

UEIPAC
Linux Software Development Kit

User Manual 5.0

December 2020 Edition

© Copyright 2020 United Electronic Industries, Inc. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means,
electronic, mechanical, by photocopying, recording, or otherwise without prior written permission.

UEIPAC SDK User Manual

Table of contents

1 Introduction..1

1.1 Kernel Options...3

2 Setting up a development system..4

2.1 Windows host..4

2.2 Linux host..6
2.2.1 Preparing your 64-bit Linux host...6
2.2.2 Installing UEIPAC software on your Linux host..6

2.3 SDK directory layout...7

3 Configuring the UEIPAC..8

3.1 Connecting through the serial port..8

3.2 Root filesystem..13
3.2.1 Booting from an SD card...14
3.2.2 Booting from an SSD drive...16
3.2.3 Booting from an MTD partition (Flash)..18
3.2.4 Booting from a RAM disk...19
3.2.5 Booting from an NFS share...24
3.2.6 Revert to booting from an SD card..25

3.3 Configuring the Network...26
3.3.1 Configuring a static IP address..26
3.3.2 Changing the default packet size (MTU)...27
3.3.3 Configuring dynamic IP address (using a DHCP server)..............................28
3.3.4 Name resolution...29
3.3.5 Connecting through Telnet..29
3.3.6 Connecting through SSH...29
3.3.7 Configuring DHCP server...30

3.4 Configuring date and time...30
3.4.1 Changing the date..30
3.4.2 Changing the time zone...30
3.4.3 Connecting to an NTP server...31

3.5 Changing the password..31

3.6 Configuring the web server...31

3.7 System logger..31

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. i 508.921.4600

UEIPAC SDK User Manual

4 Transferring files..33

4.1 NFS..33

4.2 FTP Client..33

4.3 FTP Server...33

4.4 SSH..33

4.5 TFTP Client...34

4.6 Windows shared directory...34

5 Connecting USB devices..35

5.1 USB mass storage..35

5.2 Wifi network interface...36
5.2.1 Load kernel modules..37
5.2.2 Connection to an open access point...37
5.2.3 Connection to an access point with WEP security..38
5.2.4 Connection to an access point with WPA/WPA2 security............................38
5.2.5 Direct connection to another computer in ad-hoc mode................................40

5.3 UMTS/GSM modem...40
5.3.1 Prerequisite..40
5.3.2 Manual configuration...41
5.3.3 Automatic startup...44

5.4 Serial Port..44
5.4.1 Load kernel modules..44
5.4.2 Automatic startup...45

5.5 LibUSB..45
5.5.1 Prerequisite..45
5.5.2 Write a program using libusb..45

6 Serial Port...46

6.1 UEI Serial Server...46

6.2 Using the CPU layer’s serial port for general purpose......................................48

7 Testing the I/O layers...49

7.1 devtbl...49

7.2 Run examples...49

7.3 PowerDNA server..50

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. ii 508.921.4600

UEIPAC SDK User Manual

8 Application development...51

8.1 Prerequisites...51

8.2 Compiling and running Hello World...51

8.3 Debugging Hello World..52

8.4 PowerDNA Library...54
8.4.1 PowerDNA API...56
8.4.2 Building and running the examples...66
8.4.3 Building your own program...66

8.5 Synchronization...67
8.5.1 PTP Synchronization...67
8.5.2 External PPS Synchronization...68

8.6 Real-Time Programming...68
8.6.1 Programming with Real-Time Linux...68
8.6.2 Programming with Xenomai Real-Time framework.....................................70

8.7 Running a program automatically after boot...72

8.8 Running a program periodically..73

9 Firmware installation and upgrade..74

9.1 Installing or upgrading the Linux kernel...74
9.1.1 UEIPAC with Freescale 5200 CPU (100 MBit Ethernet).............................75
9.1.2 UEIPAC and UEIPAC-XXX-02 versions with Freescale 8347 CPU (1GBit
Ethernet)..75
9.1.3 UEIPAC-XXX-03 versions (with Freescale 8347 CPU, 1GBit Ethernet)....76

