-101
using the DNA-CBL-MF-1M splitter cable. The pinout is shown in Figure A-2.
Features include:

• All signals brought out to five 20-position terminal blocks

• DB-9 female connector for RS-232/422/485

• RJ-11 jack for I2C

• Jumper block for connecting TTL inputs to either +5V or DGnd

• On-board ADT7420 temperature sensor for cold junction compensation.
The sensor connects to the I2C port using a jumper.

• An on-board LED indicates the presence of the +5V supply (pin 24).

The STP-MF-101 board measures 7 x 4.25 inches (17.8 x 10.8 cm) and weighs
0.30 lbs (0.14 kg).

DNx-MF-101 Multifunction I/O Board
Appendix A 123

Accessories

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

Figure A-2 DNA-STP-MF-101 Pinout

62 DV 12-15 [32]
42 DGnd [31] 21 DIO-15 [53]

61 DV 12-15 [32]
41 DGnd [31] 20 DIO-14 [10]

60 DIO-11 [51]
40 DGnd [31] 19 DIO-13 [54]

59 DV 8-11 [30]
39 DGnd [31] 18 DIO-12 [11]

58 DIO-09 [52]
38 DGnd [29] 17 DIO-10 [8]

57 DV 8-11 [30]
37 DGnd [29] 16 DIO-08 [9]

56 DV 4-7 [28]
36 DGnd [27] 15 DIO-07 [49]

55 DV 4-7 [28]
35 DGnd [27] 14 DIO-06 [6]

54 DIO-03 [47]
34 DGnd [27] 13 DIO-05 [50]

53 DV 0-3 [26]
33 DGnd [27] 12 DIO-04 [7]

52 DIO-02 [4]
32 DGnd [25] 11 DIO-01 [48]

51 DV 0-3 [26]
31 DGnd [25] 10 DIO-00 [5]

50 Trig Out [45]
30 +5V-TTL [24] 9 +5V-TTL [24]

49 Gnd [34]
29 Gnd [33] 8 TTL 3 [56]

48 Trig In [46]
28 Gnd [33] 7 TTL 2 [13]

47 Gnd [34]
27 Gnd [34] 6 TTL 1 [55]

46 I2C SDA [3]
26 Gnd [34] 5 TTL 0 [12]

45 Gnd [23]
25 Gnd [23] 4 CTS232/RX485- [43]

44 I2C SCL [2]
24 Gnd [23] 3 RX232/RX485+ [44]

43 Gnd [23]
23 Gnd [23] 2 RTS232/TX485+ [1]
22 Gnd [23] 1 TX232/TX485- [22]

DB-62 (male)
62-pin connector

19 n/c
37 AIn 15/7- [21] 18 AGnd [60]
36 AIn 14/7+ [42] 17 AGnd [60]
35 AIn 13/6- [20] 16 AGnd [60]
34 AIn 12/6+ [41] 15 AGnd [60]
33 AIn 11/5- [61] 14 AGnd [60]
32 AIn 10/5+ [62] 13 AGnd [60]
31 AIn 9/4- [19] 12 AGnd [60]
30 AIn 8/4+ [40] 11 AGnd [60]
29 AIn 7/3- [18] 10 AGnd [59]
28 AIn 6/3+ [39] 9 AGnd [59]
27 AIn 5/2- [17] 8 AGnd [59]
26 AIn 4/2+ [38] 7 AGnd [59]
25 AIn 3/1- [57] 6 AGnd [59]
24 AIn 2/1+ [58] 5 AGnd [59]
23 AIn 1/0- [16] 4 AGnd [59]
22 AIn 0/0+ [37] 3 AGnd [59]
21 AGnd 1 [14] 2 AOut 1 [35]
20 A~Gnd 0 [15] 1

DB-37 (male)
37-pin connector

AOut 0 [36]

SHIELD SHIELD

DV 12-15 [32]
DV 12-15 [32]
DIO-15 [53]
DGnd [33]
DIO-14 [10]

DIO-13 [54]
DGnd [33]
DIO-12 [11]
DGnd [31]
DV 8-11 [30]
DV 8-11 [30]
DIO-11 [51]
DGnd [29]
DIO-10 [8]
DGnd [29]
DIO-9 [52]
DGnd [29]
DIO-8 [9]
DGnd [27]

DGnd [31]

JT1
20-position terminal blocks

DV 4-7 [28]
DV 4-7 [28]
DIO-07 [49]
DGnd [29]
DIO-06 [6]

