

PowerDNx
1PPS / PTP Synchronization

 Interface Manual

DNx 1PPS / PTP synchronization interface
 for PPCx & -1G Cube and RACK series systems

May 2018

PN Man-DNx-Sync

© Copyright 1998-2018 United Electronic Industries, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
by any means, electronic, mechanical, by photocopying, recording, or otherwise without prior written
permission.

Information furnished in this manual is believed to be accurate and reliable. However, no responsibility
is assumed for its use, or for any infringement of patents or other rights of third parties that may result
from its use.

All product names listed are trademarks or trade names of their respective companies.

See the UEI website for complete terms and conditions of sale:

http://www.ueidaq.com/cms/terms-and-conditions/

Contacting United Electronic Industries

Mailing Address:

27 Renmar Avenue
Walpole, MA 02081
U.S.A.

For a list of our distributors and partners in the US and around the world, please contact our support team:

Support:

Telephone: (508) 921-4600
Fax: (508) 668-2350

Also see the FAQs and online “Live Help” feature on our web site.

Internet Support:

Support: support@ueidaq.com
Website: www.ueidaq.com
FTP Site: ftp://ftp.ueidaq.com

Product Disclaimer:

WARNING!

DO NOT USE PRODUCTS SOLD BY UNITED ELECTRONIC INDUSTRIES, INC. AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

Products sold by United Electronic Industries, Inc. are not authorized for use as critical components in
life support devices or systems. A critical component is any component of a life support device or
system whose failure to perform can be reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness. Any attempt to purchase any United Electronic
Industries, Inc. product for that purpose is null and void and United Electronic Industries Inc. accepts no
liability whatsoever in contract, tort, or otherwise whether or not resulting from our or our employees'
negligence or failure to detect an improper purchase.

Specifications in this document are subject to change without notice. Check with UEI for
current status.

http://www.ueidaq.com

DNx 1PPS / PTP Synchronization Interface i
Table of Contents
Table of Contents

Chapter 1 Introduction . 1

1.1 Organization of this Manual . 1

1.2 PPS / PTP Synchronization Overview . 3
1.2.1 PTP Synchronization . 3
1.2.2 PPS Synchronization . 4
1.2.3 Determining Product Versions . 5

1.3 Features . 6

1.4 External Connections for Synchronization . 7
1.4.1 Sync Connector Pinouts . 8

1.5 Hardware System Configuration Examples . 9
1.5.1 Synchronization Using an External 1PPS Signal. 9
1.5.2 Synchronization Using IEEE-1588 PTP Standard . 12

1.6 Internal Connections & Resources for Synchronization . 15
1.6.1 Internal SYNC Bus. 15
1.6.2 Adaptive Digital PLL. 17
1.6.3 I/O Board Clock & Trigger Resources . 18

1.7 I/O Board Clock & Trigger Configuration . 20

Chapter 2 Programming the Synchronization Interface . 21

2.1 About the Sync API. 21

2.2 Sync Structure for Hardware Configuration . 22
2.2.1 Sync Scheme Structure . 22
2.2.2 Section A: IOM SYNC Source Configuration . 23
2.2.3 Section B: Master Server Configuration. 25
2.2.4 Section C: Clock Configuration . 26
2.2.5 Section D: Trigger Configuration . 28
2.2.6 Section E: SyncOut Configuration . 31

2.3 Setting up the Sync Scheme. 33

2.4 Setting up PTP Server Parameters. 34

2.5 Programming I/O Board Clocks . 36

2.6 Setting I/O Board Triggers . 37
2.6.1 Arming Triggers . 37

2.7 Setting I/O Board Timestamp Reference . 38
2.7.1 Setting/Resetting Timestamps . 38

2.8 Retrieving Status. 39

2.9 Retrieving PTP Status. 42

2.10 Retrieving UTC Time . 45

2.11 Disabling Sync / Releasing Sync Hardware . 46

Chapter 3 System Configuration Tutorials . 47

3.1 Configuring Synchronization to an External PPS . 48
3.1.1 Connecting Hardware for 1PPS Synchronization . 48
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface ii
Table of Contents
3.1.2 Configuring a UEI Chassis as 1PPS Master . 49
3.1.3 Configuring a UEI Chassis as 1PPS Slave . 53
3.1.4 Configuring Synchronized I/O Board Clocks . 57
3.1.5 Configuring Synchronized Triggers & Timestamps . 62

3.2 Configuring Hardware for PTP Synchronization . 67
3.2.1 Configuring PTP Interface Parameters . 68
3.2.2 Configuring a PTP Grandmaster . 69
3.2.3 Configuring a Boundary Clock (IEEE-1588-capable Switch) 72
3.2.4 Configuring a UEI Chassis for PTP Synchronization 76

Chapter 4 Code Examples . 84

4.1 About Sync Code Examples . 84

4.2 Supported Data Acquisition Modes for Sync Interface . 85

4.3 Example Code for Synchronization in RtVMap Mode. 85
4.3.1 Initialization (RtVMap) . 86
4.3.2 Configuration (RtVMap) . 89
4.3.3 Verify ADPLL Status (RtVMap) . 90
4.3.4 Arm Trigger & Reset Timestamp (RtVMap) . 91
4.3.5 Send / Receive Messages (RtVMap). 91
4.3.6 Stop Cleanly (RtVMap) . 92

4.4 Example Code for Synchronization in ACB Mode . 93
4.4.1 Initialization (ACB) . 93
4.4.2 Configuration (ACB). 97
4.4.3 Verify ADPLL Status (ACB) . 99
4.4.4 Reset Timestamp and Arm Trigger (ACB) . 100
4.4.5 Send / Receive Messages (ACB) . 100
4.4.6 Stop Cleanly (ACB) . 101

Appendix A . 102

A.1 DNA-CBL-SYNC-10/R3 Cable & Schematic. 102

A.2 DNA-CBL-SYNC-RJ-1G/R3 Cable Schematic . 104

A.3 DNA-STP-SYNC-1G STP Panel. 106
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface iii
List of Figures

May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

List of Figures
Chapter 1 Introduction . 1
1-1 Connectors on PPCx-1G Cube ...7
1-2 Pinouts of Sync Connectors on UEI Chassis...8
1-3 Connection Diagram for 2-cube 1PPS Synchronization..9
1-4 Interconnection Diagram for Multi-chassis External 1PPS Synchronization................10
1-5 Block Diagram of DNA-STP-SYNC-1G ...11
1-6 Example Configuration - PTP Master Clock / Boundary Clock / Slaves12
1-7 Example Configuration - UEI Chassis as PTP Master...13
1-8 Example Configuration - Separate Operation and PTP Network.................................14
1-9 Schematic of Sync Connections on Cube I/O Board ...15
1-10 Block Diagram of Example SYNC Bus Connections ...16
1-11 Diagram of Connecting to the Sync Interface Bus over Individual I/O Boards20

Chapter 2 Programming the Synchronization Interface . 21

Chapter 3 System Configuration Tutorials . 47
3-1 Example Hardware Configuration for External 1PPS ..48
3-2 Block Diagram of Master Configuration...51
3-3 Block Diagram of Slave Configuration...55
3-4 Block Diagram of Slave Configuration...60
3-5 Diagram of Connecting Clock from SYNC2 to AI-207 ...61
3-6 Block Diagram of Slave Configuration...63
3-7 Diagram of Connecting Trigger & Timestamp Reference from SYNC to AI-207 Board65
3-8 Example of PTP Hardware Configuration..67
3-9 Rear of the SecureSync™ PTP Grandmaster ...69
3-10 Spectracom Grandmaster Dashboard...69
3-11 Spectracom Grandmaster PTP Config Screen..70
3-12 Spectracom PTP Grandmaster PTP Advanced Screen ..71
3-13 UEI NIC1 Ports ..72
3-14 Boundary Clock Dashboard...73
3-15 Boundary Clock PTP Settings Screen...74
3-16 Boundary Clock PTP Settings Screen...75
3-17 Block Diagram of PTP Configuration on UEI CPU Board..78
3-18 Code Snippet of Synchronization Structure Settings for PTP Sync.............................78

Chapter 4 Code Examples . 84
A-1 Photo of DNA-CBL-SYNC-10/R3 Cable ..102
A-2 Schematic of DNA-CBL-SYNC-10/R3 Cable...103
A-3 Photo of DNA-CBL-SYNC-RJ-1G Cable ...104
A-4 Schematic of DNA-CBL-SYNC-10/R3 Cable...105

DNx 1PPS / PTP Synchronization Interface
Chapter 1 1

Introduction
Chapter 1 Introduction

This manual provides documentation for synchronizing UEI Cube and RACK
systems.

 1PPS synchronization is supported on UEI systems that have CPU Logic
02.12.2D (2017) or later. (See Section 1.2.3 for checking logic versions.)

IEEE-1588 synchronization is supported on -02 and -03 versions of UEI Cube
and RACK chassis with CPU Logic 02.12.46 (2018) or later.

NOTE: The software and API described in Chapters 2, 3, and 4 of this manual
are for programming with the low-level C libraries; For users
programming with the DAQLIB framework (C++, C#, LabVIEW, etc.),
please refer to the UeiDaq Framework User Manual.

Chapter 1 contains the following sections:

• Organization of this Manual (Section 1.1)

• PPS / PTP Synchronization Overview (Section 1.2)

• Features (Section 1.3)

• External Connections for Synchronization (Section 1.4)

• Sync Connector Pinouts (Section 1.4.1)

• Hardware System Configuration Examples (Section 1.5)

• Internal Connections & Resources for Synchronization (Section 1.6)

• I/O Board Clock & Trigger Configuration (Section 1.7)

1.1 Organization
of this Manual

This 1PPS / PTP Sync Interface User Manual is organized as follows:

• Introduction
Chapter 1 provides an overview of the synchronization interface
features for various chassis and board models, device architecture,
connectivity and logic.

• Programming the SYNC Interface
Chapter 2 provides an overview of the low-level API functions that
configure the synchronization interfaces for UEI cube and rack systems.

• Tutorials
Chapter 3 provides step by step tutorials for setting up hardware and
software for synchronization to an external 1PPS reference and
synchronization using the IEEE-1588 / PTP standard.

• Example Code
Chapter 4 provides example code for setting up synchronization in
different data acquisition modes.

• Appendix A - Accessories
This appendix provides descriptions of cable accessories and the SYNC
STP board available for 1PPS / PTP Sync Interface.

• Index
This is an alphabetical listing of the topics covered in this manual.

A glossary of terms used with the PowerDNA Cube/RACK and I/O boards can
be viewed or downloaded from www.ueidaq.com.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 1 2

Introduction
Manual Conventions
To help you get the most out of this manual and our products, please note that
we use the following conventions:

Tips are designed to highlight quick ways to get the job done or to reveal
good ideas you might not discover on your own.

NOTE: Notes alert you to important information.

CAUTION! Caution advises you of precautions to take to avoid injury, data loss,
and damage to your boards or a system crash.

Text formatted in bold typeface generally represents text that should be entered
verbatim. For instance, it can represent a command, as in the following
example: “You can instruct users how to run setup using a command such as
setup.exe.”

Bold typeface will also represent field or button names, as in “Click Scan
Network.”

Text formatted in fixed typeface generally represents source code or other text
that should be entered verbatim into the source code, initialization, or other file.

Examples of Manual Conventions

Before plugging any I/O connector into the Cube or RACKtangle, be
sure to remove power from all field wiring. Failure to do so may
cause severe damage to the equipment.

Usage of Terms

Throughout this manual, the term “Cube” refers to either a PowerDNA Cube
product or to a DNR- RACKtanglerack mounted system, whichever is
applicable. The term DNR- is a specific reference to the RACKtangle, DNA- to
the PowerDNA I/O Cube, and DNx to refer to both.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 1 3

Introduction
1.2 PPS / PTP
Synchro-
nization
Overview

The UEI synchronization interface provides hardware and software resources to
synchronize one or more chassis (Cubes or RACKs) to an external resource.

Systems can synchronize multiple, distributed chassis using either of the
following:

• IEEE-1588 Precision Time Protocol (PTP) over IPv4/UDP Ethernet
• External pulse-per-second (PPS) reference signal via the 10-pin sync ports

1.2.1 PTP Synchro-
nization

PTP synchronization is supported on -02 and -03 versions of UEI Cubes and
RACKs having CPU Logic 02.12.46 (2018) or later.

The IEEE-1588 PTP standard defines the protocol for establishing a master/
slave relationship between a reference clock source (the PTP grandmaster) and
all other devices in the system that will synchronize their clocks to the master
clock (slaves).

The master/slave hierarchy is established through an exchange of PTP packets
containing clock attributes (clock accuracy, etc.). PTP devices on the network
process the clock attributes announced by a potential master using an algorithm
of prioritized attributes called the Best Master Clock Algorithm (BMCA). If a
grandmaster-capable device determines it has better clock attributes than those
already announced, it announces, and this continues until the grandmaster for
the system is determined.

The grandmaster is responsible for sending PTP Sync packets containing traffic
timestamping data. Slave devices receive the PTP packets, determine network
latency, and derive a local synchronized reference signal from timestamp data.

1.2.1.1 PTP
Specification

UEI’s implementation of the IEEE-1588 standard supports the following:

• PTP v2 (IEEE 1588-2008) supported on -02 and -03 versions of UEI
GigE Cubes and RACKS (products with Freescale 8347/8347E CPU-
types only)

• PTP over IPv4/UDP (Annex D)

• TBD resolution (packet timestamping)

• TBD accuracy (master to slave)

• Multicast transmission mode (unicast point-to-point is not currently
supported)

• Hardware timestamping

• Grandmaster capability:

• Hosted deployments of UEI systems are capable of being a PTP
grandmaster or slave device

• Standalone deployments (UEIPACs) can only be slave devices

• Clock Class: clockClass attribute is 248 (default clock class)

• Capable of connecting via an end-to-end boundary clock (transparent
clocks not currently supported)

• Supported for I/O board synchronization only

Note that the chassis real-time clock cannot be synchronized to PTP time.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 1 4

Introduction
1.2.2 PPS Synchro-
nization

Synchronization to an external pulse per second (PPS) reference is supported
on UEI Cubes and RACKs having CPU Logic 02.12.2D (2017) or later.

UEI chassis can synchronize to an external pulse per second reference signal
provided by a master source. Typically this is a one pulse per second (1PPS)
signal. The 1PPS is routed to each chassis and input over the 10-pin sync port
at the front of the Cube or RACK chassis.

A UEI chassis can also act as a master 1PPS source and generate and route its
1PPS reference signal for distribution to all slave chassis in the system

Once cubes and/or RACKs lock to the common 1PPS pulse, they can be
programmed to generate internal clocks and triggers for all configured I/O
boards in a system, allowing time alignment among each of the I/O boards on all
of the synchronized chassis, as well as allowing the synchronization of
timestamps.

1.2.2.1 PPS
Specification

1PPS Input/Output:

• pulse-per-second (configurable)

• TTL signal levels

• TBD accuracy

NOTE: All Cubes and RACKs synchronizing to the same 1PPS pulse will lock
with approximately a 100 ns accuracy range to each other.

Inter-connect Delays

Connection delays associated with PPS routing through cabling and screw
terminal panels (STPs) are provided in Section 1.5.1.3 on page 11.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 1 5

Introduction
1.2.3 Determining
Product
Versions

You can check the logic version installed on the CPU of your chassis to verify
which synchronization methods your system supports.

You can use PowerDNA Explorer, a GUI application for communicating with a
Cube or RACK chassis, or you can use the serial port.

Getting a hardware report using PowerDNA Explorer is the preferred method.

1.2.3.1 Checking CPU
Logic using
PowerDNA
Explorer

To determine the logic version using PowerDNA Explorer, do the following:

1. Open PowerDNA Explorer:
On Windows systems, you can access PowerDNA Explorer from the
Windows Start menu:
Start > All Programs > UEI > PowerDNA > PowerDNA Explorer

On Linux systems, you can access PowerDNA Explorer under the UEI
installation directory (<PowerDNA-x.y.z>/explorer) and type:
java -jar PowerDNAExplorer.jar

2. In the Menu bar of PowerDNA Explorer, click
View > Show Hardware Report.

3. Note the Logic version under the Layer: CPU section.

1.2.3.2 Checking CPU
Logic using
Serial
Connection

To determine the logic version using a serial connection, do the following:

1. Install a serial cable between your host PC and the UEI chassis.

2. Open a serial communication application, (e.g., PuTTY, MTTTY,
minicom) on your host PC, and configure settings to 57600 bits/s, 8
data bits, 1 stop bit and no parity, and then connect.

3. Once connected, type devtbl logic <Return> at the command
prompt. The CPU board is designated as DevN “14”, and the logic
version is listed under the Logic column.

4. To check the CPU version, type devtbl <Return>. The CPU board is
listed as “cpu” under the Phy/Virt column, and the version number is
listed under the Option column.

NOTE: For a UEIPAC-based chassis, you can also access the command
prompt using telnet or ssh by connecting to the chassis CPU over the
Ethernet port. Once connected, use the commands listed in
steps 3 and 4 to check versioning.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 1 6

Introduction
1.3 Features The following is an overview of the synchronization interface features.

• Synchronization mode options:

• 1PPS synchronization

• IEEE 1588 PTP synchronization

• Support for using DNx-IRIG-650 board as a source for 1PPS & GPS
synchronization

• NTP synchronization in later versions of the hardware

• Synchronization signal routing:

• Systems synchronizing to an external 1PPS signal receive and transmit
the 1PPS signal via a 10-pin sync connector at the front of the chassis

• Systems synchronizing using the IEEE-1588 PTP standard can receive
packets via the NIC1 or NIC2 Ethernet port

• Master / Slave configuration:

• Chassis can be configured as PPS master (generate and route the
1PPS) or slave (receive an external 1PPS)

• Hosted deployments synchronizing to the IEEE PTP standard can be a
PTP slave or grandmaster

• Standalone deployments (UEIPACs) synchronizing to the IEEE PTP
standard can only be a PTP slave

• Clock options:

• Clocks can be synchronized to the external reference and distributed to
I/O boards

• If an application requires it, I/O boards can be run from other clock
sources that are not synchronized to the IEEE PTP standard or to an
external 1PPS reference

• Trigger options:

• Synchronization requires all boards to start together

• The start trigger can be an external hardware trigger, a software trigger,
or generated relative to a PPS edge

• The stop trigger can be programmed to stop after a time or number of
scans
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 1 7

Introduction
1.4 External
Connections
for Synchro-
nization

For PTP synchronization, PTP hardware timestamping is supported on either
Ethernet port. Using NIC1 (Ethernet port 0) or NIC2 (Ethernet port 1) is user-
configurable.

For synchronization to an external 1PPS signal, the 1PPS routes into or out
of a UEI chassis through a 10-pin sync connector at the front of the chassis.
Note that for systems synchronizing more than 2 chassis to an external 1PPS
signal, UEI offers a screw terminal panel (STP), the DNA-STP-SYNC-1G.

Refer to Figure 1-1 for locations of the sync port and Ethernet ports.

Figure 1-1 Connectors on PPCx-1G Cube

On a PowerDNA PPCx Cube (5200 CPU: i.e., DNA-PPC5/8/9 or
UEIPAC-300/600), the 10-pin sync connector provides one sync input
(Sync In 0) and one sync output (Sync Out 0) for routing an external 1PPS
signal. PTP synchronization is not supported on these product versions.

On a PowerDNA PPCx-1G Cube and DNR/F RACK chassis (8347 CPUs), the
10-pin sync connector provides two sync inputs and two sync outputs. Users
have a choice of which sync pin on the connector to route an external 1PPS
signal. This is configurable in software. (For PTP synchronization, the sync port
is not used and all synchronization occurs over the Ethernet ports).

10-pin

Sync Port

Connector

NIC2 / NIC1

Ethernet Ports
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 1 8

Introduction
1.4.1 Sync
Connector
Pinouts

Pinouts of the sync connector for the PPCx-1G Cube / RACK
and the PPCx Cube (i.e., DNA-PPC5/8/9 or UEIPAC-300/600) are shown below
in Figure 1-2.

Figure 1-2 Pinouts of Sync Connectors on UEI Chassis

NOTE: For information regarding wiring delays associated with cat5e or better
cables and screw terminal panels (STPs) for synchronization, please
see “Connection Delays when Using Multiple Chassis” on page 11.

1

10

9

8

7

6

5

4

3

2

+5 V

Sync In 0 (Clock_In)
Gnd
Sync Out 0 (Clock_Out)
Gnd
Sync In 1 (Trigger_In)
Gnd
Sync Out 1 (Trigger_Out)
Gnd
+5 V

PPCx-1G Cube / RACK

+5 V

Sync In 0
Gnd
Sync Out 0
Gnd

Gnd

Gnd
+5 V

PPCx Cube

1

10

9

8

7

6

5

4

3

2

May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 1 9

Introduction
1.5 Hardware
System
Configuration
Examples

The following sections provide examples of connecting hardware for
synchronizing with an external 1PPS source or using PTP.

Example tutorials of configuring UEI chassis and other components to support
these configurations are provided in Chapter 3.

1.5.1 Synchro-
nization Using
an External
1PPS Signal

To synchronize a multi-chassis system, one cube (or RACK) can be designated
as the 1PPS master and the others as slaves. Alternatively, all UEI chassis can
be configured as slaves to non-UEI 1PPS-generating hardware.

1.5.1.1 Example of
Syncing to an
External 1PPS
in a 2-Chassis
System

An example of synchronizing a 2-chassis system using one chassis as the 1PPS
master and the second as its slave is shown in Figure 1-3.

Figure 1-3 Connection Diagram for 2-cube 1PPS Synchronization

For more information about UEI synchronization cables, refer to Appendix A.

NOTE: The absolute maximum signal frequency supported over the sync
connector is 5 MHz.

Master Cube Slave Cube

DNA-CBL-SYNC-10/R3

Sync Sync

(8-conductor, 30-inch, cross-connected, Sync connectors on both ends)
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 1 10

Introduction
1.5.1.2 Example of
Syncing to an
External 1PPS
in a Multi-
chassis
System

For synchronizing multiple chassis to an external 1PPS master, UEI offers a
screw terminal panel (STP) that can serve up to 6 slave ports on the STP.

As an example configuration, Figure 1-4 shows a UEI chassis acting as the
1PPS master; however, note that any 1PPS source could be used.

Additional slaves can be added to the system by daisy-chaining STP boards
together. Refer to the UEI DNA-STP-SYNC-1G Synchronization Interconnection
Panel documentation for more information.

NOTE: Connection delays through cabling and STP are described in Section
1.5.1.3 on page 11.

Figure 1-4 Interconnection Diagram for Multi-chassis External
1PPS Synchronization

Figure 1-5 provides a block diagram of the DNA-STP-SYNC-1G panel. For
more information about UEI synchronization cables, refer to Appendix A.

1PPS Master

Slaves DNA-STP-SYNC-1G

(Cables are

DNA-CBL-SYNC-RJ)
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 1 11

Introduction

Figure 1-5 Block Diagram of DNA-STP-SYNC-1G

1.5.1.3 Connection
Delays when
Using Multiple
Chassis

Connecting multiple chassis using cat5e or better cables are subject to the
following delays:

• Delay through 1/2 foot of cat5e cable is approximately 1 ns
• Delay through DNA-STP-SYNC-1G (Figure 1-5) is approximately 100 ns

NOTE: Cable and STP panel delays were tested at UEI using up to 800 foot
cables (1.6 µs).