9.2 Initializing an SD card...77
9.2.1 On a Linux PC...77
9.2.2 On the UEIPAC itself..78

9.3 Running the standard DAQBios firmware..79
9.3.1 Configure UEIPAC with Freescale 5200 CPU to run DAQBios firmware...79
9.3.2 Configure UEIPAC with Freescale 5200 CPU to run Linux.........................79
9.3.3 Configure UEIPAC and UEIPAC-XXX-02 with Freescale 8347 CPU to run
DAQBios firmware..80
9.3.4 Configure UEIPAC and UEIPAC-XXX-02 with Freescale 8347 CPU to run
Linux 80
9.3.5 Configure UEIPAC-XXX-03 with Freescale 8347E CPU to run DAQBios
firmware...80
9.3.6 Configure UEIPAC-XXX-03 with Freescale 8347E CPU to run Linux.......80

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. iii 508.921.4600

UEIPAC SDK User Manual

10 Third-party software..81

10.1 Third-party libraries installed by default on UEIPAC.......................................81
10.1.1 zeromq...81
10.1.2 libmodbus..81
10.1.3 expat...81
10.1.4 sqlite...81
10.1.5 gpsd..81
10.1.6 GSL..81
10.1.7 libusb..81
10.1.8 mosquitto...81
10.1.9 audiofile...81

10.2 Building third-party software with buildroot...82

10.3 Building third-party software from source..82
10.3.1 Software with an autoconf configure script...82
10.3.2 Other software...83

Appendix A. Event API...A-1

A.1 DqEmbConfigureEvent...A-1

A.2 DqEmbWaitForEvent..A-1

A.3 DqEmbCancelEvent..A-2

Appendix B. Using Eclipse IDE to program the UEIPAC...............B-1

B.1 Download and install Eclipse..B-1

B.2 Set up preferences..B-1

B.3 Open and build examples...B-2

B.4 Execute a program...B-7

B.5 Debugging your program on the UEIPAC..B-11

Appendix C. Creating a new Eclipse project for UEIPAC..............C-1

C.1 Create a new project..C-1

C.2 Configure the environment..C-4

C.3 Build and run...C-4

C.4 Adding DNA API calls to your program...C-9

Appendix D. Booting from NFS..D-1

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. iv 508.921.4600

UEIPAC SDK User Manual

D.1 Configure shared RFS on host PC...D-1

D.2 Configure U-Boot..D-1

Appendix E. Building the Linux kernel...E-1

E.1 Install tools...E-1

E.2 Build the kernel for UEIPAC-300, UEIPAC-600, UEIPAC-700....................E-1

E.3 Build the kernel for UEIPAC-XXX-1G, RACK and UEIPAC-XXX-02
versions with 8347 CPU..E-2

E.4 Build the kernel for UEIPAC-XXX-03 versions...E-3

Appendix F. Converting root file system to read only......................F-1

F.1 Modify RFS on SD card...F-1

F.2 Configure U-Boot...F-2

Appendix G. Updating RAM disk image...G-1

Appendix H. Bonding/Teaming Ethernet ports....................................H-1

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. v 508.921.4600

UEIPAC SDK User Manual

1 Introduction
The UEIPAC extends the capability of the PowerDNA distributed data acquisition
systems. With the UEIPAC, you can create programs that execute directly on PowerDNA
Cube or RACK hardware. You can create standalone applications that don’t require a
host PC to control and monitor your hardware.

On the UEIPAC, a Linux or Real-Time Linux1 kernel replaces the standard “DAQBIOS”
firmware in flash memory and uses an SD card, SSD drive, or flash as its local file
system. This file system contains the other components of the operating system such as
libraries, utilities, initialization scripts, and daemons.