DIO-05 [50]
DGnd [29]
DIO-04 [7]
DGnd [27]
DV 0-3 [26]
DV 0-3 [26]
DIO-03 [47]
DGnd [27]
DIO-02 [4]
DGnd [27]
DIO-01 [48]
DGnd [25]
DIO-00 [5]
DGnd [25]

DGnd [29]

JT2 JT3
+5V-TTL [24]
+5V-TTL [24]
Gnd [25]
Gnd [25]
Trig Out [45]

TTL 3 [56]
TTL 2 [13]
TTL 1 [55]
TTL 0 [12]
Gnd [23]
I2C SDA [3]
Gnd [23]
I2C SCL [2]
Gnd [25]
CTS232/RX485- [43]
RX232/RX485+ [44]
RTS232/TX485+ [1]
TX232/TX485- [22]
Gnd [25]

Trig In [46]

AOut 0 [36]
AGnd 0 [15]
AOut 1 [35]
AGnd 1 [14]
AGnd [59]

AIn 1/0- [16]
AGnd [59]
AGnd [59]
AIn 2/1+ [58]
AIn 3/1- [57]
AGnd [59]
AGnd [59]
AIn 4/2+ [38]
AIn 5/2- [17]
AGnd [59]
AGnd [59]
AIn 6/3+[39]
AIn 7/3- [18]
AGnd [59]

AIn 0/0+ [37]

JT4

DB-9 (female)

RX232/RX485+
RTS232/TX485+

TX232/TX485-
CTS232/RX485-

Gnd

*unlabeled pins are n/c

RJ-11 jack

Gnd

Gnd
I2C SCL

I2C SDA TTL

+5V

GND

0 1 2 3 Out In

Trig

Jumpers

AGnd [60]
AIn 8/4+ [40]
AIn 9/4- [19]
AGnd [60]
AGnd [60]

AIn 11/5- [61]
AGnd [60]
AGnd [60]
AIn 12/6+ [41]
AIn 13/6- [20]
AGnd [60]
AGnd [60]
AIn 14/7+ [42]
AIn 15/7- [21]
AGnd [60]
AGnd [60]
AGnd [60]
AGnd [60]
AGnd [60]

AIn 10/5+[62]

JT5

GND

+5V

I2C SDA

n/c

ADT7420

CJC

DNx-MF-101 Multifunction I/O Board
Appendix A 124

Accessories

March 2025 www.ueidaq.com
508.921.4600

© Copyright 2025
United Electronic Industries, Inc.

A.2 General
Purpose STP
Board and
Cable

The DNx-MF-101 is also compatible with UEI’s general purpose 62-pin cable
and screw terminal board. This may be an attractive alternative when space is
at a premium and/or your application is not switching high frequency and/or high
power digital signals.

DNA-CBL-62

The DNA-CBL-62 is a 62-conductor round shielded cable with 62-pin male D-
sub connectors on both ends. It is made with round, heavy-shielded cable; 2.5 ft
(75 cm) long, weight of 9.49 ounces or 269 grams; up to 10ft (305cm) and 20ft
(610cm).

DNA-STP-62

The STP-62 is a Screw Terminal Panel with three 20-position terminal blocks
(JT1, JT2, and JT3) plus one 3-position terminal block (J2). The dimensions of
the STP-62 board are 4w x 3.8d x1.2h inch or 10.2 x 9.7 x 3 cm (with standoffs).
The weight of the STP-62 board is 3.89 ounces or 110 grams.

Figure A-3 Pinout and Photo of DNA-STP-62 Screw Terminal Panel

A.3 Test Adapter The DNx-TADP-101 facilitates testing of DNx-MF-101 hardware and software
independent of field wiring. The test adapter plugs into the DB-62 connector on
the DNx-MF-101 and internally loops back analog inputs to outputs, industrial
digital inputs to outputs, TTL inputs to outputs, and serial receiver to transmitter.
A built-in ADT7420 temperature sensor is used to verify I2C port functionality.