To Master Cube

RJ-45

Master

RJ-45 RJ-45 RJ-45 RJ-45

Connections to Parallel Slaved Cubes
Buffers

Sync Out 1/2

Sync In Sync InSync InSync InSync In 1/2

Sync OutSync OutSync OutSync Out

Slave 1 Slave 2 Slave 3 Slave 4

Sync In 1

Sync Out 2

BNC

BNC

Screw Terminals

1 2 3 4 5 6 7 8 9 10

Sy
nc

 In
 1

G
N

D

Sy
nc

 O
ut

 1

Sy
nc

 O
ut

 2

G
N

D

Sy
nc

 In
 2

G
N

D

G
N

D

S1*

* If a sync connector is plugged into the master
cube connection, S1 automatically connects
the Master’s Sync Out to the slave buffers

If no connector is plugged into the master
connector, S1 connects the Sync In BNC
signal to the slave buffers

+
5

V

G
N

D

RJ-45
Sync In

Sync Out

RJ-45
Sync In

Sync Out

Slave 5 Slave 6/Daisy-Chain

Sync In 2 BNC

Sync Out 1 BNC
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 1 12

Introduction
1.5.2 Synchro-
nization Using
IEEE-1588
PTP Standard

For optimal synchronization among UEI slave chassis, the Grandmaster clock
and IEEE-1588 capable Ethernet switch (configured as an end-to-end boundary
clock) must support hardware timestamping.

Examples in this section use the following network hardware for synchronizing a
system using the IEEE-1588 PTP standard:

A boundary clock is an Ethernet switch that additionally manages IEEE-1588
packets. It redistributes PTP packets from the grandmaster to an isolated subnet
of slaves. A boundary clock acts as a slave to the grandmaster and then
becomes the master clock to any slave devices on the subnet. All clocks
ultimately derive their time from the grandmaster clock.

1.5.2.1 Example
Configuration
Using Same
NIC for
Ethernet and
PTP Packets

Figure 1-6 shows the following example configuration:

• UEI Cubes & RACKs using PTP synchronization in hosted deployment

• Host PC running user application

• IEEE 1588 PTP master clock source providing synchronization packets

• (1) IEEE 1588 boundary clock routing PTP packets between the
PTP master and UEI slave chassis (NIC1) and
application & data packets between host PC & UEI chassis (NIC1)

Figure 1-6 Example Configuration - PTP Master Clock / Boundary
Clock / Slaves

UEI slave chassis -02 and -03 versions of UEI’s GigE RACKtangle and Cube

IEEE 1588 PTP grandmaster
(master clock source)

Example PTP masters include:
Spectracom’s SecureSync™ PTP grandmaster
or -02 and -03 versions of UEI’s GigE RACKtangle and Cube

IEEE 1588-capable
Industrial switch

Examples include managed Ethernet switches with PTP support

Note that UEI’s current IEEE-1588 implementation requires
configuring your IEEE 1588-capable switch as an end-to-end
boundary clock

Host PC Used to configure a PTP grandmaster and boundary clock and
to run the user application in PowerDNA (hosted) deployments
(non UEIPAC deployments)

IEEE 1588 PTP Master Clock Source

(Grandmaster)

IEEE 1588

Slave Chassis

Host PC

IEEE 1588 Boundary Clock

(end-to-end)

M

S

M
M

S

S

May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 1 13

Introduction
1.5.2.2 Example
Configuration
Using UEI
Chassis as
PTP Master

A UEI Cube or RACK is capable of serving as the PTP master of your system.

Figure 1-7 shows the following configuration:

• UEI Cubes & RACKs using PTP synchronization in hosted deployment

• Host PC running user application

• UEI Cube acting as 1588 PTP master clock source providing
synchronization packets

• (1) IEEE 1588 boundary clock routing PTP packets and
application & data packets between UEI chassis (NIC1) & host PC

Figure 1-7 Example Configuration - UEI Chassis as PTP Master

Which Cube or RACK is PTP master is determined by the best master clock
algorithm, (BMCA). UEI also supports a debug mode, where the selection of the
PTP master can be forced using a setting in the configuration structure.

UEI chassis as PTP Master

& other as slave

Host PC

IEEE 1588 Boundary Clock

(end-to-end) M

M

S

S

May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 1 14

Introduction
1.5.2.3 Example
Configuration
Using
Separate NICs
for Operation
and PTP
Packets

As an alternative, you can configure two separate networks: one for operation
and one for PTP synchronization.

Figure 1-8 shows the this configuration:

• UEI Cubes & RACKs using PTP synchronization in hosted deployment

• Host PC running user application

• IEEE 1588 PTP Grandmaster clock source providing synchronization

• (1) IEEE 1588 boundary clock routing PTP packets between
PTP master and UEI slave chassis (NIC2)

• (1) 1G network switch routing application & data packets between host
PC & UEI chassis (NIC1)

Figure 1-8 Example Configuration - Separate Operation and PTP
Network

IEEE 1588 PTP Master Clock Source

(Grandmaster)

IEEE 1588

Slave Chassis

Host PC

IEEE 1588 Boundary Clock

(end-to-end)

M

S

M
M

S

S

1G Ethernet Switch
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 1 15

Introduction
1.6 Internal
Connections
& Resources
for Synchro-
nization

UEI chassis use an internal interboard bus that routes synchronization signals
between the CPU board and I/O boards via four internal SYNC lines. SYNC
lines are designated SYNC0 through SYNC3. The schematic below shows how
the SYNC lines route through the main connector of a DNA Cube I/O board.

• On a Cube chassis, interboard signals are bused through stacked
connectors. Figure 1-9 shows SYNC lines routed to connector labeled
JMAIN1.

• On a RACK chassis, interboard bus signals route across the chassis
backplane and connect through backplane connectors to each board
installed in the RACK.

Figure 1-9 Schematic of Sync Connections on Cube I/O Board

As shown above, each SYNC line is pulled up with a 10 kΩ resistor to prevent
synchronization lines from bouncing and also ensure that proper drive is
available from every board. In the PPC8 Cube, for example, the total resistance
is 1430 Ω with a termination current of 2.3 mA.

1.6.1 Internal SYNC
Bus

The SYNC lines can be accessed from the chassis CPU board and are
accessible to each I/O board in the chassis. The driving source for each of the
four SYNC lines is user programmable.

The following are sync sources that can be routed to or from the CPU board over
the sync bus:

• External sources routed through the 10-pin sync connector

• A phase-locked loop (PLL) clock generator local to the CPU board

• An adaptive digital phase-locked loop (ADPLL) that validates and
follows an external, raw 1PPS or PTP-derived 1PPS reference

• An Event Module that synthesizes and/or divides a CPU generated
clock based on the locked 1PPS reference from the ADPLL

• Trigger circuitry

SYNC lines are assigned to hardware resources as defined by configuration
settings in a global DQ_SYNC_SCHEME structure. See Chapter 2 for more
information about programming the sync interface.

Hardware Checks

UEI firmware checks that SYNC line routing is only set once. For example, if the
user programs a clock on SYNC line 1 and later programs a trigger on SYNC
line 1, the firmware will produce a warning and only connect the last assignment
to prevent hardware damage.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 1 16

Introduction
1.6.1.1 Internal SYNC
Bus Routing

Each I/O board in a chassis can be programmed to use a clock or trigger
resource from the CPU board routed via any of the SYNC lines. Determining
which resource is connected to which internal sync line is user configurable.

UEI’s synchronization hardware and software allow for highly flexible and
customizable system designs. For standardization, we use the following sync
line mapping, which you will find in most of our example code:

• SYNC0: raw 1PPS pulse routed to ADPLL for internal use

• SYNC1: Clock source (CPU-generated clock or divided clock that is
routed to I/O boards)

• SYNC2: Clock source (usually the Event Module clock locked to the
1PPS pulse and routed to I/O boards)

• SYNC3: CPU generated trigger synchronized to the 1PPS pulse and
routed to I/O boards

NOTE: When synchronizing to an external 1PPS reference, one SYNC line is
needed to route the raw 1PPS reference to the adaptive digital phase-
locked loop (ADPLL) on the CPU board. The other three SYNC lines
can be connected to clock and trigger resources as your application
requires. Refer to Figure 1-10.

Figure 1-10 Block Diagram of Example SYNC Bus Connections

SYNC BUS

ADPLL

Raw 1PPS

(external 1PPS sync)

Trigger HW

Lo
ck

ed
 1

P
P

S

I/O Board Clock

External Trigger / I/O Board Trigger

10-pin sync

connector

(To I/O Boards)

Master 1PPS Generator
(for external 1PPS sync when chassis is configured as master)

S
Y

N
C

 0

S
Y

N
C

 3

S
Y

N
C

 2

S
Y

N
C

 1
Raw 1PPS (for external 1PPS sync)

EM1 divider

Event Module

EM2 divider

PLL

TMR1 divider
TMR0 divider

÷ Event Module Clock

NIC2

NIC1

PHY

PHY

PTP

Logic

Raw 1PPS

(PTP sync)

Synchronized Trigger

Configurable connection

Connection in this example

(using a synchronized system with external 1PPS synchronization)

(Note for PTP synchronization, PTP Logic would be connected to ADPLL,

 SYNC0 would not have connections, and the STP panel would not be used)

NIC

Ports

(DNA-STP-SYNC-1G)

Master Sync In

Up to 6

Slave Sync Out

NOTE: PHY / PTP Logic are only

available on -02 and -03

versions of Cube /RACK systems.

The rest of the interface is the same

for all versions.

Top/Left

CPU Board

Bottom/Right

CPU Board

Master Sync Out

SYNC STP Panel

-02/-03 GigE Cube/RACK
Synchronization Interface
(The CPU module is a 2-board module)
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 1 17

Introduction
1.6.2 Adaptive
Digital PLL

The adaptive digital phased-lock-loop (ADPLL) synchronizes to a raw PPS
reference signal:

• When synchronizing to an external 1PPS input, a raw 1PPS signal is
delivered to the ADPLL via the 10-pin sync connector

• When synchronizing using the PTP standard, a raw 1PPS signal is
derived from the PTP timestamps.

The ADPLL produces an internal reference from the raw 1PPS for generating
clocks, triggers, and timestamps for all I/O boards installed in the chassis.

The ADPLL is responsible for the following functions:

• validates the raw 1PPS by comparing the incoming signal to a user
defined tolerance value

• follows an external/raw 1PPS reference signal and once synchronized
continues to produce a 1PPS pulse for internal use in absence of a valid
1PPS raw signal

• provides minimum, maximum, and averaged period values to the
software, along with other status data that can be read via an API
function call for system monitoring and troubleshooting.

Refer to Section 2.8 on page 39 for more information about API for retrieving
status when programming with the low-level C libraries. API for retrieving status
when programming with the DAQLIB framework (C++, C#, LabVIEW, etc.) are
found in the UeiDaq Framework User Manual.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 1 18

Introduction
1.6.3 I/O Board
Clock &
Trigger
Resources

Users can program which clock or trigger source each I/O board installed in a
cube or RACK will use.

To synchronize I/O board clocks in a multi-chassis system, use the Event
Module and/or the Event Module dividers as the clock source for your I/O boards
that you want synchronized. The Event Module is synchronized to the PPS/PTP
reference source.

• Internal Clock Sources are described below in Table 1-1.

• Trigger sources are described on page 19.

Refer to Chapter 2 for more information about how to program these options.

1.6.3.1 Clock Sources Table 1-1 provides descriptions of available clock sources:

Table 1-1 Clock Sources for PowerDNx Boards

Clock Source Description

Event Module

(1PPS/PTP synchronized)

The Event Module is located on the CPU board and is used to provide

synchronized clock sources to I/O boards at user-programmed

frequencies.
The Event Module requires CPU board logic greater than 12.2D (refer

to Section 1.2.3 to learn how to determine CPU board logic).

The Event Module receives the locked 1PPS reference from the

ADPLL and performs additional stabilization by tracking the number

of clocks per PPS and adjusting the frequency to stay within
±1 pulse/clock cycle. This produces a highly-stablized, synchronized

clock for use by I/O boards at the rate programmed by the user.

Synchronized clock rates are generated to the accuracy of 1 Hz to the

programmed rate. The maximum clock rate supported is 1 MHz.

Note: Each I/O board can further divide the clock routed via the

SYNC line. EM0 should be programmed with a rate divisible by the

clock rates required by each of the I/O boards.

Event Module Dividers:
EM1 and EM2

(1PPS/PTP synchronized)

The main clock produced by the Event Module (EM0) can be routed

to either of two 8-bit Event Module clock dividers, EM1 or EM2. Using

EM1 or EM2, you can divide the EM0 clock by a maximum of 255.

This means that three different clocks can be generated by the Event

Module: EM0, EM1, and/or EM2.

To use the divider clocks, the Event Module is programmed and

routed to a SYNC line, and then either or both EMx dividers can be

programmed and their divided clocks routed to additional SYNC lines.

PLL A phase-locked loop (PLL) onboard the CPU board can be routed
throughout the chassis and used as an alternate clock source.
The PLL is not synchronized to the PTP/1PPS reference.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 1 19

Introduction
1.6.3.2 Trigger
Sources

UEI systems can trigger from the ADPLL 1PPS signal, an external signal, or
software.

The start trigger aligns all boards and starts acquisition. For triggers referenced
to the ADPLL 1PPS, the stop trigger can be programmed using a user-defined
number of clock cycles of a user-specified clock reference routed to a SYNC line
or a user-defined time in milliseconds.

PLL Dividers:
TMR0 and TMR1

The PLL can be divided down by either of two 32-bit timers (TMR0
and TMR1) and routed to SYNC lines for use by I/O boards.

To use the dividers, the PLL is programmed and routed to a SYNC
line, and either or both dividers can also be programmed and routed.
Clocks generated by dividing the PLL are not synchronized to the
PTP/1PPS reference.

External Clocks A clock generated external to the chassis can be routed in through
the 10-pin sync connector and made accessible to chassis I/O boards
via one of the SYNC lines. An externally generated clock will not be
locked to the internal ADPLL or to the PTP/1PPS reference.

None of the above By default, the clock source for I/O boards is generated on the board,

divided down from the 66 MHz system clock. Additionally, several

boards provide their own onboard PLL: the AI-211, AI-217, AI-218,

and AI-228 boards all have this capability.

Neither of these options will be synchronized to the PTP/1PPS

reference.

Table 1-1 Clock Sources for PowerDNx Boards (Continued)

Clock Source Description
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 1 20

Introduction
1.7 I/O Board
Clock &
Trigger
Configuration

PowerDNx I/O boards are configured by defining a clock source, timestamp
source, and trigger source. Each I/O board has the capability of dividing down
an input clock that is routed from a SYNC bus line.

Figure 1-11 Diagram of Connecting to the Sync Interface Bus over
Individual I/O Boards

Refer to Section 2.3 on page 33 for API to setup I/O board synchronization
options and Section 3.1.4 and 3.1.5 starting on page 57 for a tutorials.

Additionally, IRIG-650 boards can provide a variety of clock and trigger options,
which can get routed to the SYNC bus. Please refer to the DNx IRIG-650 data
sheet and user’s manual for information, and the PowerDNA API Reference
Manual for API descriptions.

S
Y

N
C

 1

S
Y

N
C

 0

S
Y

N
C

 2

S
Y

N
C

 3

DB

connector
(37-pin or

62-pin)

I/O Board

(To CPU)

represents configurable connection

Trigger

Timestamp

Reference

Clock ÷
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 21

Programming the Synchronization Interface
Chapter 2 Programming the Synchronization
Interface

This chapter outlines API and software structures for programming 1PPS / PTP
synchronization when programming with the low-level C libraries.

NOTE: Refer to the UeiDaq Framework User Manual for information about
synchronizing systems using the DAQLIB framework (C++, C#,
LabVIEW, etc.).

The following sections are included in this chapter:

• About the Sync API (Section 2.1)

• Sync Structure for Hardware Configuration (Section 2.2)

• Setting up the Sync Scheme (Section 2.3)

• Setting up PTP Server Parameters (Section 2.4)

• Programming I/O Board Clocks (Section 2.5)

• Setting I/O Board Triggers (Section 2.6)

• Setting I/O Board Timestamp Reference (Section 2.7)

• Retrieving Status (Section 2.8)

• Retrieving PTP Status (Section 2.9)

• Retrieving UTC Time (Section 2.10)

• Disabling Sync / Releasing Sync Hardware (Section 2.11)

1PPS synchronization is supported after CPU Logic 02.12.2D (2017).
PTP synchronization is supported in -02 and -03 versions of the
GigE Cube and RACK chassis only.

Refer to Section 1.2.3 for instructions on how to check logic versions.

2.1 About the
Sync API

The first step in configuring your UEI system for synchronization is to define your
system and hardware configuration.

Configure the following for each UEI chassis requiring synchronization:

• For PTP synchronization, you first configure PTP server parameters
using the DqSyncDefinePTP() API.

• Hardware configuration for CPU board and chassis is defined in a
software structure of type DQ_SYNC_SCHEME, which is set in hardware
using the DqSyncDefineSyncScheme() API.

• After that, I/O board clocks, triggers, timestamps and other
synchronization options can be set up.

NOTE: The PowerDNA API Reference Manual provides detailed descriptions of
the DQ_SYNC_SCHEME structure and synchronization API, and
Chapter 3 provides tutorials.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 22

Programming the Synchronization Interface
2.2 Sync
Structure for
Hardware
Configuration

Define signal routing and other synchronization options for each chassis in your
system using the sync structure (DQ_SYNC_SCHEME).

The full structure is shown below. Element options are described in detail in the
following sections, Section 2.2.2 thru Section 2.2.6.

2.2.1 Sync Scheme
Structure

The Sync Scheme structure is set up in hardware using the
DqSyncDefineSyncScheme() API.

typedef struct {
 // ==== section A ===
 // IOM Sync Source Configuration
 uint32 sync_device; // IOM CPU type (5200,8347,or 8347 with PTP capability)
 uint32 sync_source; // where to get nPPS clock to synchronize system
 uint32 sync_line; // which SYNC line to route external 1PPS clock
 uint32 sync_mode; // mode of synchronization
 uint32 nPPS; // N - number of pulses per second for input nPPS clock
 uint32 nPPS_us; // Expected accuracy of the nPPS clock in µs, clocks
 // outside of the range will be ignored, 0=default

 // ==== section B ===
 // synchronization output: tell IOM to become 1PPS master
 uint32 sync_server; // Identify chassis as 1PPS master
 uint32 srv_param; // which external sync connector pin routes 1PPS out
 // to the 1PPS slave chassis in the system
 uint32 trig_server; // <Reserved>

 // ==== section C ===
 // Clock configuration: select clock source for each SYNC line (0 thru 3)
 uint32 clock_src[DQL_SYNC_LINES]; // clock source for each SYNC line
 uint32 clock_tmr[DQL_SYNC_LINES]; // PLL and external clock can be
 // divided on TMR0 or TMR1
 uint32 clock_frq[DQL_SYNC_LINES]; // clock frequency (for PLL/EM)
 uint32 clock_div[DQL_SYNC_LINES]; // clock divider for EMx
 // (0 == divide by 1, 2, 3 etc.)

 // ==== section D ===
 // Trigger Configuration: tell IOM where to get (or generate)/route trigger signal
 uint32 trig_source; // where to take trigger to start acquisition
 uint32 trig_line; // <reserved>
 uint32 trig_start; // start trigger mode selection
 uint32 trig_delay; // offset of the trigger pulse from nPPS clock\
 // (microseconds)
 uint32 trig_period_ms; // period in ms to issue start trigger
 uint32 trig_stop; // source for the stop trigger
 uint32 trig_stop_src; // stop source for stop trigger upon N-count
 uint32 trig_duration; // milliseconds before issuing stop trigger or N-count

 // ==== section E ===
 // destination to route signals: from SYNC lines or to the outside SyncOut0/1
 uint32 clclk_dest[DQL_SYNC_LINES]; // where to feed CL clock
 uint32 pps_dest; // where to feed 1PPS clock to
 uint32 trig_dest; // where to feed start/stop trigger

} DQ_SYNC_SCHEME, *pDQ_SYNC_SCHEME;
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 23

Programming the Synchronization Interface
2.2.2 Section A:
IOM SYNC
Source
Configuration

Section A parameters describe synchronization source set up information.

All IOMs that are PPS / PTP synchronized, whether they are the master 1PPS
server or a slave chassis, need to initialize parameters described below in
Table 2-1.

Element Name Description & Options

sync_device Identifies what type of IOM this structure is used to program.

Set sync_device to any of the following:

• DQ_SYNC_8347: standard 8347 CPU (PPCx-1G Cube or RACK)

• DQ_SYNC_5200: standard 5200 CPU (PPCx Cube)

• DQ_SYNC_8347S: 8347 CPU with 1588 support hardware (-02 or -03 Cube
or RACK)

• DQ_SYNC_5200S: <Reserved>

sync_source Sets external input pin on the 10-pin connector that receives nPPS pulse.

Set sync_source to any of the following:

• 0 for PTP synchronization

• DQ_SYNCCLK_SYNCIN0: Uses SyncIn0 (5200 or 8347) (pin 10)

• DQ_SYNCCLK_SYNCIN1: Uses SyncIn1 (8347 only) (pin 6)

See Figure 1-2 on page 8 for pin descriptions.

sync_line Sets internal bus SYNC line that routes the nPPS signal to the ADPLL.

Set sync_line to any of the following:

• 0 for PTP synchronization

• DQ_SYNCCLK_SYNC0: Sync0 line delivers nPPS clock

• DQ_SYNCCLK_SYNC1: Sync1 line delivers nPPS clock

• DQ_SYNCCLK_SYNC2: Sync2 line delivers nPPS clock

• DQ_SYNCCLK_SYNC3: Sync3 line delivers nPPS clock

sync_mode Defines how (or which protocol is used) to synchronize the chassis.

• DQ_SYNCCLK_SYNC: synchronized with external PPS pulse

• DQ_SYNCCLK_NTP: <Reserved>

• DQ_SYNCCLK_1588: synchronized with IEEE-1588 PTP protocol.
Logically OR with DQ_SYNCCLK_ETH0 or DQ_SYNCCLK_ETH1 to configure
NIC port to use (e.g., DQ_SYNCCLK_1588 | DQ_SYNCCLK_ETH0).
Eth0 (NIC1) is default.

1588 (PTP) can only be used when sync_device is DQ_SYNC_8347S
and with -02 or -03 Cube or RACK chassis

nPPS Determines the number of pulses per second in the nPPS reference.

• Set nPPS to the number of pulses / second. (1 is typical – it will define a
1PPS signal)

Table 2-1 Descriptions for Section A: IOM SYNC Source Configuration
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 24

Programming the Synchronization Interface
nPPS_us Sets the expected accuracy of the nPPS source. The ADPLL uses this to

validate the incoming nPPS pulse and ignores pulses outside this range. The

ADPLL will maintain an internal nPPS signal while the reference nPPS input is

out of the nPPS_us range.

Set nPPS_us to the accuracy of the device generating the sync pulse. For

example, an nPPS pulse produced by a chassis acting as the 1PPS master can

stay within 100 µs accuracy; therefore, nPPS_us should be programmed with a

value of 100.

As a general rule, program this number to the jitter value of your clock source +

100 µs. 0 will use the default value for the mode of operation.

Element Name Description & Options

Table 2-1 Descriptions for Section A: IOM SYNC Source Configuration
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 25

Programming the Synchronization Interface
2.2.3 Section B:
Master Server
Configuration

Section B parameters provide options to set the chassis as the 1PPS server
(Master server). When the following options are set, the chassis is responsible
for generating a 1PPS synchronization signal internally and routing it externally
to synchronize all chassis configured in the system.

Master server parameters are described in Table 2-2.

Element Name Description & Options

sync_server Configures the chassis to generate a synchronization signal (1PPS) which can

be routed externally to synchronize all chassis in the system.

A chassis configured as a sync server will generate the 1PPS pulse. Other

protocols are currently <reserved>.