After powering-up you have a ready to go Linux operating system with FTP and web
servers, as well as a command line shell that is accessible from either the serial port or
telnet and SSH over the network.

The UEIPAC can also be configured to execute user applications after booting-up and
can be configured for synchronization of I/O board clocks on multiple chassis using the
IEEE-1588 standard or using an external 1PPS reference.

User applications run as a regular Linux process giving you access to the standard POSIX
API provided by the GNU C runtime library (glibc) as well as any other library that can
be compiled for Linux, (for example, libxml, libaudiofile). See diagram 2.

The UEIPAC SDK includes a library dedicated for communicating with UEIPAC I/O
boards and a subset of the hosted PowerDNA API, which allows reuse of existing
example programs originally designed for hosted systems that communicate with
PowerDNA hardware over a network. The PowerDNA server runs automatically,
providing access to UEI software tools.

Examples provided with the SDK can be updated to run directly on the UEIPAC with
few modifications. See section 8.4 for more information.

1 Note that this manual only applies to the Linux-based UEIPAC. UEI additionally offers a
UEIPAC-VxWorks distribution which contains a BSP to run a VxWorks kernel. Please refer to the
UEIPAC-VxWorks manual to learn how to operate a VxWorks-based UEIPAC.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 1 508.921.4600

UEIPAC SDK User Manual

Figure 1 UEIPAC Layered Architecture

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 2 508.921.4600

UEIPAC SDK User Manual

1.1 Kernel Options
Your Linux-based UEIPAC ships with a mainline Linux2 kernel pre-installed into flash
memory. Real-Time options include using the Xenomai Real-Time framework or using a
Real-Time Linux kernel, which is provided with your SDK.

Real-Time Linux offers a deterministic form of mainline Linux. It gives faster response
times and more importantly, it removes all unbounded latencies.

Real-Time Linux is enabled with the real-time Linux kernel patch, PREEMPT_RT,
which improves latencies by maximizing preemptible sections inside the Linux kernel,
allowing real-time tasks to be prioritized over the non-real-time Linux kernel threads and
interrupt service routines.

Since Real-Time Linux is primarily mainline Linux, it doesn’t require any special
toolsets; users can use a standard C library, a Linux driver, and POSIX application.

More information about real-time programming is provided in section 8.6. Instructions
for updating your kernel are provided in Chapter 9.

IMPORTANT: If you are using a UEIPAC option -11 or -12 (UEIPAC G4 SoloX),
please refer to the UEIPAC SoloX Software Manual. The UEIPAC option -11 / -12 is
UEI’s fourth generation of the UEIPAC, which is based on the dual-core SoloX / i.MX6
series ARM processor. Hardware, kernel options, SDK, installation procedures and more
are different for the UEIPAC G4, and much of the information in this manual is not
applicable for that product.

2 UEI additionally offers a UEIPAC-VxWorks distribution which contains a BSP to run a VxWorks kernel.
Please refer to the UEIPAC-VxWorks manual to learn how to operate a VxWorks-based UEIPAC.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 3 508.921.4600

UEIPAC SDK User Manual

2 Setting up a development system
The development system is composed of software tools necessary to create an embedded
application targeting Linux on a PowerPC processor.

Development tools can run on a Linux PC or on a Windows PC using the Cygwin
environment.

Provided development tools include the following:
 GCC cross-compiler targeting the UEIPAC PPC processor
 GNU toolchain tools, such as make
 Standard Linux libraries, such as glibc
 PowerDNA library for accessing the various PowerDNA data acquisition devices

2.1 Windows host
The UEIPAC cross-compiler depends on libraries provided by the Cygwin project.

Cygwin is a collection of tools that provide a Linux-like interface and environment for
Windows OS and a DLL, which acts as a Linux API layer and provides substantial Linux
API functionality.

Cygwin is available for free as an open source project. If you don’t have Cygwin already
installed, download and run the installer setup_x86.exe from http://www.cygwin.com.