62 42 21
61 41 20
60 40 19
59 39 18
58 38 17
57 37 16
56 36 15
55 35 14
54 34 13
53 33 12
52 32 11
51 31 10
50 30 9
49 29 8
48 28 7
47 27 6
46 26 5
45 25 4
44 24 3
43 23 2

22 1

SHIELD

DB-62 (female)
62-pin connector:

to J2 to JT1 to JT2 to JT3

JT3 — 20-position
terminal block:

44

4

47

GND

JT2 — 20-position
terminal block:

7

JT1 — 20-position
terminal block:

J2 — 5-position
terminal block:

5
4
3
2
1

	DNx-MF-101 User Manual
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Organization of this Manual
	1.2 Manual Conventions
	1.3 Naming Conventions
	1.4 Related Resources
	1.5 Before You Begin
	1.6 DNx-MF-101 Features
	1.6.1 Analog Input
	1.6.2 Analog Output
	1.6.3 Digital I/O
	1.6.3.1 Industrial Bits
	1.6.3.2 TTL Bits
	1.6.3.3 Counters

	1.6.4 Communication Ports
	1.6.4.1 RS-232/422/ 485
	1.6.4.2 I2C

	1.6.5 Guardian Diagnostics
	1.6.6 Isolation & Over-voltage Protection
	1.6.7 Environmental Conditions
	1.6.8 Accessories
	1.6.9 Software Support

	1.7 Technical Specifications
	1.7.1 Analog Input
	1.7.2 Analog Output
	1.7.3 Industrial Digital I/O
	1.7.4 TTL Digital I/O
	1.7.5 Counter/Timer
	1.7.6 Serial Port
	1.7.7 I2C Port
	1.7.8 General

	Chapter 2 I/O Functional Descriptions
	2.1 Analog Input
	2.1.1 Analog Input Diagnostics

	2.2 Analog Output
	2.2.1 Analog Output Diagnostics

	2.3 Digital I/O
	2.3.1 Industrial Digital I/O
	2.3.1.1 Pulse Width Modulation
	2.3.1.2 Digital Output Diagnostics

	2.3.2 TTL Digital I/O
	2.3.3 Counters

	2.4 Serial Port
	2.4.1 What is a Serial Port?
	2.4.1.1 RS-232 Overview
	2.4.1.2 RS-422 Overview
	2.4.1.3 RS-485 Overview

	2.4.2 Serial Transactions
	2.4.3 Minor and Major Frames
	2.4.4 Flow Control
	2.4.5 Loopback Diagnostics

	2.5 I2C Port
	2.5.1 About I2C Transactions
	2.5.2 Master Module
	2.5.2.1 Master Commands
	2.5.2.2 Master Transmitter
	2.5.2.3 Master Receiver
	2.5.2.4 Multi-Master Mode

	2.5.3 Slave Module
	2.5.3.1 Slave Transmitter
	2.5.3.2 Slave Receiver
	2.5.3.3 Clock Stretching
	2.5.3.4 Slave as a Bus Monitor

	2.5.4 Loopback Testing

	2.6 Indicators and Connectors
	2.7 Pinout
	2.8 Wiring Guidelines
	2.8.1 Analog Input Wiring
	2.8.1.1 Grounded Signals
	2.8.1.2 Floating Signals

	2.8.2 Industrial Digital Output Wiring
	2.8.3 Serial Port Wiring
	2.8.3.1 RS-232
	2.8.3.2 RS-422/485 Full Duplex
	2.8.3.3 RS-485 Half Duplex

	2.8.4 I2C Port Wiring

	Chapter 3 PowerDNA Explorer
	3.1 Introduction
	3.2 Analog Input
	3.2.1 Configure AI Subsystem
	3.2.2 Read AI Data

	3.3 Analog Output
	3.3.1 Write AO Data
	3.3.2 Read AO Guardian Diagnostics

	3.4 Industrial Digital Input
	3.5 Industrial Digital Output
	3.5.1 Configure PWM
	3.5.2 Write to Digital Output

	3.6 RS-232/422/ 485 Port
	3.6.1 Configure Serial Port
	3.6.2 Send/Receive Data

	3.7 I2C Port
	3.7.1 Configure I2C Port
	3.7.2 Read Command Example
	3.7.3 Write Command Example
	3.7.4 Read Temperature Sensor

	3.8 Counter/ Timer
	3.8.1 Configure Count Mode and Sources
	3.8.2 Quadrature Mode
	3.8.3 Bin Counter Mode
	3.8.4 PWM Output Mode
	3.8.5 Frequency Mode

	3.9 Logic-Level DIO
	3.9.1 Configure TTL Port
	3.9.2 Read TTL Port
	3.9.3 Write TTL Data

	Chapter 4 Programming with High-level API
	4.1 About the High-level API
	4.2 Example Code
	4.3 Create a Session
	4.4 Assemble the Resource String
	4.5 Configure the Timing
	4.6 Start the Session
	4.7 Analog Input Session
	4.7.1 Add Input Channels
	4.7.2 Enable Voltage Divider
	4.7.3 Add Timestamp
	4.7.4 Configure Moving Average
	4.7.5 Read Data