Set sync_server to either of the following:

• DQ_SYNCSRV_1PPS to configure the chassis as the 1PPS master

• 0 to leave chassis as 1PPS slave or for PTP synchronization

NOTE that the srv_param element below contains additional information

about how to route the signal.

srv_param Controls where the internally generated 1PPS signal will be routed when

sync_server is set to DQ_SYNCSRV_1PPS.

Set srv_param to any of the following:

• DQ_SYNCSRV_SYNCOUT0: Routes to SyncOut0 (5200 or 8347) (pin 8)

• DQ_SYNCSRV_SYNCOUT1: Routes to SyncOut1 (8347 only) (pin 4)

• 0: set to 0 if chassis is a 1PPS slave or for PTP synchronization

Additionally, srv_param can be logically ORed with any of the following to

route the 1PPS onto internal SYNC bus:

• DQ_USE_SYNC0: Raw 1PPS to SYNC0

• DQ_USE_SYNC1: Raw 1PPS to SYNC1

• DQ_USE_SYNC2: Raw 1PPS to SYNC2

• DQ_USE_SYNC3: Raw 1PPS to SYNC3

For example, the following routes the 1PPS externally to SyncOut0 on the 10-

pin sync connector and internally to SYNC line 0.
 DQ_SYNCSRV_SYNCOUT0 | DQ_USE_SYNC0

trig_server Reserved, set to 0.

Table 2-2 Descriptions for Section B: Master Configuration
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 26

Programming the Synchronization Interface
2.2.4 Section C:
Clock
Configuration

Section C parameters provide options for configuring clocks, (e.g., clock routing
over SYNC lines and setting clock frequency).

Each of the parameters in this section is an array of four with one element
mapped to each SYNC line. Array element 0 corresponds to SYNC line 0 while
array element 3 corresponds to SYNC line 3.

Clock parameters are described below in Table 2-3.

NOTE: Typically the SYNC lines are also used to carry an nPPS signal and a
trigger. The array elements corresponding to these lines should be left
as ‘0’.

Element Name Description & Options

clock_src[4] Routes a particular clock source to the corresponding SYNC line. The SYNC

line is determined by the element position of the array
{<SyncLine0>, <SyncLine1>, <SyncLine2>, <SyncLine3>} or alternatively set

by bitwise ORing a DQ_USE_SYNCx value with the value set.

The following represent clock sources:

• DQ_CLOCKSRC_UNUSED: Not connected to any of the following clock
sources or connected elsewhere (or left unused)

• <DQ_CLOCKSRC_ADPLL: locked 1PPS from ADPLL, for debug only>

• DQ_CLOCKSRC_EM0: Clock synthesized by Event Module

• DQ_CLOCKSRC_EM1: Event Module divider 1 clock (use clock_div as
divider)

• DQ_CLOCKSRC_EM2: Event Module divider 2 clock (use clock_div as
divider)

• DQ_CLOCKSRC_SYNCIN0: Clock input from SYNCIN0 pin (5200 or 8347
CPU)

• DQ_CLOCKSRC_SYNCIN1: Clock input from SYNCIN1 pin (8347 CPU board)

• DQ_CLOCKSRC_PLL0: Phase-lock loop (PLL0) on CPU board

• DQ_CLOCKSRC_PLL0TMR0: PLL0 on CPU board divider 1 (reg0)

• DQ_CLOCKSRC_PLL0TMR1: PLL0 on CPU board divider 2 (reg1)

NOTE: Only the ADPLL and Event Module are synchronized to the PPS / PTP

source (SYNCIN0/1, PLL0, and PLL0TMR0/1 are not locked with the PPS

signal).

Lines that have previously been set or will be set to something else should be

written with 0, (i.e., DQ_CLOCKSRC_UNUSED).

As an example, following programs the Event Module to generate a clock

routed to the SYNC2 internal bus line, and all the other SYNC lines are not

used for clocks:

* Set clock_src to {0, 0, DQ_CLOCKSRC_EM0, 0}

Or equivalently,

* Set clock_src to (DQ_CLOCKSRC_EM0 | DQ_USE_SYNC2)

Table 2-3 Descriptions for Section C: Clock Configuration
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 27

Programming the Synchronization Interface
clock_tmr[4] <Reserved>

clock_freq[4] Sets the frequency of the clock specified for each SYNC line.

For example, if the Event Module needs to produce an 8 kHz clock that is

routed to SYNC line 2, and all other SYNC lines do not map to a clock,

clock_src would be set to {0, 0, DQ_CLOCKSRC_EM0, 0} and

clock_freq would be set to {0, 0, 8000, 0}

clock_div[4] • Used as an 8-bit Event Module clock divider when clock_src is set as
DQ_CLOCKSRC_EMx.

• Used as a 32-bit PLL clock divider when clock_src is set as
DQ_CLOCKSRC_PLL0TMRx.

Set clock_div to 0 or 1 to divide by 1 (i.e., leave clock_freq as

programmed), set to 2 to divide by 2, set to 3 to divide by 3, etc.

For example, clock_div set to {0, 0, 0, 0} will not divide any of the

programmed rates and will not use divider hardware.

Element Name Description & Options

Table 2-3 Descriptions for Section C: Clock Configuration
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 28

Programming the Synchronization Interface
2.2.5 Section D:
Trigger
Configuration

Section D parameters provide options for configuring the start and stop trigger.

Trigger parameters are described below in Table 2-4.

Element Name Description & Options

trig_source Routes an externally generated or internally generated trigger to the

corresponding SYNC line for distribution to I/O boards in chassis.

Set trig_source to any of the following:

• DQ_USE_SYNC0: Feed trigger from SYNC0

• DQ_USE_SYNC1: Feed trigger from SYNC1

• DQ_USE_SYNC2: Feed trigger from SYNC2

• DQ_USE_SYNC3: Feed trigger from SYNC3

If using an externally generated trigger, (i.e., trig_start =

DQ_TRIGSTART_SYNC), trig_source must take an additional parameter to

identify which external pin the trigger is routed in on.

If using an externally generated trigger, either of the following parameters must

be bitwise ORed with one of the DQ_USE_SYNCx parameters:

• DQ_TRIGSTART_SYNCIN0: Delivers trigger via SyncIn0 (5200 or 8347) (pin
10)

• DQ_TRIGSTART_SYNCIN1: Delivers trigger via SyncIn1 (8347 only) (pin 6)

See Figure 1-2 on page 8 for pin descriptions.

trig_line Reserved, set to 0.

Table 2-4 Descriptions for Section D: Trigger Configuration
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 29

Programming the Synchronization Interface
trig_start Describes the mode of operation of the start trigger. The trigger can be

programmed as an external signal routed in through the sync connector or an

internally generated synchronized trigger.

Set trig_start to either of the following:

• DQ_TRIGSTART_SYNC: Derive start trigger from the SYNC line

• DQ_TRIGSTART_NPPS: Issue start trigger on the next PPS (plus
<trig_delay>)

NOTE:

• When using DQ_TRIGSTART_SYNC, the chassis routes an external trigger
as described by trig_source. This means the I/O boards will start on the
rising edge of the input signal and stop on the falling edge. This trigger will
not be locked locally with the 1PPS reference.

• When using DQ_TRIGSTART_NPPS, the user must issue a command to
“arm” the trigger on all the boards. To arm all chassis at once, the broadcast
API, DqSyncTrigOnNextPPSBrCast(), can be used; to arm a single
chassis, DqSyncTrigOnNextPPS() can be used. Once armed, the chassis
will trigger on the next nPPS signal received.
The stop (trig_stop) can be programmed as a time span
(trig_duration) or as a number of clock cycles (trig_stop_source
and trig_duration).

trig_delay Used to issue a trigger after a time delay from the nPPS signal (in µs) when

trig_start is configured as DQ_TRIGSTART_NPPS.

The minimum value of 0 causes the start trigger to be issued as soon as the

nPPS signal is received. The maximum value is 1048575 (0xFFFFF), or

approximately 1 second of delay.

trig_period_ms Reserved.

Element Name Description & Options

Table 2-4 Descriptions for Section D: Trigger Configuration
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 30

Programming the Synchronization Interface
trig_stop Defines the stop trigger for I/O boards to stop acquiring data.

• DQ_TRIGSTOP_SYNC: Derive stop trigger from the SYNC line

• DQ_TRIGSTOP_DURATION: Issue stop trigger after a user-programmed
delay (in ms)

• DQ_TRIGSTOP_NCLOCKS: Issue stop trigger after a user-programmed
number of clock cycles of a user-specified clock source on a SYNC line

• 0: no stop trigger

NOTE:

• DQ_TRIGSTOP_SYNC is used when the start trigger is external

• DQ_TRIGSTOP_DURATION causes the chassis to issue a stop trigger after a
programmed number of milliseconds (see trig_duration description
below)

• DQ_TRIGSTOP_NCLOCKS causes the chassis to issue the stop trigger once
a certain number of user-defined clock cycles have passed (see
trig_stop_src and trig_duration parameters below)

trig_stop_src Used when trig_stop=DQ_TRIGSTOP_NCLOCKS. This parameter specifies

which SYNC line provides the clock source used to determine the number of

clocks (clock sources are defined and routed in Section C: Clock

Configuration).

Set trig_stop_source to any of the following:

• DQ_USE_SYNC0: Feed clock from SYNC0

• DQ_USE_SYNC1: Feed clock from SYNC1

• DQ_USE_SYNC2: Feed clock from SYNC2

• DQ_USE_SYNC3: Feed clock from SYNC3

trig_duration Sets when the stop trigger will be asserted. Used when trig_stop is

DQ_TRIGSTOP_DURATION or DQ_TRIGSTOP_NCLOCKS.

• When trig_stop is set as DQ_TRIGSTOP_DURATION, trig_duration
is the time in milliseconds the stop trigger will be issued after the start trigger
is detected. The maximum value is 1048575 (0xFFFFF), or approximately 17
minutes of acquisition.

• When trig_stop is set as DQ_TRIGSTOP_NCLOCKS, trig_duration
defines a number of clock cycles that will pass until the stop trigger is issued.
The maximum value is 1048575 (0xFFFFF),
or DQ_TRIGSTOP_NCLOCKS * (1/frequency) of the trig_stop_source.

Element Name Description & Options

Table 2-4 Descriptions for Section D: Trigger Configuration
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 31

Programming the Synchronization Interface
2.2.6 Section E:
SyncOut
Configuration

Section E parameters describe where to route signals to the SYNC lines or to
the external SyncOut pin(s).

SyncOut parameters are described below in Table 2-5.

Element Name Description & Options

clclk_dest[4] Routes clock source from a particular SYNC line out through sync connector.

Each element takes a SYNC line bitwise ORed with the desired pin of the sync

connector:

Set clclk_dest to any of the following sync lines:

• DQ_USE_SYNC0: Feed clock from SYNC0

• DQ_USE_SYNC1: Feed clock from SYNC1

• DQ_USE_SYNC2: Feed clock from SYNC2

• DQ_USE_SYNC3: Feed clock from SYNC3

and bitwise OR DQ_USE_SYNCx with either of the following to route clock out

externally through the sync connector:

• DQ_CLKDEST_SYNCOUT0: Delivers clock via SyncOut0 (5200 or 8347)
(pin 8)

• DQ_CLKDEST_SYNCOUT1: Delivers clock via SyncOut1 (8347 only) (pin 4)

See Figure 1-2 on page 8 for pin descriptions.

To route SYNC line 2 out ClkOut pin, set clclk_dest to:

• {0,0, DQ_USE_SYNC2 | DQ_CLKDEST_SYNCOUT0, 0}

NOTE: ORing DQ_USE_SYNCx with the SYNCOUT variable in the array is a

different format than the other arrayed elements in the DQ_SYNC_SCHEME
structure.

pps_dest Route the PPS signal out sync connector. The SYNC line routing the PPS

signal is bitwise ORed with the desired pin of the sync connector.

Set pps_dest to any of the following sync lines:

• DQ_USE_SYNC0: Feed clock from SYNC0

• DQ_USE_SYNC1: Feed clock from SYNC1

• DQ_USE_SYNC2: Feed clock from SYNC2

• DQ_USE_SYNC3: Feed clock from SYNC3

and bitwise OR DQ_USE_SYNCx with either of the following to route the nPPS

out externally through the sync connector:

• DQ_nPPSDEST_SYNCOUT0: Delivers nPPS via SyncOut0 (5200 or 8347)
(pin 8)

• DQ_nPPSDEST_SYNCOUT1: Delivers nPPS via SyncOut1 (8347 only) (pin 4)

See Figure 1-2 on page 8 for pin descriptions.

Table 2-5 Descriptions for Section E: Sync Out Configuration
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 32

Programming the Synchronization Interface
trig_dest Route the trigger out sync connector. The SYNC line routing the PPS signal is

bitwise ORed with the desired pin of the sync connector.

Set pps_dest to any of the following sync lines:

• DQ_USE_SYNC0: Feed clock from SYNC0

• DQ_USE_SYNC1: Feed clock from SYNC1

• DQ_USE_SYNC2: Feed clock from SYNC2

• DQ_USE_SYNC3: Feed clock from SYNC3

Bitwise OR DQ_USE_SYNCx with either of the following:

• DQ_TRGDEST_SYNCOUT0: Delivers trigger via SyncOut0 (5200 or 8347)
(pin 8)

• DQ_TRGDEST_SYNCOUT1: Delivers trigger via SyncOut1 (8347 only) (pin 4)

See Figure 1-2 on page 8 for pin descriptions.

Element Name Description & Options

Table 2-5 Descriptions for Section E: Sync Out Configuration
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 33

Programming the Synchronization Interface
2.3 Setting up the
Sync Scheme

The sync scheme structure is set with the DqSyncDefineSyncScheme() API.
The function sets up the sync scheme options in hardware.

NOTE: A returned status value of 0 means the sync setup passed. A non-zero
value points to the element in the DQ_SYNC_SCHEME structure that
caused the failure.

DqSyncDefineSyncScheme() should be called after the following setup:

• after chassis I/O boards are initialized with board-specific configuration
APIs (e.g., channel list selection, gain selection, etc.)

• after boards are put into the Operation State, (e.g., after DqeEnable()
is called when acquiring data in ACB mode or when
DqRtVMapStart*() is called when acquiring data in VMAP mode.)

• after PTP server parameters are configured if synchronizing using the
IEEE-1588 standard (after DqSyncDefinePTPServer is called).

Once DqSyncDefineSyncScheme() is called, I/O board clocks, triggers, and
timestamps can be configured, and acquisition can start, triggered by a
broadcast message or an external trigger. API for configuring I/O board clocks,
triggers, and timestamps are described below.

Table 2-6 API for Hardware Settings for Sync Interface

API Name Description

DqSyncDefineSyncScheme Sets up hardware settings for the sync interface.

Parameters:

• int handle: Handle to the IOM

• pDQ_SYNC_SCHEME scheme: See Section 2.2

• uint32* status: Returned status. See NOTE below
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 34

Programming the Synchronization Interface
2.4 Setting up
PTP Server
Parameters

If using PTP synchronization, call DqSyncDefinePTPServer() API to set up
the PTP parameters. If DqSyncDefinePTPServer() is not called, default
parameters stored in FLASH will be used.

NOTE: PTP synchronization is supported on CPU Logic version 12.46 and later
and on -02 and -03 GigE Cube and RACK product versions.

typedef struct {
 uint8 subdomain; // PTP subdomain (Domain) number
 uint8 priority1; // Priority 1 of the device
 uint8 priority2; // Priority 2 of the device
 int8 logSyncInterval; // log2(period of sync messages)
 int8 logMinDelayRequestInterval; // log2(minimum space
 // between delay requests)
 int8 logAnnouceInterval; // log2(period of announce msgs)
 uint8 annouceTimeout; // number of announce messages
 // before timing out
 // nonstandard extensions

uint32 cfg; // For debug; mask to bypass BMCA
uint32 static_master_ip; // assigned master IP address when

 // bypassing BMCA
} DQ_SYNC_DEFPTP, *pDQ_SYNC_DEFPTP;

Table 2-7 API for Setting PTP Server Parameters

API Name Description

DqSyncDefinePTPServer Defines settings for PTP protocol handling.

Parameters:

• int handle: Handle to the IOM

• int mode: <Reserved, set to 0>

• pDQ_SYNC_DEFPTP pPTP: Structure of PTP parameters,
see description below

PTP Parameter Description

uint8 subdomain Subdomain field that specifies the set of clocks in a multiple clock dis-
tribution system that are capable of synchronizing with each other.

Default is 0.

uint8 priority1 User-assigned, preemptive priority to the best master clock algorithm
(Smaller numbers indicate higher priority. This is automatically set to
255 when a chassis is configured in slave only mode; 128 otherwise)

uint8 priority2 User-assigned priority2
(Smaller numbers indicate higher priority. This is automatically set to
255 when a chassis is configured in slave only mode; 128 otherwise)

Table 2-8 PTP Parameters
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 35

Programming the Synchronization Interface
 DqSyncDefinePTPServer() should be called according to the following:

• call after chassis I/O boards are initialized with board-specific
configuration APIs (e.g., channel list selection, gain selection, etc.)

• call after boards are put into the Operation State, (e.g., after
DqeEnable() is called when acquiring data in ACB mode or when
DqRtVMapStart*() is called when acquiring data in VMAP mode.)

• call before the API to set up synchronization hardware is called (call
DqSyncDefinePTPServer before DqSyncDefineSyncScheme).

int8 logAnnouceInterval Log2(period of announce messages)
How often the PTP master clock sends Announce messages.

For example, when logAnnouceInterval=4, the time between

log messages will be 24 or 16 seconds.

uint8 annouceTimeout Number of announce intervals allowed to transpire without the slave
receiving an Announce message from the master.

After this delay, the system will timeout. “ANNOUNCE_RECEIPT_TIM-
EOUT_EXPIRES” will occur: at which point, a device capable of
being a master will try to become master, and a slave-only device
returns to the state of listening for a new master.

int8 logSyncInterval Log2(period of sync messages)
How often the PTP master clock sends Sync messages in multicast
mode.
For example, when logSyncInterval=0, the time between log

messages will be 20 or 1 second.

int8
logMinDelayRequestInterval

log2(minimum space between delay requests)

Minimum interval allowed between PTP delay-request mes-
sages.Slave devices extract this from sync packets. (If chassis is mas-
ter clock, this value must be set).

For example, when logMinDelayRequestInterval=1, the

time between log messages will be 21 or 2 seconds

int32 cfg Bitmask for PTP configuration:

• Set to 0 for normal operation

• Set to DQ_PTP_USE_STATIC_MASTER to bypass BMCA
and select the PTP master directly with
static_master_ip.

Default is 0.

uint32 static_master_ip IP address of master IEEE-1588 device (will be set and reset automat-
ically using the best-master clock algorithm)
Can be configured for debug.

PTP Parameter Description

Table 2-8 PTP Parameters
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 36

Programming the Synchronization Interface
2.5 Programming
I/O Board
Clocks

Program I/O board clocks using the DqSyncDefineLayerClock() API. This
API must be called for each I/O board that requires synchronization.

Note the clock source supplied to an I/O board via the SYNC line can be further
divided down locally on each I/O board.

NOTE: The DQ_SYNC_DEF_CLOCKS defines board-specific clock parameters,
which sets up the SYNC line providing the clock source, a local divider
for boards that require a divided down clock rate, group delay and mode
parameters:

typedef struct {

 int clk_line; // SYNC line to use for clock source

 int divider; // 0,1 = original clock,

 // 2 thru n = divide clock by (n)

 int grp_delay; // group delay in samples,

 // -1 = auto define

 uint32 flags; // flags to change mode of operation

} DQ_SYNC_DEF_CLOCKS, *pDQ_SYNC_DEF_CLOCKS;

The grp_delay represents the group delay of the finite impulse response (FIR)
filters available on several Analog Input boards: AI-205, AI-211, AI-217, AI-218,
and AI-228.

Setting this parameter to -1 allows the software to program the default group
delay associated with the particular I/O board you are programming. Allowing
the software to compensate for the group delay will guarantee timestamp
alignment. The software holds off incrementing the timestamp until the first
filtered input sample is ready for output. Default group delays for each I/O board
are provided in the PowerDNA API Reference Manual.

Table 2-9 API for Programming Clock Source

API Name Description

DqSyncDefineLayerClock Sets clock source for I/O boards. This function must be called

after DqSyncDefineSyncScheme().

Parameters:

• int handle: Handle to the IOM

• int devn: Board position in IOM (zero-based index)

• pDQ_SYNC_DEF_CLOCKS clocks: See Note below
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 37

Programming the Synchronization Interface
2.6 Setting I/O
Board
Triggers

Program I/O board triggers using the DqSyncDefineLayerTrigger() API.
This API must be called for each I/O board that requires synchronized triggers.

2.6.1 Arming
Triggers

When a UEI system is configured to generate a trigger on the next PPS
transition (see “Section D: Trigger Configuration” on page 28), arm I/O board
triggers using either of the following API.

Table 2-10 API for Programming Trigger Source

API Name Description

DqSyncDefineLayerTrigger Sets trigger source for I/O boards. This function must be

called after DqSyncDefineSyncScheme().

Parameters:

• int handle: Handle to the IOM

• int devn: Board position in IOM (zero-based index)

• int trig_line: SYNC line or resource providing the
trigger source

• int mode: Reserved, set to 0

Table 2-11 API for Arming Triggers

API Name Description

DqSyncTrigOnNextPPSBrCast Sends a broadcast UDP command to trigger on the next PPS

that is received by IOMs identified in the handle_arr array.

Parameters:

• int handle: Handle to the IOM

• int nIOM: Number of IOMs to broadcast to

• int reserved: Reserved, set to 0

• int* handle_arr: List of handles of IOMs to broadcast
to

DqSyncTrigOnNextPPS Triggers a single chassis* on the next PPS.

Parameters:

• int handle: Handle to the IOM

• uint32 reserved: Reserved, set to 0

(*If the trigger generated from this API is routed externally

through the 10-pin sync connector to all slave chassis, this

API can externally synchronize all slave chassis in the

system. Note that using this method to route the trigger

externally will introduce delays associated with cable lengths,

which will not be case when using the multiple chassis

broadcast API, DqSyncTrigOnNextPPSBrCast()).
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 38

Programming the Synchronization Interface
2.7 Setting I/O
Board
Timestamp
Reference

Program the clock reference for generating I/O board timestamps with the
DqSyncDefineLayerTimestamp() API.

The timestamp reference clock is used to index the timestamp every reference
clock transition. This is usually the same reference as the I/O board clock.

2.7.1 Setting/
Resetting
Timestamps

I/O board timestamps are synchronized, set, and/or reset simultaneously with
the following API.

Table 2-12 API for Programming Timestamp Reference Source

API Name Description

DqSyncDefineLayerTimestamp Sets the timestamp clock source for I/O boards. This function

must be called after DqSyncDefineSyncScheme().

Parameters:

• int handle: Handle to the IOM

• int devn: Board position in IOM (zero-based index)

• int trig_line: SYNC line or resource providing
timestamp source

Table 2-13 API for Setting or Resetting Timestamps

API Name Description

DqCmdResetTimestampBrCast Sends a broadcast UDP command to set/reset timestamp to

timestamp value. Received by all IOMs.

Parameters:

• int handle: Handle to the IOM

• uint32 timestamp: Value to all IOM timestamps to
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 39

Programming the Synchronization Interface
2.8 Retrieving
Status

Retrieve synchronization status with the DqSyncGetSyncStatus() API.