NOTE: UEIPAC software is only compatible with the 32-bit release of Cygwin. When
 installing from www.cygwin.com, make sure you select setup_x86.exe (do not
 use setup_x64.exe).

Running setup_x86.exe will install or update Cygwin. Note that the UEIPAC SDK
requires three Cygwin packages from the following categories (network utility packages
are listed as optional but are referred to in this manual):

 Base: tar and gzip packages are required.
 Devel: the make package is required.
 Net: network utility packages such as ftp, tftp, openssh and telnet are optional.

The Cygwin setup window provides a Search box, which can be used to find the listed
packages and verify they are enabled (see Figure 2).

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 4 508.921.4600

http://www.cygwin.com/
http://www.cygwin.com/

UEIPAC SDK User Manual

Figure 2 Cygwin Setup Window

To install the UEIPAC SDK on a Windows host:
1. Insert the “UEIPAC SDK” CDROM in your CD drive, and then open a Cygwin

command line shell.

2. Change directory to the CD’s root directory (the example below assumes that the
CDROM is the D: drive):
cd /cygdrive/d

./install.sh

The UEIPAC installer modifies the .bash_profile file by adding the path of the UEIPAC
cross-compiler to your PATH variable and creating a new environment variable,
UEIPACROOT, which contains the UEIPAC software installation directory.

To activate the changes to the .bash_profile immediately, you can either close the
terminal window and open a new one or type the command below:

source ~/.bash_profile

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 5 508.921.4600

UEIPAC SDK User Manual

2.2 Linux host
2.2.1 Preparing your 64-bit Linux host
The UEIPAC cross-compiler is a 32-bit program. Note that the cross-compiler requires
32-bit run-time libraries to be installed to run on a 64-bit Linux host.

 Under Ubuntu, use the following command to install libraries:
sudo apt-get update
sudo apt-get install lib32z1

 Under RedHat, CentOS or Fedora, use the following command to install libraries:
sudo yum update
sudo yum install glibc.i686 zlib.i686

2.2.2 Installing UEIPAC software on your Linux host
To install the UEIPAC SDK on a Linux host, insert the “UEIPAC SDK” CDROM in
your CD drive. You might need to mount it if your Linux distribution doesn’t detect the
CDROM automatically.

← To mount the CDROM, type:
mount /dev/cdrom /mnt/cdrom

cd /mnt/cdrom

bash install.sh

The UEIPAC installer modifies the .bash_profile file by adding the path of the UEIPAC
cross-compiler to your PATH variable and creating a new environment variable,
UEIPACROOT, which contains the UEIPAC software installation directory:

#PowerDNA setup: This line was added by the UEIPAC install script

PATH=$PATH:"/home/frederic/uei/ueipac-2.6.0/powerpc-604-linux-gnu/
bin"

export PATH

UEIPACROOT="/home/frederic/uei/ueipac-2.6.0"

export UEIPACROOT

#PowerDNA setup end

The .bash_profile file is automatically sourced at login.

To activate the changes to the .bash_profile immediately, you can either logout and log
back in or type the command below:

source ~/.bash_profile

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 6 508.921.4600

UEIPAC SDK User Manual

You will need to manually update PATH and create UEIPACROOT if your Linux PC is
using a different shell interpreter than bash.