	4.8 Analog Output Session
	4.8.1 Configure Output Channels
	4.8.1.1 Voltage Output
	4.8.1.2 Current Output

	4.8.2 Write Data
	4.8.3 Read Diagnostic Data

	4.9 Industrial Digital Input Session
	4.9.1 Configure Input Channels
	4.9.1.1 Adding a Port
	4.9.1.2 Adding Selected Lines

	4.9.2 Read Data
	4.9.2.1 Read DI Port
	4.9.2.2 Read Specific DI Lines

	4.9.3 Read Input Voltages

	4.10 Industrial Digital Output Session
	4.10.1 Configure Output Channels
	4.10.1.1 Add a Port
	4.10.1.2 Add Selected Lines
	4.10.1.3 Configure Pull-up/down Resistors
	4.10.1.4 PWM Modes
	4.10.1.5 Configure PWM Push/ Pull

	4.10.2 Write Data
	4.10.3 Read Output Voltages

	4.11 TTL Digital Input Session
	4.11.1 Configure Input Port
	4.11.2 Read Data

	4.12 TTL Digital Output Session
	4.12.1 Configure Output Port
	4.12.2 Write Data

	4.13 Counter Input Session
	4.13.1 Add Input Channels
	4.13.2 Route Counter to DIO Pins
	4.13.3 Counter Input Modes
	4.13.3.1 Set Capture Time Interval
	4.13.3.2 Set Number of Periods

	4.13.4 Read Count Data

	4.14 Counter Output Session
	4.14.1 Add Output Channels
	4.14.2 Route Counter to DIO Pins
	4.14.3 Counter Output Modes
	4.14.4 Write Output Parameters

	4.15 Diagnostics Session
	4.15.1 Add Input Channels
	4.15.2 Read Data

	4.16 Serial Port Session
	4.16.1 Configure the Port
	4.16.1.1 Configure Custom Baud Rate
	4.16.1.2 Configure Minor Frames
	4.16.1.3 Configure Flow Control

	4.16.2 Read Data
	4.16.3 Write Data

	4.17 I2C Port Session
	4.17.1 Configure the Master Module
	4.17.1.1 Configure Custom Clock Rate
	4.17.1.2 Configure Loopback

	4.17.2 Configure the Slave Module
	4.17.2.1 Configure Bus Monitoring
	4.17.2.2 Configure Clock Stretching
	4.17.2.3 Load Slave TX Register

	4.17.3 Read Data
	4.17.3.1 Slave RX Data
	4.17.3.2 Master RX Data

	4.17.4 Write Data
	4.17.4.1 Slave TX Data
	4.17.4.2 Master TX Data

	4.18 Stop the Session

	Chapter 5 Programming with Low-level API
	5.1 About the Low-level API
	5.2 Example Code
	5.3 Data Acquisition Modes
	5.3.1 Async Events Mode

	5.4 Point-by- Point API
	5.4.1 Analog I/O
	5.4.2 Digital I/O
	5.4.3 Counters
	5.4.3.1 Configuration Settings
	5.4.3.2 Counting Modes
	5.4.3.3 End Modes

	5.4.4 Serial Port
	5.4.4.1 Configuring the Serial Port

	5.4.5 I2C Port
	5.4.5.1 Configuring the I2C Port
	5.4.5.2 Command vs. Raw Mode

	5.5 Async Events API
	5.6 RtDMap API
	5.6.1 DMap Tutorial
	5.6.1.1 DMap Configuration
	5.6.1.2 DMap Operation
	5.6.1.3 Close Out DMap

	5.7 RtVMap API (Analog IO)
	5.7.1 VMap Tutorial
	5.7.1.1 VMap Configuration
	5.7.1.2 VMap Operation
	5.7.1.3 Close Out VMap

	5.8 RtVMap API (Serial)
	5.8.1 VMap Tutorial (Serial)
	5.8.1.1 VMap Configuration
	5.8.1.2 VMap Operation
	5.8.1.3 Close Out VMap

	5.9 AVMap API
	5.9.1 AVMap Tutorial
	5.9.1.1 AVMap Configuration
	5.9.1.2 AVMap Operation
	5.9.1.3 Close Out AVMap

	Appendix A Accessories
	A.1 MF-101 STP Board and Cable
	A.2 General Purpose STP Board and Cable
	A.3 Test Adapter