NOTE: The DQ_SYNC_STATUS structure consists of the following elements:

typedef struct {

 DQ_SYNC_ADPLL_STAT adpll_sts;// ADPLL status structure

 // see Table 2-16

 uint32 pll_stat[0]; // <reserved>

 uint32 pps_status; // <reserved>

 uint32 gps_irig; // <reserved>

 uint32 evm_stat; // Event module status register

 uint32 sync_snap; // snapshot of the SYNC lines

 uint32 sync_conn; // snapshot of external sync
 // connector lines

 uint32 time_since_pps; // how long since last PPS

} DQ_SYNC_STATUS, *pDQ_SYNC_STATUS;

The DQ_SYNC_ADPLL_STAT structure (first element in DQ_SYNC_STATUS)
provides the status settings specific to the ADPLL:

typedef struct {

 uint32 status; // ADPLL status register
 uint32 min_per; // Minimum period length for input clock
 uint32 avg_per; // Averaged detected length of VALIDATED
 // input period
 uint32 max_per;// Maximum period length for input clock
 uint32 lst_per;// Measured length of last input period
 uint32 acc_err;// Accumulated pulse position error in
 // system clocks
} DQ_SYNC_ADPLL_STAT, *p DQ_SYNC_ADPLL_STAT;

NOTE: Table 2-15 and Table 2-16 provide bit descriptions of the status
registers.

Table 2-14 API for Retrieving Status

API Name Description

DqSyncGetSyncStatus Retrieves status registers associated with the

synchronization hardware.

Parameters:

• int handle: Handle to the IOM

• int mode: Reserved, set to 0

• pDQ_SYNC_STATUS status: See Note below
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 40

Programming the Synchronization Interface
Sync Status

Register Name

Description

status Table 2-16 provides descriptions of the status information returned with the
DQ_SYNC_ADPLL_STAT structure.

evm_stat Status of Event Module:

28 EVTMOD_STS_DPLL: Reads (1) if the Event Module generated the correct num-
ber of clocks

23:0 Event counter. Specific count values are for reserved use; however, note that a
non-incrementing counter can indicate an error in your 1PPS source or sync structure
configuration.

sync_snap Snapshot of SYNC lines on the internal SYNC bus:

31:24 <Reserved>

23 Current state of internal SYNC3 line

22 Current state of internal SYNC2 line

21 Current state of internal SYNC1 line

20 Current state of internal SYNC0 line

19:0 <Reserved>

sync_conn Snapshot of the external SyncIn and SyncOut lines on the external 10-pin connector:
31:0

time_since_pps Number of 66 MHz clocks since last 1PPS

31:0 Number of cycles

Table 2-15 Bit Mapping of Sync Status Registers
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 41

Programming the Synchronization Interface
.

ADPLL Status

Register Name

Description

status ADPLL status register:

31:17 <Reserved>

16 RESYNC:
Reads (1) when ADPLL and external clock are re-synchronized. This bit will be 1
after initial synchronization of the ADPLL and clock source. If it is set during normal
ADPLL operation, a 1 indicates that the synchronization with the source clock was
lost (and an error grew to > ¼ of the external clock period). Reading a 1 on RESYNC
may indicate a drifting or unstable clock source. RESYNC is a sticky bit, auto-
cleared. Reset state is 0.

15:3 <Reserved>

2 AV: Reads (1) when the moving average passes validation. Invalidated input
clocks will not affect the moving average. Reset state is 0.

1 CV: Reads (1) when the last input clock period passed validation. Reset state is 0.

0 CE: Reads (1) when the last input clock period is too long. Reset state is 0.
This bit will be a 1 if the 1PPS pulse is lost.

min_per Minimum period length for the ADPLL input clock:

31:27 <Reserved>

26:0 Minimum period

avg_per Measured average period of the ADPLL detected and validated input clock:

31:27 <Reserved>

26:0 Measure average period

max_per Maximum period length for the ADPLL input clock:

31:27 <Reserved>

26:0 Maximum period

lst_per Measured length of the last ADPLL input period:

31:27 <Reserved>

26:0 Measured last period

acc_err Accumulated pulse position error between the ADPLL output clock and the input
clock:

31:27 <Reserved>

26:0 Accumulation error

*Sign differences between the last measured error and the accumulated
position error result in the accumulated error zeroing out.

Table 2-16 Bit Mapping of ADPLL Status Registers
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 42

Programming the Synchronization Interface
2.9 Retrieving
PTP Status

PTP-specific status information can be retrieved with the
DqSyncGetPTPStatus() API.

The DQ_SYNC_PTP_STAT structure consists of the following elements:

typedef struct {
 uint32 state;
 uint64 grandMasterClockID;
 uint64 masterClockID;

 uint32 stepsFromGrandMaster;
 uint32 grandMasterClockClass;

 int32 meanPathDelay;
 int32 lastMeasuredOffset;
 int32 maxMeasuredOffset;
 int32 minMeasuredOffset;
 int32 avgMeasuredOffset;

 // packet statistics
 uint32 totalPkts;
 uint32 annouceRcvd;
 uint32 annouceSnt;
 uint32 syncRcvd;
 uint32 syncSnt;
 uint32 followUpRcvd;
 uint32 followUpSnt;
 uint32 delyReqRcvd;
 uint32 delyReqSnt;
 uint32 delyRspRcvd;
 uint32 delyRspSnt;
 uint32 signalingRcvd;
 uint32 signalingSnt;
} DQ_SYNC_PTP_STAT, *pDQ_SYNC_PTP_STAT;

Table 2-17 API for Retrieving PTP Status

API Name Description

DqSyncGetPTPStatus Provides status for the PTP server if PTP is enabled on the

IOM.

Parameters:

• int handle: Handle to the IOM

• int mode: Reserved, set to 0

• pDQ_SYNC_PTP_STAT pPTPstat: See notes below
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 43

Programming the Synchronization Interface
PTP Status Register Description

uint32 state Current PTP state:
• 1: DQ_PTP_PORT_STATE_INIT
• 2: DQ_PTP_PORT_STATE_FAULTY
• 3: DQ_PTP_PORT_STATE_DISABLED
• 4: DQ_PTP_PORT_STATE_LISTENING
• 5: DQ_PTP_PORT_STATE_PRE_MASTER
• 6: DQ_PTP_PORT_STATE_MASTER
• 7: DQ_PTP_PORT_STATE_PASSIVE
• 8: DQ_PTP_PORT_STATE_UNCALIBRATED
• 9: DQ_PTP_PORT_STATE_SLAVE

uint64 grandMasterClockID PTP clock ID of the grand master of the system:

When a UEI Cube or RACK is the PTP grandmaster, an EUI-64 format
address is generated from our 48-bit MAC address:
 1st 3 octets of Grandmaster MAC address + FFFE + last 3 octets

uint64 masterClockID PTP clock ID of the current master:

When a UEI Cube or RACK is the PTP grandmaster, an EUI-64 format
address is generated from our 48-bit MAC address:
 1st 3 octets of current master MAC address + FFFE + last 3 octets

uint32
stepsFromGrandMaster

Value of the PTP data set steps

uint32
grandMasterClockClass

PTP grand master clock class taken from the master's Announce mes-
sages
Clock class is 248 for UEI chassis

int32 meanPathDelay Current calculated mean path delay

int32 lastMeasuredOffset Last calculated time offset from PTP master

int32 maxMeasuredOffset Maximum calculated time offset from PTP master

int32 minMeasuredOffset Minimum calculated time offset from PTP master

int32 avgMeasuredOffset Average calculated time offset from PTP master

uint32 totalPkts Total PTP packets received on the domain

uint32 annouceRcvd Counter of Announce packets accepted
Note the counter will not increment if a message is rejected because the
IOM is in the wrong state

uint32 annouceSnt Counter of Announce packets sent
Note the counter will not increment if a message is rejected because the
IOM is in the wrong state

uint32 syncRcvd Counter of Sync packets accepted
Note the counter will not increment if a message is rejected because the
IOM is in the wrong state

Table 2-18 PTP Status Registers
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 44

Programming the Synchronization Interface
uint32 syncSnt Counter of Sync packets sent
Note the counter will not increment if a message is rejected because the
IOM is in the wrong state

uint32 followUpRcvd Counter of Follow Up packets accepted
Note the counter will not increment if a message is rejected because the
IOM is in the wrong state

uint32 followUpSnt Counter of Follow Up packets sent
Note the counter will not increment if a message is rejected because the
IOM is in the wrong state

uint32 delyReqRcvd Counter of Delay Request packets accepted
Note the counter will not increment if a message is rejected because the
IOM is in the wrong state

uint32 delyReqSnt Counter of Delay Request packets sent
Note the counter will not increment if a message is rejected because the
IOM is in the wrong state

uint32 delyRspRcvd Counter of Delay Response packets accepted
Note the counter will not increment if a message is rejected because the
IOM is in the wrong state

uint32 delyRspSnt Counter of Delay Response packets sent
Note the counter will not increment if a message is rejected because the
IOM is in the wrong state

uint32 signalingRcvd Counter of Signaling packets accepted
Note the counter will not increment if a message is rejected because the
IOM is in the wrong state

uint32 signalingSnt Counter of Signaling packets accepted
Note the counter will not increment if a message is rejected because the
IOM is in the wrong state

PTP Status Register Description

Table 2-18 PTP Status Registers
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 45

Programming the Synchronization Interface
2.10 Retrieving
UTC Time

If using PTP synchronization, you can retrieve the Coordinated Universal Time
(UTC) from the PTP packets using the DqSyncGetUTCTimeFromPTP() API.

The DQ_SYNC_UTC_TIME ptpUTC structure consists of the following elements:

typedef struct {
 uint32 reserved; // reserved
 uint32 sec; // PTP time in seconds
 uint32 nsec; // PTP time nanoseconds
 uint32 timestamp; // timestamp from the CPU layer
 // to the time above
 uint32 flags; // status flags
} DQ_SYNC_UTC_TIME, *pDQ_SYNC_UTC_TIME;

ptpUTC->flags will have the bit DQ_SYNC_UTCTM_TIMEVALID set if the
returned time is valid, (i.e., UTC time is set).

Additional flags bits alert the user that the time may not actually be UTC time:

• DQ_SYNC_UTCTM_ARB_PTPTSCALE: The PTP master is using an Arbitrary
Time Scale.

• DQ_SYNC_UTCTM_OFFSINVLAID: UTC offset from the master isn’t valid.
• DQ_SYNC_UTCTM_TIMEVALID: Time is known. Either we are master or PTP

slave.

Table 2-19 API for Retrieving Status

API Name Description

DqSyncGetUTCTimeFromPTP Retrieves time. If slave chassis, will retrieve time from PTP

packets (relative to time standard of PTP master)

Parameters:

• int handle: Handle to the IOM

• int mode: Reserved, set to 0

• pDQ_SYNC_UTC_TIME ptpUTC: See notes below
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 2 46

Programming the Synchronization Interface
2.11 Disabling
Sync /
Releasing
Sync
Hardware

Sync scheme is disabled with the DqSyncDisableSyncScheme() API.

The API does the following:

• Disconnects SYNC lines

• Disconnects signals from sync connector

• Stops clocks in the Event Module/ADPLL

• Stops PTP handling I/O

Table 2-20 API for Retrieving Status

API Name Description

DqSyncDisableSyncScheme Disables synchronization scheme on Cube or RACK system

Parameters:

• int handle: Handle to the IOM

• uint32 status: Reserved
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 47

System Configuration Tutorials
Chapter 3 System Configuration Tutorials

This chapter provides tutorials for configuring UEI chassis and supporting
hardware for synchronization.

The following sections are included in this chapter:

• Configuring Synchronization to an External PPS (Section 3.1)

• Connecting Hardware for 1PPS Synchronization (Section 3.1.1)

• Configuring a UEI Chassis as 1PPS Master (Section 3.1.2)

• Configuring a UEI Chassis as 1PPS Slave (Section 3.1.3)

• Configuring Synchronized I/O Board Clocks (Section 3.1.4)

• Configuring Synchronized Triggers & Timestamps (Section 3.1.5)

• Configuring Hardware for PTP Synchronization (Section 3.2)

• Configuring PTP Interface Parameters (Section 3.2.1)

• Configuring a PTP Grandmaster (Section 3.2.2)

• Configuring a Boundary Clock (IEEE-1588-capable Switch) (Section
3.2.3)

• Configuring a UEI Chassis for PTP Synchronization (Section 3.2.4)

NOTE: Example configurations in this chapter can be used as a reference when
configuring your application. Many alternative configurations and
hardware components exist that are not specified in this chapter.

This chapter provides step-by-step tutorials showing how to configure
supporting hardware, as well as how to modify existing sample code to configure
a UEI system.

This chapter focuses on configuring synchronization-specific parameters (not
configuring data acquisition modes or I/O channel options).

Refer to Chapter 4 for example code snippets for setting up a single chassis and
single board for synchronization using various data acquisition modes.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 48

System Configuration Tutorials
3.1 Configuring
Synchro-
nization to an
External PPS

This section provides instructions for configuring two UEI DNA-PPC5-1G
chassis to synchronize using a common 1PPS signal.

Figure 3-1 Example Hardware Configuration for External 1PPS

3.1.1 Connecting
Hardware for
1PPS
Synchro-
nization

In this example, one chassis is configured as the 1PPS master and the other is
a slave. They are connected using UEI’s DNA-STP-SYNC-1G synchronization
panel.

STEP 1: Connect the NIC1 ports of your UEI chassis and the NIC port of your host
PC to a network switch.

STEP 2: Connect the 10-pin sync connector at the front of your master chassis to
the MASTER port of the DNA-STP-SYNC-1G board using a DNA-CBL-
SYNC-RJ cable.

STEP 3: Connect the 10-pin sync connector at the front of your slave chassis to
any of the slave ports on the DNA-STP-SYNC-1G board.

STEP 4: Connect power, and power up your chassis.

DNA-STP-SYNC-1G

(Sync cables are

DNA-CBL-SYNC-RJ)

1PPS Master Slave

Host PC Ethernet switch
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 49

System Configuration Tutorials
3.1.2 Configuring a
UEI Chassis
as 1PPS
Master

This section explains how to program a UEI chassis to generate a 1PPS
reference signal (master).

NOTE: You will need to program the IP address, device number, clocks,
triggers, I/O channel configuration, and data acquisition modes to what
your application requires.
This section specifically shows how to program your chassis to act as
1PPS master.

STEP 1: Open your application and/or a UEI synchronization code example.

We highly recommend you start with existing UEI synchronization sample code
and update parameters instead of starting from scratch.

Refer to page 84 for location of sync sample code and naming conventions.

The following tutorial assumes you are starting from sample code.

STEP 2: Locate where DQ_SYNC_SCHEME structures are initialized in your code.

The parameters that control whether the chassis is a 1PPS master and specify
1PPS signal routing are highlighted in red:

typedef struct {
 // ==== section A ===
 // IOM Sync Source Configuration
 uint32 sync_device; // IOM CPU type (5200,8347,or 8347S with PTP capability)
 uint32 sync_source; // where to get nPPS clock to synchronize system
 uint32 sync_line; // which SYNC line to route external 1PPS clock
 uint32 sync_mode; // mode of synchronization
 uint32 nPPS; // N - number of pulses per second for input nPPS clock
 uint32 nPPS_us; // Expected accuracy of the nPPS clock in us, clocks
 // outside of the range will be ignored, 0=default

 // ==== section B ===
 // synchronization output: tell IOM to become 1PPS master
 uint32 sync_server; // Identify chassis as 1PPS master
 uint32 srv_param; // which sync connector pin routes 1PPS out to
 // the 1PPS slave chassis in the system
 uint32 trig_server; // <Reserved>

 // ==== section C ===
 // clocks: select clock source for each SYNC line (0 thru 3)
 uint32 clock_src[DQL_SYNC_LINES]; // clock source for each SYNC line
 uint32 clock_tmr[DQL_SYNC_LINES]; // PLL and external clock can be
 // divided on TMR0 or TMR1
 uint32 clock_frq[DQL_SYNC_LINES]; // clock frequency (for PLL/EM)
 uint32 clock_div[DQL_SYNC_LINES]; // clock divider for EMx
 // (0 == divide by 1, 2, 3 etc.)

 // ==== section D ===
 // trigger: tell IOM where to get (or generate) and route trigger signal
 uint32 trig_source; // where to take trigger to start acquisition
 uint32 trig_line; // <reserved>
 uint32 trig_start; // start trigger mode selection
 uint32 trig_delay; // offset of the trigger pulse from nPPS clock\
 // (microseconds)
 uint32 trig_period_ms; // period in ms to issue start trigger
 uint32 trig_stop; // source for the stop trigger
 uint32 trig_stop_src; // stop source for stop trigger upon N-count
 uint32 trig_duration; // milliseconds before issuing stop trigger or N-count
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 50

System Configuration Tutorials
 // ==== section E ===
 // destination to route signals: from SYNC lines or to the outside SyncOut0/1
 uint32 clclk_dest[DQL_SYNC_LINES]; // where to feed CL clock
 uint32 pps_dest; // where to feed 1PPS clock to
 uint32 trig_dest; // where to feed start/stop trigger

} DQ_SYNC_SCHEME, *pDQ_SYNC_SCHEME;

STEP 3: Copy and paste an existing DQ_SYNC_SCHEME structure, and rename it to
identify it as the master configuration (*_master) if one does not already
exist.

STEP 4: In the DQ_SYNC_SCHEME *_master structure, modify the following:

Section A IOM Sync Source Configuration:

a. Set sync_device to DQ_SYNC_8347.
-- identifies the chassis type as a standard 1G cube or RACK.

b. Set sync_source to DQ_SYNCCLK_SYNCIN0.
-- configures which input pin (SyncIn0) will route in 1PPS.

c. Set sync_line to DQ_SYNCCLK_SYNC0.
-- routes the sync_source 1PPS to line 0 of the internal SYNC bus.

d. Set sync_mode to DQ_SYNCCLK_SYNC.
-- programs CPU to synchronize with external 1PPS.

e. Set nPPS to 1.
-- configures one pulse per second signal.

f. Set nPPS_us to 100.
-- sets expected accuracy of 1PPS (outside ranges are ignored).

Section B Synchronization Output Configuration:

g. Set sync_server to DQ_SYNCSRV_1PPS.
-- configures this chassis as a master.

h. Set srv_param to DQ_SYNCSRV_SYNCOUT0.
-- configures which output pin (SyncOut0) the generated 1PPS drives
out of.

i. Set trig_server to 0.
-- reserved.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 51

System Configuration Tutorials
Figure 3-2 Block Diagram of Master Configuration

The following shows updated code for 1PPS-master configuration (the above
block diagram highlights how hardware is configured):

DQ_SYNC_SCHEME sync_scheme_1PPS_master = {
// ==== section A ===
// IOM synchronization
DQ_SYNC_8347, // sync_device: 8347 standard chassis; 8347S -02/-03 rev chassis
DQ_SYNCCLK_SYNCIN0, // sync_source: raw 1PPS is routed into chassis via this pin
DQ_SYNCCLK_SYNC0, // sync_line: raw 1PPS is routed to this SYNC line on backplane
DQ_SYNCCLK_SYNC, // sync_mode: DQ_SYNCCLK_SYNC is external 1PPS mode
1, // nPPS: N - number of pulses per second for input nPPS clock
100, // nPPS_us: Expected accuracy of the nPPS clock in us,
 // clocks outside of range will be ignored, 0=default

// ==== section B ===
// Synchronization output (Master configuration)
DQ_SYNCSRV_1PPS, // sync_server: configures chassis as 1PPS master
DQ_SYNCSRV_SYNCOUT0,// srv_param: generated 1PPS routes out chassis via this pin
0, // trig_server : <reserved>
// ==== section C, D, E not shown here
};

STEP 5: Locate the API that starts data acquisition (e.g., DqRtVmapStartTr()).

NOTE: Refer to section Section 4.2 on page 85 for more information about data
acquisition modes.

SYNC BUS

ADPLL

Raw 1PPS

(external 1PPS sync)

Locked 1PPS: to generate synchronized clocks and trigger

10-pin sync

connector

(To I/O Boards)

Master 1PPS Generator

S
Y

N
C

 0

S
Y

N
C

 3

S
Y

N
C

 2

S
Y

N
C

 1

(DNA-STP-SYNC-1G)

Master Sync In

Up to 6

Slave Sync Out

Standard GigE DNA-PPCx-1G Cube

Top/Left

CPU Board

Bottom/Right

CPU Board

Master Sync Out

SYNC STP Panel

DQ_SYNCCLK_SYNCIN0

DQ_SYNCCLK_SYNC0

DQ_SYNC_8347

sync_mode = DQ_SYNCCLK_SYNC: defines 1PPS mode

sync_server = DQ_SYNCSRV_1PPS: sets as master

DQ_SYNCSRV_SYNCOUT0
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 52

System Configuration Tutorials
STEP 6: Locate the DqSyncDefineSyncScheme API.

Verify that DqSyncDefineSyncScheme APIs are called after the API that
starts data acquisition (located in previous step).

STEP 7: Add/update call to DqSyncDefineSyncScheme, and pass the *_master
sync structure definitions.

if (master){
 DqSyncDefineSyncScheme(handle, &sync_scheme_1PPS_master, &status);}

STEP 8: Configure slave chassis, synchronized clocks, timestamps, and triggers
as required by your application. Refer to the following sections for
instructions:

• “Configuring a UEI Chassis as 1PPS Slave” on page 53

• “Configuring Synchronized I/O Board Clocks” on page 57

• “Configuring Synchronized Triggers & Timestamps” on page 62
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 53

System Configuration Tutorials
3.1.3 Configuring a
UEI Chassis
as 1PPS Slave

This section explains how to program a UEI chassis to act as a slave to an
external 1PPS source.

STEP 1: Open your application and/or a UEI synchronization code example.

We highly recommend you start with existing UEI synchronization sample code
and update parameters instead of starting from scratch.

Refer to page 84 for location of sync sample code and naming conventions.

The following tutorial assumes you are starting from sample code.

STEP 2: Locate where DQ_SYNC_SCHEME structures are initialized in your code.

The parameters that control whether the chassis is a 1PPS slave and specify
1PPS signal routing are highlighted in red:

typedef struct {
 // ==== section A ===
 // IOM Sync Source Configuration
 uint32 sync_device; // IOM CPU type (5200,8347,or 8347S with PTP capability)
 uint32 sync_source; // where to get nPPS clock to synchronize system
 uint32 sync_line; // which SYNC line to route external 1PPS clock
 uint32 sync_mode; // mode of synchronization
 uint32 nPPS; // N - number of pulses per second for input nPPS clock
 uint32 nPPS_us; // Expected accuracy of the nPPS clock in us, clocks
 // outside of the range will be ignored, 0=default

 // ==== section B ===
 // synchronization output: tell IOM to become 1PPS master
 uint32 sync_server; // Identify chassis as 1PPS master
 uint32 srv_param; // which sync connector pin routes 1PPS out to
 // the 1PPS slave chassis in the system
 uint32 trig_server; // <Reserved>

 // ==== section C ===
 // clocks: select clock source for each SYNC line (0 thru 3)
 uint32 clock_src[DQL_SYNC_LINES]; // clock source for each SYNC line
 uint32 clock_tmr[DQL_SYNC_LINES]; // PLL and external clock can be
 // divided on TMR0 or TMR1
 uint32 clock_frq[DQL_SYNC_LINES]; // clock frequency (for PLL/EM)
 uint32 clock_div[DQL_SYNC_LINES]; // clock divider for EMx
 // (0 == divide by 1, 2, 3 etc.)