For example:
 If you are using csh, insert PATH and UEIPACROOT in ~/.login
 If you are using dash, insert PATH and UEIPACROOT in ~/.profile

2.3 SDK directory layout
The following directories and files are included in the SDK file structure:

 bin: command line utilities not installed by default on the UEIPAC SD card
(mostly Xenomai test programs)

 doc: manuals in PDF and HTML format
 include: UEIPAC SDK header files
 kernel: kernel source code, build scripts, and binary images
 lib: UEIPAC SDK shared and static libraries
 powerpc-604-linux-gnu: GCC cross compiler
 rfs: archive containing the root file system currently installed
 sdk: UEIPAC software development kit

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 7 508.921.4600

UEIPAC SDK User Manual

3 Configuring the UEIPAC
Your PowerDNA/PowerDNR hardware must be pre-configured to run Linux.
Hardware configuration includes:
 A Linux kernel loaded in flash memory

 A root file system contained on any of the following:
 An SD card inserted in the SD card slot
 An SSD drive (only available on the UEIPAC-XXX-02 and

UEIPAC-XXX-03 versions)
 Directly in flash (only available on the UEIPAC-XXX-03 versions)

Contact UEI to convert your PowerDNA/PowerDNR hardware to a UEIPAC if it is
configured with the standard “DAQBIOS” firmware.

3.1 Connecting through the serial port
Note that the serial port on the CPU layer is used as a console by default. If needed, you
can reconfigure the serial port for use as a general purpose serial port (see section 6.2).

To connect through the serial port:
1. Connect the serial cable to the serial port on the UEIPAC and the serial port on

your PC.

You will need a serial communication program:
 Windows: ucon, MTTTY, PuTTY or HyperTerminal.

 Linux: minicom, kermit or cu (part of the uucp package).

The UEIPAC uses the serial port settings: 57600 bits/s, 8 data bits, 1 stop bit and
no parity.

2. Run your serial terminal program and configure the serial communication settings
accordingly.

3. Connect the DC output of the power supply (24 VDC) to the “Power In”
connector on the UEIPAC and connect the AC input on the power supply to an
AC power source.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 8 508.921.4600

UEIPAC SDK User Manual

Once power is connected, you should see a message on your serial console similar to the
following:

U-Boot 1.1.4 (Jan 10 2006 - 19:20:03)

CPU: MPC5200 v1.2 at 396 MHz

 Bus 132 MHz, IPB 66 MHz, PCI 33 MHz

Board: UEI PowerDNA MPC5200 Layer

I2C: 85 kHz, ready

DRAM: 128 MB

Reserving 349k for U-Boot at: 07fa8000

FLASH: 4 MB

In: serial

Out: serial

Err: serial

Net: FEC ETHERNET

Type "run flash_nfs" to mount root filesystem over NFS

Hit any key to stop autoboot: 5

The console messages are generated from the system U-Boot boot loader. The boot
loader pauses for 2 seconds to give the user a chance to alter the configuration, if
necessary.

After the countdown ends, U-Boot loads the Linux kernel from flash, uncompresses it,
and starts it:

U-Boot 1.1.4 PowerDNA 3.2.1 (Dec 18 2006 - 10:41:01)

CPU: MPC5200 v1.2 at 396 MHz

 Bus 132 MHz, IPB 66 MHz, PCI 33 MHz

Board: UEI PowerDNA MPC5200 Layer

I2C: 85 kHz, ready

DRAM: 128 MB

FLASH: 4 MB

In: serial

Out: serial

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 9 508.921.4600

UEIPAC SDK User Manual

Err: serial

Net: FEC ETHERNET

Type "run flash_nfs" to mount root filesystem over NFS

Hit any key to stop autoboot: 0

Booting image at ffd80000 ...

 Image Name: Linux-2.6.28.5-ueipac5200

 Created: 2009-05-01 14:31:47 UTC

 Image Type: PowerPC Linux Kernel Image (gzip compressed)

 Data Size: 1442840 Bytes = 1.4 MB

 Load Address: 00400000

 Entry Point: 004005e0

 Verifying Checksum ... OK

 Uncompressing Kernel Image ... OK

Using ueipac5200 machine description

Linux version 2.6.28.5-ueipac5200 (frederic@frederic-ubuntu64) (gcc
version 4.0.2) #1 PREEMPT Fri May 1 10:31:32 EDT 2009

Zone PFN ranges:

 DMA 0x00000000 -> 0x00008000

 Normal 0x00008000 -> 0x00008000

 HighMem 0x00008000 -> 0x00008000

Movable zone start PFN for each node

early_node_map[1] active PFN ranges

 0: 0x00000000 -> 0x00008000

Built 1 zonelists in Zone order, mobility grouping on. Total pages:
32512

Kernel command line: console=ttyPSC0,57600 root=62:1 rw

MPC52xx PIC is up and running!