 // ==== section D ===
 // trigger: tell IOM where to get (or generate) and route trigger signal
 uint32 trig_source; // where to take trigger to start acquisition
 uint32 trig_line; // <reserved>
 uint32 trig_start; // start trigger mode selection
 uint32 trig_delay; // offset of the trigger pulse from nPPS clock\
 // (microseconds)
 uint32 trig_period_ms; // period in ms to issue start trigger
 uint32 trig_stop; // source for the stop trigger
 uint32 trig_stop_src; // stop source for stop trigger upon N-count
 uint32 trig_duration; // milliseconds before issuing stop trigger or N-count
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 54

System Configuration Tutorials
 // ==== section E ===
 // destination to route signals: from SYNC lines or to the outside SyncOut0/1
 uint32 clclk_dest[DQL_SYNC_LINES]; // where to feed CL clock
 uint32 pps_dest; // where to feed 1PPS clock to
 uint32 trig_dest; // where to feed start/stop trigger

} DQ_SYNC_SCHEME, *pDQ_SYNC_SCHEME;

STEP 3: Copy and paste the DQ_SYNC_SCHEME structure, and rename it to identify
it as the slave configuration (*_slave) if one does not already exist.

STEP 4: In the DQ_SYNC_SCHEME *_slave structure, modify the following:

Section A IOM Sync Source Configuration:

a. Set sync_device to DQ_SYNC_8347.
-- identifies the chassis type as a standard 1G cube or RACK.

b. Set sync_source to DQ_SYNCCLK_SYNCIN0.
-- configures which input pin (In0) will route in 1PPS.

c. Set sync_line to DQ_SYNCCLK_SYNC0.
-- routes the sync_source 1PPS to line 0 of the internal SYNC bus.

d. Set sync_mode to DQ_SYNCCLK_SYNC.
-- programs CPU to synchronize with external 1PPS.

e. Set nPPS to 1.
-- configures one pulse per second signal.

f. Set nPPS_us to 100.
-- sets expected accuracy of 1PPS (outside ranges are ignored).

Section B Synchronization Output Configuration:

g. Set sync_server to 0.
-- configures this chassis as a slave (not a master).

h. Set srv_param to 0.
-- configured NULL for slave.

i. Set trig_server to 0.
-- reserved.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 55

System Configuration Tutorials
Figure 3-3 Block Diagram of Slave Configuration

The following shows updated code for initializing 1PPS-slave parameters (the
block diagram above highlights how hardware will be configured):

DQ_SYNC_SCHEME sync_scheme_1PPS_slave = {
// ==== section A ===
// IOM synchronization
DQ_SYNC_8347, // sync_device: 8347 standard chassis; 8347S is -02/-03 rev chassis
DQ_SYNCCLK_SYNCIN0, // sync_source: raw 1PPS is routed into chassis via this pin
DQ_SYNCCLK_SYNC0, // sync_line: raw 1PPS is routed to this SYNC line on backplane
DQ_SYNCCLK_SYNC, // sync_mode: DQ_SYNCCLK_SYNC is external 1PPS mode
1, // nPPS: N - number of pulses per second for input nPPS clock
100, // nPPS_us: Expected accuracy of the nPPS clock in us,
 // clocks outside of range will be ignored, 0=default

// ==== section B ===
// Synchronization output (Master configuration)
0, // sync_server: 0 configures chassis as 1PPS slave
0, // srv_param: NULL for slave
0, // trig_server : <reserved>
// ==== section C, D, E not shown here
};

STEP 5: Locate the API that starts data acquisition (e.g., DqRtVmapStartTr()).

For your trigger to be synchronized with the 1PPS, verify you are using an API
that does not send a software trigger (otherwise your board will already be
triggered and not use the synchronized trigger). For example,
DqRtVmapStartTr starts RtVMAP data acquisition mode but does not issue
the trigger to collect samples.

NOTE: Refer to section Section 4.2 on page 85 for more information about data
acquisition modes.

SYNC BUS

ADPLL

Raw 1PPS

(external 1PPS sync)

Locked 1PPS: to generate synchronized clocks and trigger

10-pin sync

connector

(To I/O Boards)

S
Y

N
C

 0

S
Y

N
C

 3

S
Y

N
C

 2

S
Y

N
C

 1

(DNA-STP-SYNC-1G)

Up to 6

Slave Sync Out

Standard GigE DNA-PPCx-1G Cube

Top/Left

CPU Board

Bottom/Right

CPU Board

Master Sync In

SYNC STP Panel

DQ_SYNCCLK_SYNCIN0 DQ_SYNCCLK_SYNC0

DQ_SYNC_8347

sync_mode = DQ_SYNCCLK_SYNC: defines 1PPS mode

Raw 1PPS from

Master 1PPS source
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 56

System Configuration Tutorials
STEP 6: Locate the DqSyncDefineSyncScheme API.

Verify that DqSyncDefineSyncScheme APIs are called after the API that
starts data acquisition (located in the previous step).

STEP 7: Add/update call to DqSyncDefineSyncScheme that passes the *_slave
sync structure definitions.

 DqSyncDefineSyncScheme(handle, &sync_scheme_1PPS_slave, &status);

STEP 8: Configure synchronized clocks, timestamps, and triggers as required by
your application.

• “Configuring Synchronized I/O Board Clocks” on page 57

• “Configuring Synchronized Triggers & Timestamps” on page 62
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 57

System Configuration Tutorials
3.1.4 Configuring
Synchronized
I/O Board
Clocks

The following section provides steps for configuring synchronized clocks to
multiple I/O boards in a UEI chassis.

The Event Module on the CPU board produces synchronized clocks from the
locked 1PPS reference.

Each I/O board can receive the Event Module clock via the SYNC bus and can
then further divide down the SYNC bus clock locally, as needed.

This tutorial provides instructions for programming the Event Module and routing
the synchronized clock to I/O boards:

STEP 1: List all the I/O boards that require synchronization in a single chassis and
at what clock rate those boards must run.

As an example, this tutorial will configure a slave chassis with 2 I/O boards that
require the following sample rates:

• an analog input board (AI-207) requiring an output clock rate of 10 Hz

• an analog input board (AI-217) requiring an output clock rate of 1000 Hz

STEP 2: Determine the Event Module clock rate.

The clock rate produced by the Event Module must be evenly divisible by the
required input clock rate of each I/O board that will use the synchronized clock.

Important Note about Oversampling I/O Boards

Several analog input boards use oversampled successive approximation (SAR)
A/D converters. The clock source on these boards must be 8x the desired
output rate of the ADC.
Boards that use 8x oversampling are the AI-211, AI-217, AI-218,
and AI-2281.

• In this example, the AI-217 requires an 8x input clock2; therefore, to get
a 1000 Hz output sample rate, you must provide an 8000 Hz input clock.
(Refer to the DNx-AI-217 User Manual for more information).

• In this example, the AI-207 requires a 10 Hz input clock.

To satisfy the above requirements, your Event Module clock rate can be set to
8000 Hz (both board rates, 8000 Hz and 10 Hz, are divisible).

1.Note that these boards also provide a 1x clock mode (called Scan-per-clock
Mode) as an alternative. See the I/O board user manual for more information.
2.When configuring I/O channels for the AI-217 and other 8x oversampling
boards, many users choose to disable the onboard digital FIR filter and bypass
decimation for better control of timestamp alignment.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 58

System Configuration Tutorials
STEP 3: Determine clock dividers for each I/O board.

For this example, the Event Module is producing an 8000 Hz clock, and the local
I/O board clock dividers are as follows:

• AI-207 @ 10 Hz output rates: The local divider will be 8000/10 = 800.

• AI-217 @ 1000 Hz output rates requires an 8x or 8000 Hz input clock:
The local divider will be 8000/8000 = 1.

STEP 4: Open your application and/or a UEI synchronization code example.

The following tutorial assumes you are continuing from “Configuring a UEI
Chassis as 1PPS Slave” on page 53; however, you could also continue from
either of the following sections:

• “Configuring a UEI Chassis as 1PPS Master” on page 49

• “Configuring a UEI Chassis for PTP Synchronization” on page 76

STEP 5: Locate the DQ_SYNC_SCHEME structure in your code for the chassis with
the I/O boards that your are programming.

NOTE: In this example, we will program the *_slave clocks.

The parameters that set the clock frequency and route a clock to I/O boards are
highlighted in red:

typedef struct {
 // ==== section A ===
 // IOM Sync Source Configuration
 uint32 sync_device; // IOM CPU type (5200,8347,or 8347S with PTP capability)
 uint32 sync_source; // where to get nPPS clock to synchronize system
 uint32 sync_line; // which SYNC line to route external 1PPS clock
 uint32 sync_mode; // mode of synchronization
 uint32 nPPS; // N - number of pulses per second for input nPPS clock
 uint32 nPPS_us; // Expected accuracy of the nPPS clock in us, clocks
 // outside of the range will be ignored, 0=default

 // ==== section B ===
 // synchronization output: tell IOM to become 1PPS master
 uint32 sync_server; // Identify chassis as 1PPS master
 uint32 srv_param; // which sync connector pin routes 1PPS out to
 // the 1PPS slave chassis in the system
 uint32 trig_server; // <Reserved>

 // ==== section C ===
 // clocks: select clock source for each SYNC line (0 thru 3)
 uint32 clock_src[DQL_SYNC_LINES]; // clock source for each SYNC line
 uint32 clock_tmr[DQL_SYNC_LINES]; // PLL and external clock can be
 // divided on TMR0 or TMR1
 uint32 clock_frq[DQL_SYNC_LINES]; // clock frequency (for PLL/EM)
 uint32 clock_div[DQL_SYNC_LINES]; // clock divider for EMx
 // (0 == divide by 1, 2, 3 etc.)
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 59

System Configuration Tutorials
 // ==== section D ===
 // trigger: tell IOM where to get (or generate) and route trigger signal
 uint32 trig_source; // where to take trigger to start acquisition
 uint32 trig_line; // <reserved>
 uint32 trig_start; // start trigger mode selection
 uint32 trig_delay; // offset of the trigger pulse from nPPS clock\
 // (microseconds)
 uint32 trig_period_ms; // period in ms to issue start trigger
 uint32 trig_stop; // source for the stop trigger
 uint32 trig_stop_src; // stop source for stop trigger upon N-count
 uint32 trig_duration; // milliseconds before issuing stop trigger or N-count

 // ==== section E ===
 // destination to route signals: from SYNC lines or to the outside SyncOut0/1
 uint32 clclk_dest[DQL_SYNC_LINES]; // where to feed CL clock
 uint32 pps_dest; // where to feed 1PPS clock to
 uint32 trig_dest; // where to feed start/stop trigger

} DQ_SYNC_SCHEME, *pDQ_SYNC_SCHEME;

STEP 6: In the DQ_SYNC_SCHEME *_slave structure, modify the following:

Section C Clock Configuration:

a. Set clock_src to {0, 0, DQ_CLOCKSRC_EM0,0}.
-- routes the Event Module clock to SYNC line 2 (SYNC line 0, 1, and 3
are programmed with 0, which means no output clock resources are
routed to them, but other resources, such as the PPS or triggers may
be).

b. Set clock_tmr to {0, 0, 0, 0}.
-- <Reserved, set to 0>.

c. Set clock_freq to {0, 0, 8000, 0}.
-- programs the Event Module frequency on SYNC line 2 to 8000 Hz.

d. Set clock_div to {0, 0, 0, 0}.
-- programs no CPU clock dividers. Dividers will be programmed locally
on each I/O board in a later step.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 60

System Configuration Tutorials
Figure 3-4 Block Diagram of Slave Configuration

The following code initializes clock parameters for the slave chassis (the block
diagram above highlights the hardware connection):

DQ_SYNC_SCHEME sync_scheme_1PPS_slave = {
// ==== section A & B not shown here ===
...

// ==== section B ===
// Synchronization output (Master configuration)
{0, 0, DQ_CLOCKSRC_EM0, 0}, // clock_src (0 sets no clks connecting on SYNC 0,1,3)
{0, 0, 0, 0}, // clock_tmr: <Reserved, set to 0>
{0, 0, 8000, 0}, // clock_frq: programs clk on SYNC2 (EM) to 8000 Hz
{0, 0, 0, 0}, // clock_div: 0 sets no dividers on CPU board used

// ==== section D & E not shown here
...
};

STEP 7: Locate the DqSyncDefineSyncScheme API in your sample code.

DqSyncDefineSyncScheme(handle, &sync_scheme_1PPS_slave, &status);

SYNC BUS

ADPLL

Raw 1PPS

(set in previous section)

Trigger HW

Lo
ck

ed
 1

P
P

S

(8000 Hz clock)

(To I/O Boards)

S
Y

N
C

 0

S
Y

N
C

 3

S
Y

N
C

 2

S
Y

N
C

 1

EM1 divider

Event Module

EM2 divider

Top/Left

CPU Board

Bottom/Right

CPU Board

10-pin sync

connector

(DNA-STP-SYNC-1G)

Up to 6

Slave Sync Out

Standard GigE DNA-PPCx-1G Cube

Master Sync In

SYNC STP Panel

Raw 1PPS

from

Master

Raw 1PPS

(external 1PPS sync to SYNC0 -- for *_slave config set in previous section)

clock_src
from EM on SYNC2:

DQ_CLOCKSRC_EM0
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 61

System Configuration Tutorials
STEP 8: For each I/O board requiring synchronized clocks, set clock parameters
in a DQ_SYNC_DEF_CLOCKS structure to parameters calculated in
steps 1 through 3, and then call the DqSyncDefineLayerClock API to
configure hardware:

NOTE: DqSyncDefineLayerClock() must be called after
DqSyncDefineSyncScheme().

The elements in DQ_SYNC_DEF_CLOCKS are as follows:

typedef struct {
 int clk_line; // SYNC line to use for clock source
 int divider; // divider (0=no divider)
 int grp_delay; // group delay in samples, -1 = auto define
 uint32 flags; // flags to change mode of operation
} DQ_SYNC_DEF_CLOCKS, *pDQ_SYNC_DEF_CLOCKS;

For the AI-217 (DEVN0), program a divider of 0 (no divider) to produce a
1000 Hz clock:

DQ_SYNC_DEF_CLOCKS defclocks217 = {DQ_SYNCCLLK_SYNC2,0,-1,0};
DqSyncDefineLayerClock(handle, 0, &defclocks217);

For the AI-207 (DEVN0), program a divider of 800 (8000/800) to produce a
10 Hz clock:

DQ_SYNC_DEF_CLOCKS defclocks207 = {DQ_SYNCCLLK_SYNC2,800,-1,0};
DqSyncDefineLayerClock(handle, 1, &defclocks207);

Figure 3-5 Diagram of Connecting Clock from SYNC2 to AI-207

STEP 9: Configure timestamps and triggers as required by your application.

• See “Configuring Synchronized Triggers & Timestamps” as follows.

S
Y

N
C

 1

S
Y

N
C

 0

S
Y

N
C

 2

S
Y

N
C

 3

AI-207 Board

SYNC BUS
(To CPU)

Trigger

Timestamp

Reference

Clock
÷

800

A
na

lo
g

In
pu

t C
on

ne
ct

or

External Trigger
+13V 50mA max

AIn0+

CJC+

AIn0-

AIn15+

...

AIn15-

M
U

LT
IP

LE
X

E
R

B
uf

fe
rs

PGA

Calibration

Reference

Internal Ground

Internal Reference

+

- C
on

tr
ol

Lo
gi

c18-bit
A/D

D

32
-b

it
66

-M
H

z
bu

s

O
pt

ic
al

 Is
ol

at
io

n

May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 62

System Configuration Tutorials
3.1.5 Configuring
Synchronized
Triggers &
Timestamps

The following section provides steps for configuring a trigger and timestamp
reference synchronized with the 1PPS and provided to multiple I/O boards in a
UEI chassis.

This tutorial assumes your code is open, and you’re continuing from setting up
your clocks (Section 3.1.4).

NOTE: For your trigger to be synchronized with the 1PPS, verify the API you
use to start data acquisition does not send a software trigger (otherwise
your board will already be triggered and not use the synchronized
trigger). For example, in RtVMAP mode, use DqRtVmapStartTr,
which starts data acquisition mode but does not automatically issue the
trigger to collect samples.

STEP 1: Locate the DQ_SYNC_SCHEME structure in your code.

NOTE: In this example, we will program the *_slave chassis.
The steps will be the same for a *_master or, if you’re setting up PTP
synchronization, the *_IEEE1588 structure.

The parameters that set the trigger and route it to I/O boards are
highlighted in red:

typedef struct {
 // ==== section A ===
 // IOM Sync Source Configuration
 uint32 sync_device; // IOM CPU type (5200,8347,or 8347S with PTP capability)
 uint32 sync_source; // where to get nPPS clock to synchronize system
 uint32 sync_line; // which SYNC line to route external 1PPS clock
 uint32 sync_mode; // mode of synchronization
 uint32 nPPS; // N - number of pulses per second for input nPPS clock
 uint32 nPPS_us; // Expected accuracy of the nPPS clock in us, clocks
 // ==== section B ===
 // synchronization output: tell IOM to become 1PPS master
 uint32 sync_server; // Identify chassis as 1PPS master
 uint32 srv_param; // which sync connector pin routes 1PPS out to
 uint32 trig_server; // <Reserved>
 // ==== section C ===
 // clocks: select clock source for each SYNC line (0 thru 3)
 uint32 clock_src[DQL_SYNC_LINES]; // clock source for each SYNC line
 uint32 clock_tmr[DQL_SYNC_LINES]; // PLL and external divider
 uint32 clock_frq[DQL_SYNC_LINES]; // clock frequency (for PLL/EM)
 uint32 clock_div[DQL_SYNC_LINES]; // clock divider for EMx

 // ==== section D ===
 // trigger: tell IOM where to get (or generate) and route trigger signal
 uint32 trig_source; // SYNC line to route acquisition start trigger
 uint32 trig_line; // <reserved, set to 0>
 uint32 trig_start; // mode of start trigger mode
 uint32 trig_delay; // offset of the trigger pulse from nPPS clock\
 // (microseconds)
 uint32 trig_period_ms; // period in ms to issue start trigger
 uint32 trig_stop; // source for the stop trigger
 uint32 trig_stop_src; // stop source for stop trigger upon N-count
 uint32 trig_duration; // milliseconds before issuing stop trigger or N-count
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 63

System Configuration Tutorials
 // ==== section E ===
 // destination to route signals: from SYNC lines or to the outside SyncOut0/1
 uint32 clclk_dest[DQL_SYNC_LINES]; // where to feed CL clock
 uint32 pps_dest; // where to feed 1PPS clock to
 uint32 trig_dest; // where to feed start/stop trigger

} DQ_SYNC_SCHEME, *pDQ_SYNC_SCHEME;

STEP 2: In the DQ_SYNC_SCHEME *_slave structure, modify the following:

Section D Trigger Configuration:

a. Set trig_src to DQ_USE_SYNC3.
-- routes the hardware trigger to SYNC line 3.

b. Set trig_sync to 0.
-- <Reserved, set to 0>.

c. Set trig_start to DQ_TRIGSTART_NPPS.
-- generate trigger using CPU hardware synchronized to 1PPS.

d. Set trig_delay to 0.
-- asserts trigger with no added delay (0 µs) after the 1PPS rising edge
&& the trigger is armed via an API.

e. Set trig_period_ms to 0.
-- <Reserved, set to 0>.

f. Set trig_stop, trig_stop_src, and trig_duration to 0.
-- no stop trigger used.

Figure 3-6 Block Diagram of Slave Configuration

SYNC BUS

ADPLL

Raw 1PPS

(set in previous section)

Trigger HW

Lo
ck

ed
 1

P
P

S

8000 Hz clock

(set in previous step)

(To I/O Boards)

S
Y

N
C

 0

S
Y

N
C

 3

S
Y

N
C

 2

S
Y

N
C

 1

EM1 divider

Event Module

EM2 divider

Top/Left

CPU Board

Bottom/Right

CPU Board

10-pin sync

connector

(DNA-STP-SYNC-1G)

Up to 6

Slave Sync Out

Standard GigE DNA-PPCx-1G Cube

Master Sync In

SYNC STP Panel

Raw 1PPS

from

Master

Raw 1PPS

(external 1PPS sync to SYNC0 -- set in previous section)

DQ_USE_SYNC3,

DQ_TRIGSTART_NPPS

(start trigger to SYNC3)
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 64

System Configuration Tutorials
The following initializes trigger parameters for the slave chassis:

DQ_SYNC_SCHEME sync_scheme_1PPS_slave = {
// ==== section A & B & C not shown here ===
...
// ==== section D ===
 // trigger: tell IOM where to get (or generate) and route trigger signal
 DQ_USE_SYNC3, // SYNC 3 where to route for acquisition start
 0, // <reserved>
 DQ_TRIGSTART_NPPS, // start trigger mode selection
 0, // offset of the trigger pulse from nPPS clock (microseconds)
 0, // period in ms to issue start trigger
 0, // source for the stop trigger
 0, // stop source for stop trigger upon N-count
 0, // milliseconds before issuing stop trigger or N-count

// ==== section E (since not routing anything out of chassis these are 0s)
 {0, 0, 0, 0}, // <SYNC line clock to be routed out 10-pin sync connector>
 0, // <PPS destination out sync connector>
 0 // <trigger destination out sync connector>
};

STEP 3: Locate the DqSyncDefineSyncScheme API in your sample code.

DqSyncDefineSyncScheme(handle, &sync_scheme_1PPS_slave, &status);

STEP 4: For each I/O board requiring synchronized triggers, add a call to the
DqSyncDefineLayerTrigger API to configure I/O board hardware:

NOTE: DqSyncDefineLayerTrigger() must be called after
DqSyncDefineSyncScheme().

For the AI-217 (DEVN0):

DqSyncDefineLayerTrigger(handle, 0, DQ_SYNCTRG_SYNC3, 0);

For the AI-207 (DEVN1):

DqSyncDefineLayerTrigger(handle, 1, DQ_SYNCTRG_SYNC3, 0);
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 65

System Configuration Tutorials
Figure 3-7 Diagram of Connecting Trigger & Timestamp Reference
from SYNC to AI-207 Board

STEP 5: For each I/O board requiring synchronized timestamps, call the
DqSyncDefineLayerTimestamp API to configure I/O board hardware:

NOTE: DqSyncDefineLayerTimestamp() must be called after
DqSyncDefineSyncScheme().

For the AI-217 (set first board in chassis, DEVN0, to use clock on SYNC 2 as
the timestamp reference):

DqSyncDefineLayerTimestamp(handle, 0, DQ_SYNCTST_SYNC2, 0);

For the AI-207 (set second board in chassis, DEVN1, to use clock on SYNC 2
as the timestamp reference):

DqSyncDefineLayerTimestamp(handle, 1, DQ_SYNCTST_SYNC2, 0);

S
Y

N
C

 1

S
Y

N
C

 0

S
Y

N
C

 2

S
Y

N
C

 3

AI-207 Board

SYNC BUS
(To CPU)

Trigger

Timestamp

Reference

Clock
÷

800

A
na

lo
g

In
pu

t C
on

ne
ct

or

External Trigger
+13V 50mA max

AIn0+

CJC+

AIn0-

AIn15+

...

AIn15-

M
U

LT
IP

LE
X

E
R

B
uf

fe
rs

PGA

Calibration

Reference

Internal Ground

Internal Reference

+

- C
on

tr
ol

Lo
gi

c18-bit
A/D

D

32
-b

it
66

-M
H

z
bu

s

O
pt

ic
al

 Is
ol

at
io

n

clock set in

previous

section

DQ_SYNCTST_SYNC2

DQ_SYNCTRG_SYNC3
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 66

System Configuration Tutorials
STEP 6: Optionally, verify that the clocks are stable:

The adaptive digital PLL (ADPLL) validation flags are read using the
DqSyncGetSyncStatus() API.

// Check status registers to verify synchronization status states
int passing_validation; // holds validation status for user-determined checks
DQ_SYNC_STATUS astatus;

passing_validation = FALSE;
DqSyncGetSyncStatus(handle, 0, &astatus);

// Bits 2 & 1 of the astatus.adpll_sts.status register provide validation
// status of the ADPLL 1PPS reference. ‘1’ is passing validation
if ((astatus.adpll_sts.status & 4) && (astatus.adpll_sts.status & 2))

passing_validation = TRUE;

NOTE: DqSyncGetSyncStatus() returns status information from several
status registers. Refer to the PowerDNA API Reference Manual for bit
descriptions of each register.

STEP 7: Call DqSyncTrigOnNextPPSBrCast to broadcast a trigger to an array of
UEI chassis.

DqSyncTrigOnNextPPSBrCast(handle, 1, 0, array_of_handles);

STEP 8: Optionally, send UDP broadcast to reset all timestamps on all I/O boards
to 0.

DqCmdResetTimestampBrCast(handle, 0);

STEP 9: Configure any additional slave or master chassis in your system.

STEP 10: Save, build, and run.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 67

System Configuration Tutorials
3.2 Configuring
Hardware for
PTP Synchro-
nization

This section provides instructions for configuring UEI chassis and other 1588
components to synchronize using IEEE-1588 PTP standard.

Network hardware configured in this section includes the following:

In this tutorial, the host PC, grandmaster clock, and UEI chassis are connected
through the IEEE 1588-capable Industrial switch (the boundary clock):

Figure 3-8 Example of PTP Hardware Configuration

Component Description of Component Used in This Example Configuration Instructions

IEEE 1588 PTP grandmaster
(master clock source)

Spectracom’s SecureSync™ PTP grandmaster Section 3.2.2

IEEE 1588-capable
Industrial switch

Perle IDS-509 Managed Industrial Ethernet Switch,
configured as an end-to-end boundary clock

Section 3.2.3

UEI slave chassis -02 and -03 versions of UEI’s GigE Cube and
RACKtangle

Section 3.2.4

Host PC For configuring PTP grandmaster and boundary
clock and running the user application

IEEE 1588 PTP Master Clock Source

(Grandmaster)

IEEE 1588

Slave Chassis

Host PC

IEEE 1588 Boundary Clock

(end-to-end)

M

S

M
M

S

S

May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 68

System Configuration Tutorials
3.2.1 Configuring
PTP Interface
Parameters

Table 3-1 lists IEEE-1588 parameters that must be set consistently for all PTP
components in a system.

The table includes naming conventions used in the setup software for each
component in this example and lists the value each will be set to in the following
configuration instructions.

The following are brief descriptions of each parameter:

• PTP Domain: Subdomain field that specifies the set of clocks in a multiple
clock distribution system that are capable of synchronizing with each other.

• PTP Log Announce Interval: log2(period of announce messages)
How often the PTP master clock sends Announce messages.

• PTP Announce Receipt Timeout: Number of announce intervals allowed to
transpire without the slave receiving an Announce message from the master.
After this delay, the slave will timeout.

• PTP Log Sync Interval: log2(period of sync messages)
How often the PTP master clock sends Sync messages in multicast mode.

• PTP Log Min Delay Request: log2(minimum space between delay
requests) Minimum interval allowed between PTP delay-request messages.

Interface parameters of the same type should be set to the same value across
components.

For example, the SecureSync™ Domain number, the Perle Domain, and UEI
chassis’ subdomain parameters should all be set to 0 for this system to work.

SecureSync™

Grandmaster Parameter

Perle Boundary Clock

Parameter

UEI API

Parameter Values

Domain Number Domain uint8 subdomain 0

Multicast Announce Rate Announce interval int8 logAnnouceInterval 24 – 16 seconds

N/A Announce timeout uint8 annouceTimeout 3 messages

Multicast Sync Interval Sync Interval int8 logSyncInterval 20 – 1 second

N/A Delay request interval int8
logMinDelayRequestInterval

21 – 2 seconds

Table 3-1 PTP Interface Parameters for Each Component
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 69

System Configuration Tutorials
3.2.2 Configuring a
PTP
Grandmaster

This tutorial provides configuration steps for setting up a SecureSync™ as a
PTP grandmaster.

Note that a UEI chassis can alternatively act as the PTP master (to do this,
follow steps in Section 3.2.4, but for the chassis you want as grandmaster, set
its Priority to a low value (less than 128)).

To configure the SecureSync™ as a PTP grandmaster, do the following:

STEP 1: Connect the SecureSync™ PTP master port to a port on the boundary
clock.

Note that the SecureSync™ PTP master module is optional on the
SecureSync™ but required for our configuration. The PTP master port requires
an SFP transceiver to connect to your Ethernet cable:

Figure 3-9 Rear of the SecureSync™ PTP Grandmaster

STEP 2: Connect a port on the boundary clock to the NIC port on your host PC.

STEP 3: Open a web browser to access the SecureSync™ web device manager.

STEP 4: Enter the SecureSync™ IP address in the browser’s URL bar, press
Enter, and log in at the LogIn screen. The SecureSync™ web device
manager dashboard will display.

Figure 3-10 Spectracom Grandmaster Dashboard

Ethernet PTP master port
Connect to boundary clock
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 70

System Configuration Tutorials
STEP 5: In the SecureSync™ dashboard, click the Interfaces button, and in the
pulldown menu under OUTPUTS, click Gb PTP 0.
A Gb PTP 0 screen will open.

STEP 6: Enter the following configuration values in the Gb PTP 0 window:

• Enable PTP: click box to enable

• Profile: default

Figure 3-11 Spectracom Grandmaster PTP Config Screen

STEP 7: Under the Main tab in the Gb PTP 0 window, enter the following (use
defaults for parameters not listed):

• Domain Number: 0 (must be set to the same value on boundary clock
and UEI chassis -- refer to Table 3-1)

• Clock Mode: One-Step Master

• Static IP Address, Network Mask, Default Gateway: set to what
master PTP port addressing will be

STEP 8: Click the Advanced tab.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 71

System Configuration Tutorials
STEP 9: Under the Advanced tab in the Gb PTP 0 window, enter the following
(use defaults for parameters not listed):

Figure 3-12 Spectracom PTP Grandmaster PTP Advanced Screen

• Multicast Sync: click box to enable (current UEI implementation does
not support unicast packets)

• Multicast Sync Rate: 1 Per Second (must be set to the same value on
boundary clock and UEI chassis -- refer to Table 3-1)

• Multicast Announce Rate: 1 Per 16 Seconds (must be set to the same
value on boundary clock and UEI chassis -- refer to Table 3-1)

• Multicast Delay_Req: click box to enable

• Transport Protocol: IPv4

• Clock Class Set: PTP Clock Classes

• Time to Live (Packet Lifespan): 64

• PPS Offset: 0 ns

• Priority 1 / Priority 2: These default to 128. Lower numbers increase
priority in BMCA algorithm

STEP 10: Click orange Submit button.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 72

System Configuration Tutorials
3.2.3 Configuring a
Boundary
Clock (IEEE-
1588-capable
Switch)

The following configuration steps assume you’ve already completed an initial
configuration of the boundary clock’s IP address, username, password, and
other non-PTP-related setup.

To configure the boundary clock, do the following:

STEP 1: Verify your host PC and the SecureSync™ grandmaster are both
connected to a boundary clock port.

STEP 2: Connect the NIC1 ports on your UEI Cubes and RACKtangles to ports on
the boundary clock:

Figure 3-13 UEI NIC1 Ports

STEP 3: Open a web browser to access the boundary clock’s web device
manager.

NIC1:
Connect to boundary clock
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 73

System Configuration Tutorials
STEP 4: Enter the boundary clock’s IP address in the browser’s URL bar, press
Enter, and log in at the LogIn screen. The web device manager
dashboard will display.

Figure 3-14 Boundary Clock Dashboard
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 74

System Configuration Tutorials
STEP 5: In the left sidebar, click Configure, Time Protocols, and then PTP. The
PTP Settings panel will display.

Figure 3-15 Boundary Clock PTP Settings Screen

STEP 6: Enter the following PTP Global Settings:

• Version: click 2

• Mode: End-to-end boundary (this is required for UEI chassis)

• Domain: 0 (must be set to the same value on grandmaster and UEI
chassis -- refer to Table 3-1)

• Transport: UDPv4 (this setting is required for UEI chassis)

• Priority 1 / Priority 2: These default to 128. Lower numbers increase
priority in BMCA algorithm

• Clock class: 248 (the default)

NOTE: The lower PTP Interface Settings panel is used to configure individual
ports on the boundary clock. The ports that the PTP grandmaster and
UEI chassis are connected to must show as PTP Enabled in this table.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 75

System Configuration Tutorials
STEP 7: In the PTP Interface Settings table, click a port that is connected to a
UEI chassis or the PTP grandmaster and then click the Edit button. An
Edit PTP Interface Settings window will open.

Figure 3-16 Boundary Clock PTP Settings Screen

STEP 8: In the Edit PTP Interface Settings window, enter the following
parameters:

• Enable PTP: click box to enable

• Sync interval: 20 - 1 Seconds (must be set to the same value on
grandmaster and UEI chassis -- refer to Table 3-1)

• Announce interval: 24 - 16 Seconds (must be set to the same value on
grandmaster and UEI chassis -- refer to Table 3-1)

• Announce timeout: 3 messages (must be set to the same value on UEI
chassis -- refer to Table 3-1)

• Delay request interval: 21 - 2 Seconds (must be set to the same value
on UEI chassis -- refer to Table 3-1)

STEP 9: Click Apply.

STEP 10: Repeat steps 7, 8 and 9 for every port that needs PTP configuration
(those connected to the grandmaster and UEI chassis).
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 76

System Configuration Tutorials
3.2.4 Configuring a
UEI Chassis
for PTP
Synchro-
nization

UEI chassis are configured for IEEE-1588 synchronization by initializing PTP
interface parameters with a DqSyncDefinePTPServer API and defining PTP
mode in the DqSyncDefineSyncScheme API in your user application.

Note that the following tutorial is specifically for setting up the UEI chassis to use
PTP synchronization.

NOTE: Instructions for setting up clocks and triggers in PTP mode are the same
as in external 1PPS mode (see Section 3.1).

STEP 1: Verify the NIC1 ports of the UEI chassis are connected to boundary clock
ports (configured as PTP ports in Section 3.2.3).

STEP 2: Open your application and/or a UEI synchronization code example.

We highly recommend you start with existing UEI synchronization sample code
(1PPS or PTP) and update parameters instead of starting from scratch.

Refer to page 84 for location of sync sample code and naming conventions.

The following tutorial assumes you are starting from sample code.

STEP 3: Locate the DQ_SYNC_SCHEME structure for each chassis in your code.

Synchronization hardware is initialized using the DQ_SYNC_SCHEME structure.
Parameters that affect PTP synchronization are highlighted in red:

typedef struct {
 // ==== section A ===
 // IOM Sync Source Configuration
 uint32 sync_device; // IOM CPU type (5200,8347,or 8347S with PTP capability)
 uint32 sync_source; // external nPPS clock source
 uint32 sync_line; // which SYNC line to route external 1PPS clock
 uint32 sync_mode; // mode of synchronization
 uint32 nPPS; // N - number of pulses per second for input nPPS clock
 uint32 nPPS_us; // Expected accuracy of the nPPS clock in us

 // ==== section B ===
 // synchronization output: tell IOM to become 1PPS master
 uint32 sync_server;
 uint32 srv_param;
 uint32 trig_server;

 // ==== section C ===
 // clocks: select clock source for each SYNC line (0 thru 3)
 uint32 clock_src[DQL_SYNC_LINES];
 uint32 clock_tmr[DQL_SYNC_LINES];
 uint32 clock_frq[DQL_SYNC_LINES];
 uint32 clock_div[DQL_SYNC_LINES];
 // ==== section D ===
 // trigger: tell IOM where to get (or generate) and route trigger signal
 uint32 trig_source;
 uint32 trig_line;
 uint32 trig_start;
 uint32 trig_delay;
 uint32 trig_period_ms;
 uint32 trig_stop;
 uint32 trig_stop_src;
 uint32 trig_duration;

May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 77

System Configuration Tutorials
// ==== section E ===
 // destination to route signals: from SYNC lines or to the outside SyncOut0/1
 uint32 clclk_dest[DQL_SYNC_LINES];
 uint32 pps_dest;
 uint32 trig_dest;

} DQ_SYNC_SCHEME, *pDQ_SYNC_SCHEME;

STEP 4: For each chassis, set DQ_SYNC_SCHEME PTP-related parameters to the
following:

• Set sync_device to DQ_SYNC_8347S.
-- identifies the UEI chassis type as having IEEE-1588 hardware installed.

• Set sync_source to 0.
-- sets the hardware to generate a 1PPS locally via PTP instead of routing a
1PPS in from an external source.

• Set sync_line to 0.
-- tells the application that no external 1PPS reference signal needs to get
routed internally.

• Set sync_mode to DQ_SYNCCLK_1588 | DQ_SYNCCLK_ETH0
-- programs IEEE-1588 PTP protocol packet transfers over NIC1. NIC1
(DQ_SYNCCLK_ETH0) is the default; users could alternatively use NIC2
(DQ_SYNCCLK_ETH1).

• Set nPPS to 1.
-- sets signal generated from PTP timestamps for internal synchronization to
be a 1PPS signal.

• Set nPPS_us to 10000.
-- sets acceptable jitter range of signal generated from PTP timestamps.

• Set sync_server, srv_param, trig_server to 0.
-- not used in PTP synchronization.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 78

System Configuration Tutorials
The following code snippet shows initialization of the IEEE-1588-related parameters in the
DQ_SYNC_SCHEME structure in sample code:

Figure 3-17 Block Diagram of PTP Configuration on UEI CPU Board

Figure 3-18 Code Snippet of Synchronization Structure Settings for
PTP Sync

STEP 5: Add the PTP interface structure declaration with the other variable
declarations if it is not already there:

DQ_SYNC_DEFPTP ptp_cfg;

SYNC BUS

ADPLL

Trigger HW

Lo
ck

ed
 1

P
P

S

(To I/O Boards)

S
Y

N
C

 0

S
Y

N
C

 3

S
Y

N
C

 2

S
Y

N
C

 1

EM1 divider

Event Module

EM2 divider

Top/Left

CPU Board

Bottom/Right

CPU Board

10-pin sync

connector DNA-PPCx-1G-02 or DNA-PPCx-1G-03 Cube

DQ_SYNC_8347S

NIC2

NIC1

PHY

PHY

PTP

Logic

Raw 1PPS

(PTP sync)

NOTE: PHY / PTP Logic are only

available on -02 and -03

versions of Cube /RACK systems.

The rest of the interface is the same

for all versions. Configurable connection

Connection in this example

sync_mode = DQ_SYNCCLK_1588 | DQ_SYNCCLK_ETH0

sets up PTP synchronization mode and packet exchange on NIC1 (ETH0)
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 79

System Configuration Tutorials
STEP 6: Locate API that starts data acquisition:

If you want your trigger to be synchronized with the rising edge of the internal
PPS, verify you are using an API that does not send a software trigger
(otherwise your board will already be triggered and not use the synchronized
trigger). For example, DqRtVmapStartTr starts RtVMAP data acquisition
mode but does not issue the trigger to collect samples.

NOTE: Refer to section Section 4.2 on page 85 for more information about data
acquisition modes.

STEP 7: Locate the DqSyncDefineSyncScheme API.

Verify that DqSyncDefineSyncScheme APIs are called after the API that
starts data acquisition (located in the previous step).

STEP 8: Set the following PTP interface parameters, and call the
DqSyncDefinePTPServer configuration API.

NOTE: DqSyncDefinePTPServer must be called before calling the
DqSyncDefineSyncScheme API.

The following sets up a UEI chassis with the parameters defined in Table 3-1:

ptp_cfg.subdomain = 0;

ptp_cfg.logSyncInterval = 0; // This will be 20, or 1 second

ptp_cfg.logMinDelayRequestInterval = 1; // 21, or 2 seconds

ptp_cfg.logAnnouceInterval = 4; // 24, or 16 seconds
ptp_cfg.annouceTimeout = 3;

// Used in BMCA: lower numbers have higher priority
ptp_cfg.priority1 = 128;
ptp_cfg.priority2 = 128;

// ptp_cfg.cfg config can be used for debug. 0=normal operation
ptp_cfg.cfg = 0;
ptp_cfg.utcOffset = 37;

DqSyncDefinePTPServer(handle, 0, &ptp_cfg);
DqSyncDefineSyncScheme(handle, &sync_scheme_IEEE1588, &status);

NOTE: DqSyncDefinePTPServer specifically sets up the PTP Interface
parameters, and DqSyncDefineSyncScheme configures UEI
hardware for synchronization.
Refer to the PowerDNA API Reference Manual for detailed API
descriptions or to Chapter 2 for an overview of synchronization API.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 80

System Configuration Tutorials
STEP 9: Optionally add monitoring of the PTP status.

You can find status monitoring in a check_for_sync() function in UEI
synchronization sample code.

To monitor PTP status, add the following to check_for_sync():

a. Declare the PTP status structure:
DQ_SYNC_PTP_STAT PTPstat;

b. Call API for each UEI chassis:

DqSyncGetPTPStatus(hd[i], 0, &PTPstat);

c. Evaluate status:
The following prints the PTP state, Grandmaster Clock ID, and Master
Clock ID for UEI chassis i.

printf("State: %d: Grandmaster%d is: %x%x; PTP master%d is: %x%x \n",
PTPstat.state,
i,
(uint32)(PTPstat.grandMasterClockID>>32),
(uint32)PTPstat.grandMasterClockID,
i,
(uint32)(PTPstat.masterClockID>>32),
(uint32)PTPstat.masterClockID

);

STEP 10: If you have not set up synchronized clocks, timestamps, and triggers,
configure as required by your application.

• “Configuring Synchronized I/O Board Clocks” on page 57

• “Configuring Synchronized Triggers & Timestamps” on page 62

STEP 11: Save and build.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 81

System Configuration Tutorials
3.2.4.1 Setting PTP
Parameters
Via the Serial
Port

In PowerDNA hosted deployments (not UEIPACs), you have the option of
initializing PTP configuration parameters over the serial port before starting your
application. Note that you will still need to set DQ_SYNC_SCHEME parameters as
described in the previous section.

Use the following steps to set up PTP interface parameters via the serial port:

STEP 1: Connect the UEI chassis to a host PC over the serial port:

a. Attach a serial cable to the host PC and RS-232 port on the front panel
of the UEI chassis.

b. Run a serial terminal-emulation program (e.g., MTTTY) on the PC. Any
terminal-emulation program, except HyperTerminal, may be used
(MTTTY, Minicom, TeraTerm, PuTTY, etc.)

c. Verify that COM parameters are set at: 57600 baud, 8 bits, no parity,
1 stop bit.

d. Click Connect in MTTTY, or use the commands on one of the other
terminal-emulation programs to establish communication with the UEI
chassis.

STEP 2: Connect power to the UEI chassis, and power up.

Note that as soon as the system powers up, it runs through a self-diagnostic
mode and generates output on the serial terminal program.

The boot process finishes with a display of the chassis model number, serial
number, and slot positions of boards in the rack enclosure and states the uC/OS
is running.

After the boot process completes, you will see a DQ> prompt in the serial
terminal program for hosted UEI chassis.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 82

System Configuration Tutorials
STEP 3: At the prompt, type show to see the IEEE-1588 default parameters:

DQ> show

 name: "IOM-1"
 model: 3006
 serial: 0186837
 option: 0002
 fwct: 1.2.0.0
 mac: 00:0C:94:02:D9:D5
 srv: 192.168.100.2
 ip: 192.168.100.35 (1Gbit)
 gateway: 192.168.100.1
 netmask: 255.255.255.0
 mac2: 00:0C:94:F2:D9:D5
 srv2: 192.168.100.102
 ip2: 192.168.100.105 (DOWN)
 gateway2: 192.168.100.1
 netmask2: 255.255.255.0
 udp: 6334
 license: ""
 bond prm: bonding mode: FFFFFFFF
 1588 prm: master IP 255.255.255.255
 domain 255
 Log Announce Interval -1
 Announce Receipt Timeout 255
 Log Sync Interval: -1
 Manufactured 2/1/2018
 Calibrated 2/1/2018

NOTE: IEEE-1588 server parameters that are set via the
DqSyncDefinePTPServer API call will not display with the show
command. show only displays what parameters were updated to using
the set/store commands.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 3 83

System Configuration Tutorials
STEP 4: Type set 1588 prm at the prompt, and enter each of the parameters
(press Return to leave default values):

DQ> set 1588 prm
SETTING PTP PRAMS
fixed master IP [192.168.100.100] >
manually set master y/n >
PTP domain >0
PTP Log Announce Interval >4
PTP Announce Receipt Timeout >3
PTP Log Sync Interval >0
PTP Log min delay request >0
PTP priority 1 >125
PTP priority 2 >125
DQ>

NOTE: If you are asked for a password, the default password is powerdna.

STEP 5: Store the updated values to your system by typing store at the prompt.

STEP 6: Reset your chassis (either in hardware or by typing reset in the serial
terminal window).

NOTE: PTP settings set over the serial port will be used by default, instead of
requiring users to call DqSyncDefinePTPServer API. However, if the
DqSyncDefinePTPServer API is called in a user application, the
parameters set in the DqSyncDefinePTPServer API will override
parameters set over the serial port.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 4 84

Code Examples
Chapter 4 Code Examples

This chapter provides example code for reference when programming the
PTP / PPS Sync Interface.

The following sections are included:

• About Sync Code Examples (Section 4.1)

• Supported Data Acquisition Modes for Sync Interface (Section 4.2)

• Example Code for Synchronization in RtVMap Mode (Section 4.3)

• Example Code for Synchronization in ACB Mode (Section 4.4)

4.1 About Sync
Code
Examples

The following sections contain code snippets and provide a brief overview of
how to set up and use the synchronization interface using the low-level API.

For best results, use in conjunction with actual code samples, which can be
found in the following directories:

• On Windows systems:
Start » All Programs » UEI » PowerDNA » Examples » C Examples

• PowerDNA installations on Linux systems:
<PowerDNA-x.y.z>/src/DAQLib_Samples

• UEIPAC installations on Linux systems:
<ueipac-x.y.z>/sdk/examples

Note that the name of the mode and the name of the I/O boards being
programmed are embedded in the sample name. For example,
SampleVMap207_217 contains sample code for synchronizing an AI-207 and
AI-217 using RtVMap data acquisition mode.

See Section 4.2 for a brief description of each of the data acquisition modes.

NOTE: For users programming with the DAQLIB framework (C++, C#,
LabVIEW, etc.), please refer to the UeiDaq Framework User Manual.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 4 85

Code Examples
4.2 Supported
Data
Acquisition
Modes for
Sync
Interface

The following data acquisition modes are supported for UEI chassis configured
to use PTP or PPS synchronization:

• ACB: Advanced Circular Buffer

• RtDMAP: Data-Mapped I/O data transfers, with the timebase for
transfers maintained by host application (1 sample per channel)

• RtVMAP: Variable-data-size Mapped I/O data transfers, with the
timebase for transfers maintained by host application

• aDMAP: Data-Mapped input data transfers, with the timebase for
transfers maintained by IOM (1 sample per channel)

• aVMAP: Variable-data-size Mapped input data transfers, with the
timebase for transfers maintained by IOM

API that implement data acquisition modes are described in the PowerDNA API
Reference Manual.

4.3 Example
Code for
Synchro-
nization in
RtVMap Mode

This section provides an overview of how to set up and synchronize a UEI
chassis to an external 1PPS reference when acquiring data in RtVMap mode.

The following code snippets are provided:

• Initialization

• Initializing the chassis, I/O boards, synchronization scheme, and
RtVMap data transfer mode

• Configuration

• Clearing any existing configuration from previous runs

• Configuring channels and RtVMaps and configuring synchronization on
each I/O board

• Verification (optional)

• Verifying 1PPS validation reading ADPLL status

• Arm Trigger & Reset Timestamp

• Sending broadcast commands to all configured IOMs

• Operation: Send / Receive Messages

• Sending and receiving messages in RtVMap mode

• Stop Cleanly

• Disabling boards cleanly

NOTE: Refer to the PowerDNA API Reference Manual for detailed descriptions
of the API discussed in this section.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 4 86

Code Examples
4.3.1 Initialization
(RtVMap)

First we initialize synchronization and data acquisition settings.

4.3.1.1 Initialize Sync
Interface
(RtVMap)

UEI chassis are initialized for synchronization by defining parameters in a
DQ_SYNC_SCHEME structure and passing those definitions via an API call. In
UEI-provided sample code, this structure is declared globally and initialized in
the declaration.

The following code snippet configures the sync interface as follows:

• a PPCx-1G IOM is configured as the 1PPS master
• I/O board clocks are generated in the Event Module (EM)
• Triggers are generated internal to the IOM and issued to all configured I/O

boards on the rising edge of the locked 1PPS after armed by a broadcast
message

DQ_SYNC_SCHEME sync_scheme_1PPS = {
// ==== section A ==
// IOM synchronization
// ADPLL takes 1PPS from sync line 0
 DQ_SYNC_8347, // sync_device: 8347 CPU inside IOM being synched
 DQ_SYNCCLK_SYNCIN0, // sync_source: raw nPPS routed in through

 // SyncIn0 of external sync connector
 DQ_SYNCCLK_SYNC0, // sync_line: raw 1PPS routed from sync connector to

 // internal SYNC0 bus line
 DQ_SYNCCLK_SYNC, // sync_mode: synchronization mode is 1PPS
 1, // nPPS: raw nPPS input is one pulse per second
 100, // nPPS_us: Expected accuracy of the raw nPPS clock

 // is 100 us, pulses outside of the range
 // will be ignored

// ==== section B ==
// Synchronization master configuration (synchronization output)

DQ_SYNCSRV_1PPS, // sync_server: IOM will generate its own 1PPS pulse
DQ_SYNCSRV_SYNCOUT0, // srv_param: raw 1PPS will route out SyncOut0

 // on sync connector, which will be routed
 // back in over SyncIn0 and used as 1PPS for chassis

 0, // trig_server: <Reserved>, set to 0.

 // ==== section C ===
 // Clock configuration
 {0, 0, DQ_CLOCKSRC_EM0, 0}, // clock_src[]: PPS synched EM clock routed

// on SYNC2 internal bus line for
// distribution to I/O boards

 {0, 0, 0, 0}, // clock_tmr[]: <Reserved>, set to 0.
 {0, 0, 8000, 0}, // clock_frq[]: clock frequency = 8 kHz

// on SYNC2
 {0, 0, 0, 0}, // clock_div[]: no clock divider for EMx

May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 4 87

Code Examples
 // ==== section D ==
 // Trigger configuration
 DQ_USE_SYNC3, // trig_source: trigger will be routed to internal bus

// line SYNC3 for distribution to I/O boards
 0, // trig_line: <Reserved>, set to 0.
 DQ_TRIGSTART_NPPS,// trig_start: trigger will be issued upon next nPPS

// after armed by broadcast trigger
 0, // trig_delay: no trigger delay
 0, // trig_period_ms: <Reserved>, set to 0.
 0, // trig_stop: no trigger stop programmed
 0, // trig_stop_src: DQ_TRIGSTOP_NCLOCKS not set,

// no src programmed
 0, // trig_duration: DQ_TRIGSTOP_NCLOCKS not set, no

// duration programmed

 // ==== section E ==
 // External Sync or Internal SYNC lines routing configuration
 {0, 0, 0, 0}, // clclk_dest[]: external routing already configured
 0, // pps_dest: not routing PPS from sync to external
 0 // trig_dest: not routing trigger out sync connector
};

4.3.1.2 Initialize IOM
(RtVMap)

To initiate communication with Cubes and RACKs in your system, you must first
get a DAQLib handle for each IOM by calling DqOpenIOM():

// Connect with all IOM and obtain library handle(s) for the connection(s)
DqOpenIOM(iom_ip, // chassis IP address

DQ_UDP_DAQ_PORT, // host PC UDP port used communication
1000, // timeout duration in milliseconds
&hd, // pointer to the IOM handle
&DQRdCfg); // pointer to store echoed device results

// NULL if not required

NOTE: DqOpenIOM() sets up communication.
Prior to that, you will also see a DqInitDAQLib() function in C
examples. This function allocates resources and data structures for
UEI’s DAQLib libraries. The DqInitDAQLib() is not required when
programming in a Windows environment; libraries are initialized
automatically when loading the DLL on Windows systems. It is required
when programming in Linux.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 4 88

Code Examples
4.3.1.3 Initialize I/O
Board
Channels
(RtVMap)

The following code snippet sets up board-specific initialization, (i.e., which
channels are enabled, what gain is required, specific modes required) for the
AI-207 analog input board:

int n; // temporary index
int clIdx = 0; // channel index
int data_chans; // variable to hold number of AI channels to configure
int cl[CHANNELS]; // CHANNELS is #defined as the total # enabled + TS
int flags[CHANNELS]; // flags will receive the status of FIFO
int avl_size, data_size;

data_chans = CHANNELS - TIMESTAMP; // TIMESTAMP is #defined as 1 for yes, 0 no

// Set up analog input channels: The gain and other modes are ORed in
// with the channel list and configured in a channel list array (cl)
// which gets passed later to the VMAP initialization

 for (n = 0; n < data_chans; n++) {
 cl[clIdx] = n | DQ_LNCL_GAIN(DQ_AI208_GAIN_1) | DQ_LNCL_DIFF;
 flags[clIdx] = DQ_VMAP_FIFO_STATUS;
 clIdx++;
 }

// If timestamps are enabled, the last item in the channel list will be
// the timestamp value
 if (TIMESTAMP) {
 cl[clIdx] = DQ_LNCL_TIMESTAMP;
 flags[clIdx] = DQ_VMAP_FIFO_STATUS;
 clIdx++;
 }

4.3.1.4 Initialize VMAP RtVMap data transfers are initialized for each IOM. VMAP initialization includes
creating a unique VMAP ID.

int vmapid = -1; //initialize vmap

// Create VMap - each IOM will use a unique vmapid (hd is IOM handle)
DqrtVMapInit(hd, &vmapid, 1000);
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 4 89

Code Examples
4.3.2 Configuration
(RtVMap)

Configuration consists of setting up a VMAP buffer based on the number of
channels in the channel list and then configuring the synchronization settings on
each I/O board.

4.3.2.1 Configure
RtVMap

This example builds an input buffer to store data from the channels configured
on only one I/O board, the AI-207 board; however, VMAPs usually consist of
multiple I/O boards.

// Add a board to the VMap: sets ‘1’ VMAP channel for AI-207 as last parameter
// (a single FIFO on the I/O board holds all data from the physical channels)
DqrtVMapAddChannel(hd, vmapid, devn, DQ_SS0IN, cl, flags, 1);

// Set channel list for device included in the VMap:
// sets physical channels + TS for the AI-207 board
DqrtVMapSetChannelList(hd, vmapid, devn, DQ_SS0IN, cl, CHANNELS);

Note that both DqrtVMapAddChannel() and
DqrtVMapSetChannelList() require a channel size as the last
parameter passed.

• DqrtVMapAddChannel() requires a VMAP channel list: for boards with
one FIFO, this VMAP channel size will be 1 (AI, AO, and DIO boards).

• DqrtVMapSetChannelList() requires the number of physical
channels to acquire data for.

Refer to the PowerDNA API Reference Manual for additional explanation of the
difference between VMAP channels and physical channels.

// Start VMap. This function puts the IOM into OPS mode and suppresses
// immediate software triggers. Trigger can then be issued via hardware or
// broadcast message
DqrtVMapStartTr(hd, vmapid, FALSE);

// Specify that you want to read up to MAX_SCANS bytes from the device
// -- act_size is returned from the function and holds the maximum # of samples
// that can be returned (this may be less than what is requested)
int act_size;
DqrtVMapRqInputDataSz(hd, vmapid, 0, MAX_SCANS*CHANNELS*sizeof(uint32),
&act_size, NULL);
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 4 90

Code Examples
4.3.2.2 Set up
Synchro-
nization
(RtVMap)

After the IOM is put into the Operation (OPS) state, synchronization settings can
be set up with the DqSyncDefineSyncScheme() API.

DqSyncDefineSyncScheme() must be called after the IOM is in OPS.
Calling it before the IOM is in the OPS state will result in some hardware settings
being reset.

// Set the sync_scheme structure in hardware after IOM is in OPS state.
DqSyncDefineSyncScheme(hd, &sync_scheme_1PPS, &status);

// Set up clocks for I/O board: initialize clock structure
DQ_SYNC_DEF_CLOCKS defclocks =

{DQ_SYNCCLLK_SYNC2, // clocks supplied from SYNC line 2
8, // board sample rate is clock rate on SYNC2 ÷ 8
-1, // use default group delay
0}; // set flags to 0

// Set up board-specific synchronization parameters:
// - Set up clocks on device (devn set to slot position the AI-207
// is installed in the chassis)
DqSyncDefineLayerClock(hd, devn, &defclocks);

// - Set up triggers on device (trigger source found on SYNC line 3)
DqSyncDefineLayerTrigger(hd, devn, DQ_SYNCTRG_SYNC3, 0);

// - Set up timestamps on device (timestamps incremented by
// sample rate clock on SYNC line 2)
DqSyncDefineLayerTimestamp(hd, devn, DQ_SYNCTST_SYNC2, 0);

4.3.3 Verify ADPLL
Status
(RtVMap)

Before triggering data collection to start, you can optionally check the status of
the ADPLL. Once the ADPLL is trained on the raw 1PPS, CPU-generated
sample rate clocks will be synchronized to each other for all I/O boards on all
configured chassis.

The ADPLL validation flags are read using the DqSyncGetSyncStatus()
API.

// Check status registers to verify status states
int passing_validation; // holds validation status for user-determined checks
DQ_SYNC_STATUS astatus;

passing_validation = FALSE;
DqSyncGetSyncStatus(hd, 0, &astatus);

// Bits 2 & 1 of the astatus.adpll_sts.status register provide validation
// status of the ADPLL 1PPS reference. ‘1’ is passing validation
if ((astatus.adpll_sts.status & 4) && (astatus.adpll_sts.status & 2))

passing_validation = TRUE;

NOTE: DqSyncGetSyncStatus() returns status information from several
status registers. Refer to the PowerDNA API Reference Manual for bit
descriptions of each register.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 4 91

Code Examples
4.3.4 Arm Trigger &
Reset
Timestamp
(RtVMap)

In this example, we are arming the IOM with a broadcast message, which
causes IOM hardware to issue a trigger to all configured boards upon the rising
edge of the next 1PPS pulse. We also reset the timestamp on all chassis to a
known value (0) for timestamp alignment.

// Arm command to trigger on the next 1PPS

DqSyncTrigOnNextPPSBrCast(hd, // handle to IOM
 1, // number of IOM broadcasting to
 0, // <Reserved>, set to 0
 &hd); // list of handles of IOMs to trigger

// issue a broadcast command to reset timestamp to 0
DqCmdResetTimestampBrCast(hd, 0);

4.3.5 Send / Receive
Messages
(RtVMap)

After synchronization is setup and triggers are armed, we can begin acquisition.
Calling DqrtVMapRefresh() initiates a packet transfer between the host and
IOM and updates the data on the host side with the newly acquired data from the
I/O board’s FIFO.

// Host exchanges packets with the chassis. In the case of the AI-207,
// this function reads data from the FIFO
DqrtVMapRefresh(hd, vmapid, 0);

// Data is unpacked and parsed at the host side, and the A/D data
// that was acquired is copied into the bdata array

// declare bdata
uint32 bdata[MAX_SCANS];

// extract received data from packet: data_size is number of bytes actually read
DqrtVMapGetInputData(hd, vmapid, 0, MAX_SCANS*CHANNELS*sizeof(uint32),
&data_size, &avl_size, (uint8*)bdata);

// data is pulled out of buffer and converted to floating point data
FILE* fo = NULL; // output file for holding data

for (n = 0; (uint32)n < (data_size/sizeof(uint32))/CHANNELS; n++) {
for (ch = 0; ch < CHANNELS; ch++) {

bdata[n*CHANNELS+ch] = ntohl(bdata[n*CHANNELS+ch]);
if (cl[ch] == DQ_LNCL_TIMESTAMP) {

printf(fo, "%d", (bdata[n*CHANNELS+ch]));
} else {

DqAdvRawToScaleValue(hd, devn, cl[ch],
(bdata[n*CHANNELS+ch]), &fdata[n*CHANNELS+ch]);

fprintf(fo, "%.6f,", fdata[n*CHANNELS+ch]);
}

}
fprintf(fo, "\n");}
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 4 92

Code Examples
4.3.6 Stop Cleanly
(RtVMap)

The following API stops operation and disables the boards cleanly.

//Stop the devices and free all resources:
DqrtVMapStop(hd, vmapid);

DqrtVMapClose(hd, vmapid);
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 4 93

Code Examples
4.4 Example
Code for
Synchro-
nization in
ACB Mode

This section provides an overview of how to set up and synchronize a UEI
chassis to an external 1PPS reference when acquiring data in ACB mode.

The following code snippets are provided:

• Initialization

• Initializing the chassis, I/O boards, synchronization scheme, and ACB
data transfer mode

• Configuration

• Clearing any existing configuration from previous runs

• Configuring channels and ACB transfers

• Configuring synchronization on each I/O board

• Verification (optional)

• Verifying 1PPS validation reading ADPLL status

• Arm Trigger & Reset Timestamp

• Sending broadcast commands to all configured IOMs

• Operation: Send / Receive Messages

• Sending and receiving messages in ACB mode

• Stop Cleanly

• Disabling boards cleanly

4.4.1 Initialization
(ACB)

Synchronization and data acquisition settings are initialized first.

4.4.1.1 Sync
Initialization
(ACB)

Each chassis is initialized for 1PPS synchronization in the DQ_SYNC_SCHEME
structure. In UEI-provided sample code, this structure is declared globally and
initialized in the declaration.

Sync initialization is exactly the same for all of the data acquisition modes. The
code snippet in the VMAP tutorial (Section 4.3.1.1) configures the IOM as the
1PPS master; for this example, we’ll configure the IOM as a slave to show an
alternate example.

The following code snippet configures the sync interface as follows:

• RACK IOM is configured as the 1PPS slave
• I/O board clocks are generated in the Event Module (EM)
• Triggers are armed in software and generated in the IOM

DQ_SYNC_SCHEME sync_scheme_1PPS = {
// ==== section A ==
// IOM synchronization
// ADPLL takes 1PPS from sync line 0
 DQ_SYNC_8347, // sync_device: RACK (8347 CPU) IOM being synched
 DQ_SYNCCLK_SYNCIN0, // sync_source: raw nPPS routed in through

 // SyncIn0 on external sync connector
 DQ_SYNCCLK_SYNC0, // sync_line: raw 1PPS routed from sync connector to

 // internal SYNC0 bus line
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 4 94

Code Examples
 DQ_SYNCCLK_SYNC, // sync_mode: synchronization mode is 1PPS
 1, // nPPS: raw nPPS input is one pulse per second
 100, // nPPS_us: Expected accuracy of the raw nPPS clock

 // is 100 us, pulses outside of the range
 // will be ignored

// ==== section B ==
// Synchronization master configuration (synchronization output)

0, // sync_server: slave IOM receives 1PPS pulse externally
0, // srv_param: n/a since this is a slave IOM
0, // trig_server: <Reserved>, set to 0.

// ==== section C ===
// Clock configuration

{0, 0, DQ_CLOCKSRC_EM0, 0}, // clock_src[]: PPS synched EM clock routed
// on internal SYNC2 bus line to I/O boards

{0, 0, 0, 0}, // clock_tmr[]: <reserved>
{0, 0, 2000, 0}, // clock_frq[]: clock frequency = 2 kHz

// on SYNC2
{0, 0, 0, 0}, // clock_div[]: no clock divider for EMx

// ==== section D ==
// Trigger configuration

DQ_USE_SYNC3, // trig_source: trigger routed to internal SYNC3 for
// I/O board distribution

 0, // trig_line: <Reserved>, set to 0.
 DQ_TRIGSTART_NPPS,// trig_start: trigger will be issued upon next nPPS

// after armed
 250, // trig_delay: 250 us trigger delay
 0, // trig_period_ms: <Reserved>, set to 0.
 0, // trig_stop: no trigger stop programmed
 0, // trig_stop_src: DQ_TRIGSTOP_NCLOCKS not set,

// no src programmed
 0, // trig_duration: DQ_TRIGSTOP_NCLOCKS not set, no

// duration programmed

 // ==== section E ==
 // External Sync or Internal SYNC lines routing configuration

 {0, 0, 0, 0}, // clclk_dest[]: external routing already configured
 0, // pps_dest: not routing PPS from sync to external
 0 // trig_dest: not routing trigger out sync connector
};
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 4 95

Code Examples
4.4.1.2 I/O Board
Initialization of
Config
Settings (ACB)

In ACB mode, I/O board configuration is passed to the ACB API that starts
operations (DqAcbInitOps()). In UEI example code, these parameters are
often set up as a global #define, as shown below.

#define CFG207(DQ_LN_ENABLED \
 | DQ_LN_ACTIVE \

 | DQ_LN_IRQEN \
 | DQ_LN_STREAMING \
 | DQ_AI208_MODEFIFO \
 | DQ_LN_RAW32 \
 | DQ_LN_CLCKSRC1 \ // use SYNC line for clock
 | DQ_LN_STRIGEDGE0) // wait for digital trigger

Refer to the PowerDNA API Reference Manual for detailed descriptions of the
configuration settings, or refer to ACB example code for specific configuration
settings for each type of I/O board.

4.4.1.3 Initialize IOM
(ACB)

You will see a DqInitDAQLib() function as the first API call in C examples.
This function allocates resources and data structures for UEI’s DAQLib libraries.
The DqInitDAQLib() is not required when programming in a Windows
environment; libraries are initialized automatically when loading the DLL on
Windows systems. It is required when programming in Linux.

The high-level API is based on the use of the DQEngine, a programming
environment that takes care of handling streams of data and that performs error
correction. The DQEngine must be started explicitly for ACB mode:

pDQE pDqe = NULL;

// Start engine
DqStartDQEngine(1000*1, // main clock period

&pDqe, // pointer init parameters (timeouts, retries)
NULL); // NULL uses default pDqe (recommended)

To initiate communication, you must first get a DAQLib handle for each IOM by
calling DqOpenIOM():

// Connect with all IOM and obtain library handle(s) for the connection(s)
DqOpenIOM(iom_ip, // chassis IP address

DQ_UDP_DAQ_PORT, // host PC UDP port used communication
1000, // timeout duration in milliseconds
&hd, // pointer to the IOM handle
&DQRdCfg); // pointer to store echoed device results

// NULL if not required
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 4 96

Code Examples
4.4.1.4 Initialize I/O
Board
Channels
(ACB)

The following code snippet sets up board-specific initialization, (i.e., which
channels are enabled, what gain is required, specific modes required), for the
AI-207 analog input board:

int n; // temporary index
int CL[CHANNELS]; // CHANNELS is #defined as the total # enabled + Timestamp
int flags[CHANNELS]; // flags will receive the status of FIFO

// Set up channel list
for (n = 0; n < CHANNELS; n++) {

CL[n] = n | DQ_LNCL_DIFF; // enables differential input mode
}

// allocate a channel as the timestamp: last channel in the list is timestamp
CL[CHANNELS-1] = DQ_LNCL_TIMESTAMP;

4.4.1.5 Initialize ACB Each new advanced circular buffer (ACB) will have a buffer control block (BCB)
structure allocated to it.

// DqAcbCreate allocates a new buffer and links it with DQEngine and IOM
pDQBCB bcb = {NULL};
DqAcbCreate(pDqe, // pointer to previously created DQE instance

hd, // handle to IOM
devices, // I/O board ACB is allocated to
DQ_SS0IN, // subsystem: #define specifying inputs for AI-207
&bcb); // newly allocated BCB structure
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 4 97

Code Examples
4.4.2 Configuration
(ACB)

Configuration consists of setting up the ACB buffer with a channel specific
information, setting up events, starting operations, and configuring the
synchronization settings on each I/O board.

4.4.2.1 Configure
ACB

Set up parameters in an ACB structure and then set it using the
DqAcbInitOps() API to configure the AI-207 board.

ACB parameters are configured in a structure of type DQACBCFG:

DQACBCFG acb; //declare acb

// initialize acb parameters as listed in above table: See example code
// for recommended values for each DQACBCFG parameter

// Set structure with API
DqAcbInitOps(bcb, //set up in DqAcbCreate (see Section 4.4.1.5)

&Config, // Config is #define CFG207 (see Section 4.4.1.4)
0, // Trig,
NULL, // pDQSETTRIG TrigMode,
&fCLClk, // 207 uses CLClk, which is generally used for

 // boards with multiplexed inputs
 // CVClk is generally used for boards with
 // simultaneously sampled inputs

&fCVClk, // In this example, fCVClk = fCLClk = CLCLOCK =1k
&CL, // CL is set to the number of channels enabled
CL, // array of channel configuration (Section 4.4.1.4)
0, // uint32* ScanBlock,
&acb); // acb structure defined using Table 4-1 parameters

DQACBCFG Structure Element Description

uint32 samplesz raw sample , bytes

uint32 scansz scan , samples

uint32 framesize number of scans in the frame, max

uint32 frames frames in the buffer

uint32 ppevent packets per DQ_ePacketDone event

uint32 mode mode of operations: Single,Cycle,Recycled,error handling

uint32 dirflags transfer direction and additional flags

uint32 maxpkt how much data to accumulate in the packet before

sending (0=default)

uint32 hwbuf how much data to keep on the cube (0 = default)

uint32 hostringsz number of packets in the host ring buffer (0 = default)

uint32 wtrmark percent of the ring buffer queue packets kept in case IOM

reports an error

Table 4-1 DQACBCFG Structure
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 4 98

Code Examples
4.4.2.1.1 Set Up ACB
Buffer Variable

The acb circular buffer consists of a number of frames (acb.frames). Each
frame consists of a number of scans (acb.framesize). Each scan consists
of a number of samples (acb.scansz). The structure DQly205_float
holds a uint32 raw piece of data and a float data value. DQly205_float
represents a single sample of data.

The following code allocates enough space for the full circular buffer:

bufsize = acb.framesize * acb.frames; // bufsize is in scans
data = malloc(bufsize * sizeof(DQly205_float) * acb.scansz);

4.4.2.2 Set Up Events
(ACB)

Events must be set up to tell the application when to read data from or service
the buffer. When acquisition starts, DQE stores data into the circular buffer at the
head of the buffer while the application generally reads data from the last frame
of the buffer, or tail. Both operations occur asynchronously and are synchronized
by triggering a DQE event.

Whenever incoming data crosses a frame boundary, DQE sends an event to the
application, which in turn will read the existing data stored in the tail of the
circular buffer.

The following API sets up events to do this:

DqeSetEvent(bcb,
DQ_eFrameDone|DQ_ePacketLost|DQ_eBufferError|DQ_ePacketOOB|DQ_eBufferDone);

Where an interrupt will be generated on any of the following bcb event control
flags:

DQ_eFrameDone: One or more frames are filled with data

DQ_ePacketLost: Error is unrecoverable, one or more packets are lost

DQ_eBufferError: Overrun/under-run event (DQACB buffer only)

DQ_ePacketOOB: Packet is out of bounds

DQ_eBufferDone: Buffer is completed (straight buffer only)

4.4.2.3 Starting ACB
Operations

ACB operations are started by the DqeEnable() API.

DqeEnable(TRUE, // True to enable operations
bcb, // pointer to bcb (or array of bcbs)
1, // BcbNum: # of bcb array
FALSE); // True to start simultaneously with

 // software trigger
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 4 99

Code Examples
4.4.2.4 Set up
Synchro-
nization (ACB)

After the IOM is put into the Operation (OPS) state, synchronization settings can
be set up by calling the DqSyncDefineSyncScheme() API.
DqSyncDefineSyncScheme must be called after the IOM is in OPS; calling
it before will result in some hardware settings being reset.

// Set the sync_scheme structure in hardware after IOM is in OPS state.
DqSyncDefineSyncScheme(hd, &sync_scheme_1PPS, &status);

// Set up clocks for I/O board: initialize clock structure
DQ_SYNC_DEF_CLOCKS defclocks =

{DQ_SYNCCLLK_SYNC2, // clocks supplied from SYNC line 2
8, // sync line 2 clock frequency is divided by 8
-1, // use default group delay
0}; // no special mode flags

// Set up board-specific synchronization parameters:
// - Set up clocks on device (devn identifies which slot position the AI-207
// is installed in the chassis)
DqSyncDefineLayerClock(hd, devn, &defclocks);

// - Set up triggers on device (trigger source found on SYNC line 3)
DqSyncDefineLayerTrigger(hd, devn, DQ_SYNCTRG_SYNC3, 0);

// - Set up timestamps on device (timestamps incremented by
// sample rate clock on SYNC line 2)
DqSyncDefineLayerTimestamp(hd, devn, DQ_SYNCTST_SYNC2, 0);

4.4.3 Verify ADPLL
Status (ACB)

Before triggering data collection to start, you can optionally check the status of
the ADPLL. Once the ADPLL is trained on the raw 1PPS, CPU-generated
sample rate clocks will be synchronized to each other for all I/O boards on all
configured chassis.

The ADPLL validation flags are read using the DqSyncGetSyncStatus()
API.

// Check status registers to verify status states
int passing_validation; // holds validation status for user-determined checks
DQ_SYNC_STATUS astatus;

passing_validation = FALSE;
DqSyncGetSyncStatus(hd, 0, &astatus);

// Bits 2 & 1 of the astatus.adpll_sts.status register provide validation
// status of the ADPLL 1PPS reference. ‘1’ is passing validation
if ((astatus.adpll_sts.status & 4) && (astatus.adpll_sts.status & 2))

passing_validation = TRUE;

NOTE: DqSyncGetSyncStatus() returns status information from several
status registers. Refer to the PowerDNA API Reference Manual for bit
descriptions of each register.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 4 100

Code Examples
4.4.4 Reset
Timestamp
and Arm
Trigger (ACB)

The following code snippet arms the IOM, which causes IOM hardware to issue
a trigger to all configured boards upon the rising edge of the next 1PPS pulse.
We also reset the timestamp on all chassis to a known value (0) for timestamp
alignment.

// issue a broadcast command to reset timestamp to 0
DqCmdResetTimestampBrCast(hd, 1, 0, &hd);

// issue a broadcast command to all identified IOM
// to trigger on the next 1PPS
DqSyncTrigOnNextPPS(hd, 0);

4.4.5 Send / Receive
Messages
(ACB)

After synchronization is setup and triggers are armed, the
DqeWaitForEvent() API waits for an event. Once an event occurs, we
determine which events caused the trigger by calling the DqeGetEvent() API.
If the event was caused because a frame completion, samples are acquired with
DqAcbGetScansCopy(), which populates the sample values in the data
buffer created in Section 4.4.2.1.1.

DqeWaitForEvent(bcb, // pointer to bcb (or array of bcbs)
1, // BcbNum: # of bcb array
FALSE, // wait mode
EVENT_TIMEOUT, // wait timeout
NULL); // buffer for event flags

uint32 events; // buffer for event flags associated with bcb

DqeGetEvent(bcb, &events);

// maximum errors allowed at a time #defined as 3 in this example
int errorsallowed = RETRY_ATTEMPTS;

//check reason for event
if (events & (DQ_ePacketLost|DQ_eBufferError|DQ_ePacketOOB)) {

printf("Device %d: error event 0x%x\n", devices, events);

// service error events as you want; you may want to retry
errorsallowed--;

}

uint32 i, size, avail, minrq;
// if the event was caused by a frame crossing, pull data out of ACB tail
if (events & DQ_eFrameDone) {

errorsallowed = RETRY_ATTEMPTS;
minrq = acb.frame;
avail = minrq;
while (TRUE) {

DqAcbGetScansCopy(bcb, data, acb.framesize, acb.framesize,
 &size, &avail);

}

May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Chapter 4 101

Code Examples
// AI-207 input data is retrieved and available in the data buffer
// the following parses data for each channel’s sample and prints it
samples[n] += CHANNELS;
for (i = 0; i < CHANNELS; i++) {

if ((i % CHANNELS) == (CHANNELS - 1)) {
fprintf(fp[n], "%f\t", *((float*)data[n] + i));
fprintf(fp[n], "\n");

}
else {fprintf(fp[n], "%f\t", *((float*)data[n] + i));}

}
if (events & DQ_eBufferDone) {

// Occurs when DQACB mode is Single and end of buffer is reached
break;

}

4.4.6 Stop Cleanly
(ACB)

The following API stops operation and disables the boards cleanly.

// Stop operations; number of devices is 1 because this example is
// only for one device, AI-207
DqeEnable(FALSE, bcb, 1, FALSE);

DqAcbDestroy(bcb); // destroy bcb buffer
free(data); // free malloc’ed data

// close IOM communications
DqCloseIOM(hd);

// stop DQE engine
if (pDqe) {
 DqStopDQEngine(pDqe);
}

// allow library to release resources and clean up allocated structures
DqCleanUpDAQLib();
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Appendix A 102
Appendix A
The following cables and STP panels are available for the 1PPS Sync Interface
boards:

• DNA-CBL-SYNC-10/R3 Cable & Schematic (Section A.1)

• DNA-CBL-SYNC-RJ-1G/R3 Cable Schematic (Section A.2)

• DNA-STP-SYNC-1G STP Panel (Section A.3)

A.1 DNA-CBL-
SYNC-10/R3
Cable &
Schematic

For a two-chassis system, UEI offers sync cables (DNA-CBL-SYNC-10/R3),
which are 30-inch 8-conductor cables that have the 10-pin sync connectors on
both ends. The R3 version of the cable can be used with PPCx cubes and also
with PPCx-1G cubes and racks. (The R2 version can only be used with PPCx
cubes.) See Figure A-1 below:

Figure A-1 Photo of DNA-CBL-SYNC-10/R3 Cable

For users who want to fabricate their own cables, the schematic for the DNA-
CBL-SYNC-10/R3 cable is shown in Figure A-2.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Appendix A 103
Figure A-2 Schematic of DNA-CBL-SYNC-10/R3 Cable

�
��

�
�

�
��

�
�
�

�
��

�
�

�
��

�
�
�

�
��

�
�
�

�
�
��

�
�

��
��
�
�

��
��
�
�
�

�
��

�
�

��
��
�

�
�

��
��
�

�
�

�
�
��

�
�

��
��
��
��
��
��
	�

�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��

��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��

��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��

��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��

��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��

��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��

��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��

��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��

��
��
��
�	

�
��

��
��
��
��
��
�

��
��
�

��
�	
�
��
��
��
�
��
�

��

!�
"#
 	
�

��

$
#%
&'

��
�(
&%
��
�#
�)
��
#�
%�
	$

*�
#�
�&
#%
*�
+�
�	
�&
,�
%-
*%
*�
"�
.-
%�
��
�/
0�
��
	%
�

��
�1
2#
%	

�
-�
�

&
-�
#�
$

�"
$-
$	
�'
�.
-�
"3
4�
"�
.-
%�
-%

�
#,
��
��
5)
��
"6

��
��
�#
��
&#
%*
�+
��
	&
�&
,$
 -
*�
.%
�
&%
*�
�

*�
��
	%
*�
�&
�&
#�
#%
*

��
��

�
��
��
��
��
	�

�
�*
��
�	
�6
��

��
�7
,�
%-
*'

��
��
��
�$

%"
#�
"�
.-
%�
&,
�%
-*
�#
$�
#,
%�
&,
�%
-*
�$
!�
��
��

*
��
��
"$

%"
#$
	&
�
�!
�&
,�
%-
*%
*�
"$

%"
#$
	&
��
	%
��

�
 &
%�

��
��
��
�$

%"
#�
"�
.-
%�
&,
�%
-*
�#
$�
#,
%�
+�

�
��
$!
�.
$#
,�
"$

%"
#$
	&
��
!�

&,
�%
-*
%*
�8
%	
&�
$

��
&�
 &
%*

��
��
�.
-%
�&
,$
 -
*�
!�
#�
#�
�,
#�
�

&�
*%
�#
,%
�"
$

%
"#
$	
�+
�&
&�
#,
	$
 �
,�
,$
-%

��
��
$

%
"#
$	
�*
�#
�&
,%
%#
'�
,#
#+
')
)�
��
�,
�	
$&
%�
"$
�9
+)
"�
#�
-$
�%
:,
+)
%�
��
��
��
��
+*
!

��
��
�.
-%
�&
,$
 -
*�
.%
�-
�.
%-
%*
��
�#
,�
(1
��
+)

�
�

*�
	%
8�
&�
$

'

��
��
;�
��
�<
�7
=;
��
��
)�
�

��
��
�.
-%
�&
,$
 -
*�
.%
�%
-%
"#
	�
"�
--
>�
#%
&#
%*

��
�<
1�
��
!	
%%
�8
%	
&�
$

�$
!�
#,
%�
"$

%"
#$
	&
��

*
�"
�.
-%
�6
�>
�.
%�
 &
%*
?�
�

�#
,�
&�
"�
&%
�"
�.
-%
�-
�.
%-

��
�&
,$
 -
*�
.%
�6
$*
�!
�%
*�
#$
��
;�
��
�<
�7
=;
��
��
)�
��
<@

�$
-$
	�
"$
*%
'

��
��
��
0	
%%

��
��
��
0	
%%

)
/,
�#
%

��
��
��
B	
�

�%

��
��
��
B	
�

�%
)/
,�
#%

��
�&
��

�
-&
'

��
��
��
��
��
��
��
�

�<
E:
�;

�<
E:
�;
:�
1D
(�
;

�<
E:
B(
D

�<
E:
B(
D:
�1
D(
�;

D�
�0
:�
;

D�
�0
:�
;:
�1
D(
�;

D�
�0
:B
(D

D�
�0
:B
(D
:�
1D
(�
;

��
�&
��

�
-&
'

��
��
��
��
��
��
��

�<
E:
�;

�<
E:
�;
:�
1D
(�
;

�<
E:
B(
D

�<
E:
B(
D:
�1
D(
�;

D�
�0
:�
;

D�
�0
:�
;:
�1
D(
�;

D�
�0
:B
(D

D�
�0
:B
(D
:�
1D
(�
;

F F
� � � � � � � � � ��

� � � � � � � � � ��

F F

(1
��
��
�D
�G
��
��
��
��

(1
��
��
�D
�G
��
��
��
��

��
��
��
�-
 %

��
��
��
�-
 %
)/
,�
#%

��
��
��
�	
$�

��
��
��
�	
$�

)
/,
�#
%

=��
��

+>
)�
+�

)�
?

=��
��

+>
)�
+�

)�
?

�����@695�+

=��
��

+>
)�
+�

)�
?

=��
��

+>
)�
+�

)�
?

�����@695�+
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Appendix A 104
A.2 DNA-CBL-
SYNC-RJ-1G/
R3 Cable
Schematic

The DNA-CBL-SYNC-RJ-1G cable is a synchronization cable with a male RJ
Ethernet connector at one end and a 10-pin sync connector at the other.

See Figure A-3 below:

Figure A-3 Photo of DNA-CBL-SYNC-RJ-1G Cable

The maximum cable length tested was 800 feet.

For users who want to fabricate their own cables, the schematic for the DNA-
CBL-SYNC-RJ-1G/R3 cable is shown in Figure A-4 below.

NOTE: Note that for sync connections, a cat5e or better cable is required.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Appendix A 105
Figure A-4 Schematic of DNA-CBL-SYNC-10/R3 Cable

�
��

�
�

�
��

�
�
�

�
��

�
�

�
��

�
�
�

��
��
�

�
�

�
�
��

�
�

��
��
�
�
�

�
��

�
�

A�
?
�
�
�

A�
?
�
�
�

�
��

�
�
�

�
�
��

�
�

��
��
�

�
�

��
��
�
�

��
�&

��

�

-&
'

��
��

��
��

��
��

��
��

��
��

�&
��

�
-&

'
��

��
��

��
��

��
��

��
��

��
�

��

!�
"#

 	
�

��

$

#%
&'

��
�(

&%
��

�+
��

	&
�	

$

*

�#
��

&#
%*

�+
��

	�
&,

�%
-*

%*
�"

�.
-%

��
��

/0
��

�	
%�

��
�

�-
+,

��
/�

	%
��

$	
+�

�+
�	

#�
G�

��
��

�
��

�1
2#

%	

�

-�
�

&
-�

#�
$

�"
$-

$	
�'

��
	�

>4
�"

�.
-%

�-
%

�#
,�

��
�5

)�
�"

6
��

��
�#

��
&#

%*
�+

��
	&

�&
,$

 -
*�

.%
�

&%
*�

�

*�

��
	%

*�
�&

�&
#�

#%
*

��
��

�
��

��
��

��
	�

�
�*

��
�	

�6
��

�7
,�

%-
*�

"$

%"
#�

$

'

��
��

��
�&

,�
%-

*%
*�

'�
"$

%"

#�
"�

.-
%�

&,
�%

-*
�#

$�
#,

%�
&,

�%
-*

�$
!�

��
��

��
��

�

&

,�
%-

*%
*�

'�
"$

%"

#�
&,

�%
-*

�#
$�

#,
%�

+�

�

��
$!

�#
,%

��
�

��
��

�.
-%

�&
,$

 -
*�

!�
#�

#�
�,

#�
�

&�
*%

�#
,%

�"
$

%
"#

$	
�+

�&
&�

#,
	$

 �
,�

,$
-%

��
��

$

%

"#
$	

�*
�#

�&
,%

%#
'�

,#
#+

')
)�

��
�,

�	
$&

%�
"$

�9
+)

"�
#�

-$
�%

:,
+)

%�
��

��
��

��
+*

��
��

�.
-%

�&
,$

 -
*�

.%
�-

�.
%-

%*
��

�#
,�

(1
��

+)

�

�

*�

	%
8�

&�
$

'
��

��
;�

��
�<

�7
=;

��
��

��
0)

��
��

��
�.

-%
�&

,$
 -

*�
.%

�%
-%

"#
	�

"�
--

>�
#%

&#
%*

��
�<

1�
��

!	
%%

�8
%	

&�
$

�$
!�

#,
%�

"$

%"
#$

	&
��

*
�"

�.
-%

�6
�>

�.
%�

 &
%*

?�
�

�#
,�

&�
"�

��
�"

�.
-%

�-
�.

%-
�&

,$
 -

*�
.%

�6
$*

�!
�%

*�
#$

��
;�

��
�<

�7
=;

��
��

��
0)

��
�<

@

D>
"$

�1
-%

"#
	$

�
"&

�+
�	

#�
G�

��
��

��
��

��

�<
E:

�;
�<

E:
�;

�<
E:

�;
:�

1D
(�

;
�<

E:
�;

:�
1D

(�
;

�<
E:

B(
D

�<
E:

B(
D

D�
�0

:�
;:

�1
D(

�;
�<

E:
B(

D:
�1

D(
�;

D�
�0

:�
;

D�
�0

:�
;

D�
�0

:�
;:

�1
D(

�;
D�

�0
:B

(D
:�

1D
(�

;

D�
�0

:B
(D

�<
E:

B(
D:

�1
D(

�;
5�

A�
�:

�
5�

A�
�:

�
5�

A�
�:

�
5�

A�
�:

�
D�

�0
:B

(D
D�

�0
:B

(D
:�

1D
(�

;

� � � � � � � � ���

�� � � � � � � � ��

(1
��

��
�D

�G
��

��
��

��
(1

��
��

�D
�G

��
��

��
��

��
��

��
��

��
��

	�

�

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�

��
��

�
��

��
��

��
��

��
��

��
��

�
��

��
��

��
��

��
�

��
��

��
��

��
��

��
��

��
�

��
��

��
��

��
��

�
��

��
��

��
��

��
��

��
��

�
��

��
��

��
��

��
�

��
��

��
��

��
��

��
��

��
�

��
��

��
��

��
��

�
��

��
��

��
��

��
��

��
��

�
��

��
��

��
��

��
�

��
��

��
��

��
��

��
��

��
�

��
��

��
��

��
��

�
��

��
��

��
��

��
��

��
��

�
��

��
��

��
��

��
�

��
��

��
��

��
��

��
��

��
�

��
��

��
��

��
��

�
��

��
1�

��
��

��
��

��
��

�
��

��
1�

��
��

��
�

��
��

1�
��

��
��

��
��

��
�

��
��

1�
�

�$
-$

	�
"$

*%
'

��
��

��
�%

*
��

��
��

�-
�"

3
��

��
��

0	
%%

��

��
��

�-
�"

3

��
��

��
=%

--
$�

��
��

��
�-

�"
3

��
��

��
�-

 %
��

��
��

�-
�"

3
1�

��
��

/,
�#

%
1�

��
��

�-
�"

3

D�
�&

#%
*�

+�
�	

&

�1
�

=1
<<

B/

�<
��

E

�<
��

E

�<
��

E
/C

�D
1

�<
��

E

0�
11

;

�<
��

E
�<

(1

=�

�
=�
+)
�+

!.
��

�

�1
�

=1
<<

B/

�<
��

E

�<
��

E

�<
��

E
/C

�D
1

�<
��

E

0�
11

;

�<
��

E
�<

(1

=�

�
=�
+)
�+

!.
��

�

� � � � � @ 6 9 5 �+

�<
��

E

/C
�D

1

�<
��

E
�1

�

�<
��

E

=1
<<

B/

�<
��

E
�<

(1
�<

��
E

0�
11

;

=� �
��

+>
)�
+�

)�
?

�<
��

E

/C
�D

1

�<
��

E
�1

�

�<
��

E

=1
<<

B/

�<
��

E
�<

(1
�<

��
E

0�
11

;

=� �
��

+>
)�
+�

)�
?

�����@695�+
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
Appendix A 106
A.3 DNA-STP-
SYNC-1G STP
Panel

The UEI DNA-STP-SYNC-1G STP board provides a simple method to connect
a single master to serve up to 6 slave ports on the STP. Additional slaves can be
added to the system by daisy-chaining STP boards together.

For more information, refer to the UEI DNx-STP-SYNC-1G Synchronization and
Screw Terminal Panel User Manual, which is available for download from
www.ueidaq.com. The manual also includes schematics for fabricating your own
interconnection cables, if desired.
May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

Tel: 508-921-4600 www.ueidaq.com Vers: 4.5
Date: 05. 31. 2018 1PPS Sync_InterfaceIX.fm

© Copyright 2018
United Electronic Industries, Inc.

May 2018 www.ueidaq.com
508.921.4600

© Copyright 2018
United Electronic Industries, Inc.

DNx 1PPS / PTP Synchronization Interface
 Index 107

Index
Numerics
1PPS synchronization 1, 35

A
ACB 85

C
Cable(s) 102, 104
Clock and Trigger Routing 20
Clock programming 36
Conventions 2

D
Data acquisition mode 85

E
External Sync Connections 7, 9

G
Getting Started with the SYNC API 21

I
Internal Sync Connections 15

O
Organization 1, 33, 34

P
Pinout 8
Programming the Sync Interface 21

S
Schematic 15
Screw-terminal panels 102
STP panel 102
Support 2
Synchronize Multiple Chassis 9, 10, 11, 12, 13, 14

T
Timestamp Reference 38
Trigger 37, 38

V
VMAP 85

	PowerDNx 1PPS / PTP Synchronization Interface Manual
	Table of Contents
	List of Figures
	Chapter 1 Introduction
	1.1 Organization of this Manual
	1.2 PPS / PTP Synchronization Overview
	1.2.1 PTP Synchronization
	1.2.2 PPS Synchronization
	1.2.3 Determining Product Versions

	1.3 Features
	1.4 External Connections for Synchronization
	1.4.1 Sync Connector Pinouts

	1.5 Hardware System Configuration Examples
	1.5.1 Synchronization Using an External 1PPS Signal
	1.5.2 Synchronization Using IEEE-1588 PTP Standard

	1.6 Internal Connections & Resources for Synchronization
	1.6.1 Internal SYNC Bus
	1.6.2 Adaptive Digital PLL
	1.6.3 I/O Board Clock & Trigger Resources

	1.7 I/O Board Clock & Trigger Configuration

	Chapter 2 Programming the Synchronization Interface
	2.1 About the Sync API
	2.2 Sync Structure for Hardware Configuration
	2.2.1 Sync Scheme Structure
	2.2.2 Section A: IOM SYNC Source Configuration
	2.2.3 Section B: Master Server Configuration
	2.2.4 Section C: Clock Configuration
	2.2.5 Section D: Trigger Configuration
	2.2.6 Section E: SyncOut Configuration

	2.3 Setting up the Sync Scheme
	2.4 Setting up PTP Server Parameters
	2.5 Programming I/O Board Clocks
	2.6 Setting I/O Board Triggers
	2.6.1 Arming Triggers

	2.7 Setting I/O Board Timestamp Reference
	2.7.1 Setting/ Resetting Timestamps

	2.8 Retrieving Status
	2.9 Retrieving PTP Status
	2.10 Retrieving UTC Time
	2.11 Disabling Sync / Releasing Sync Hardware

	Chapter 3 System Configuration Tutorials
	3.1 Configuring Synchronization to an External PPS
	3.1.1 Connecting Hardware for 1PPS Synchronization
	3.1.2 Configuring a UEI Chassis as 1PPS Master
	3.1.3 Configuring a UEI Chassis as 1PPS Slave
	3.1.4 Configuring Synchronized I/O Board Clocks
	3.1.5 Configuring Synchronized Triggers & Timestamps

	3.2 Configuring Hardware for PTP Synchronization
	3.2.1 Configuring PTP Interface Parameters
	3.2.2 Configuring a PTP Grandmaster
	3.2.3 Configuring a Boundary Clock (IEEE- 1588-capable Switch)
	3.2.4 Configuring a UEI Chassis for PTP Synchronization

	Chapter 4 Code Examples
	4.1 About Sync Code Examples
	4.2 Supported Data Acquisition Modes for Sync Interface
	4.3 Example Code for Synchronization in RtVMap Mode
	4.3.1 Initialization (RtVMap)
	4.3.2 Configuration (RtVMap)
	4.3.3 Verify ADPLL Status (RtVMap)
	4.3.4 Arm Trigger & Reset Timestamp (RtVMap)
	4.3.5 Send / Receive Messages (RtVMap)
	4.3.6 Stop Cleanly (RtVMap)

	4.4 Example Code for Synchronization in ACB Mode
	4.4.1 Initialization (ACB)
	4.4.2 Configuration (ACB)
	4.4.3 Verify ADPLL Status (ACB)
	4.4.4 Reset Timestamp and Arm Trigger (ACB)
	4.4.5 Send / Receive Messages (ACB)
	4.4.6 Stop Cleanly (ACB)

	Appendix A
	A.3 DNA-STP- SYNC-1G STP Panel

	Index