PID hash table entries: 512 (order: 9, 2048 bytes)

clocksource: timebase mult[79364d9] shift[22] registered

I-pipe 2.4-04: pipeline enabled.

Console: colour dummy device 80x25

console [ttyPSC0] enabled

Dentry cache hash table entries: 16384 (order: 4, 65536 bytes)

Inode-cache hash table entries: 8192 (order: 3, 32768 bytes)

Memory: 126376k/131072k available (2808k kernel code, 4548k reserved,
116k data, 436k bss, 152k init)

Calibrating delay loop... 65.53 BogoMIPS (lpj=32768)

Mount-cache hash table entries: 512

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 10 508.921.4600

UEIPAC SDK User Manual

net_namespace: 292 bytes

NET: Registered protocol family 16

DMA: MPC52xx BestComm driver

DMA: MPC52xx BestComm engine @f0001200 ok !

NET: Registered protocol family 2

IP route cache hash table entries: 1024 (order: 0, 4096 bytes)

TCP established hash table entries: 4096 (order: 3, 32768 bytes)

TCP bind hash table entries: 4096 (order: 2, 16384 bytes)

TCP: Hash tables configured (established 4096 bind 4096)

TCP reno registered

NET: Registered protocol family 1

audit: initializing netlink socket (disabled)

type=2000 audit(0.208:1): initialized

I-pipe: Domain Xenomai registered.

Xenomai: hal/powerpc started.

Xenomai: real-time nucleus v2.4.7 (Andalusia) loaded.

Xenomai: starting native API services.

Xenomai: starting POSIX services.

Xenomai: starting RTDM services.

VFS: Disk quotas dquot_6.5.1

Dquot-cache hash table entries: 1024 (order 0, 4096 bytes)

msgmni has been set to 247

io scheduler noop registered

io scheduler anticipatory registered (default)

io scheduler deadline registered

io scheduler cfq registered

Generic RTC Driver v1.07

Serial: MPC52xx PSC UART driver

f0002000.serial: ttyPSC0 at MMIO 0xf0002000 (irq = 129) is a MPC52xx
PSC

brd: module loaded

loop: module loaded

net eth0: Fixed speed MII link: 100FD

MPC52xx SPI interface probed at 0xf0000f00, irq0=141, irq1=142

mpc52xx_spi_init_mmc: SDCard is now ready

mpc52xx_mmc0: p1

mice: PS/2 mouse device common for all mice

TCP cubic registered

NET: Registered protocol family 17

EXT2-fs warning: mounting unchecked fs, running e2fsck is recommended

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 11 508.921.4600

UEIPAC SDK User Manual

VFS: Mounted root (ext2 filesystem).

Freeing unused kernel memory: 152k init

init started: BusyBox v1.13.3 (2009-04-13 15:41:06 EDT)

loading modules

 pdnabus

 pdnadev

Starting Network...

Checking Network Configuration: [OK]

Loading Static Network Interface: [OK]

Checking Network Connection: [OK]

Starting inetd... [OK]

Starting local script...

PowerDNA Driver, version 2.1.0

Address Irq Model Option Phy/Virt S/N Pri LogicVer

0xc9080000 7 201 100 phys 0027153 0 02.09.03

0xc9090000 7 308 1 phys 0028647 0 02.0e.00

0xc90a0000 7 207 1 phys 0030353 0 02.0c.05

0xc90b0000 7 205 1 phys 0023120 0 02.09.03

0xc90c0000 7 403 1 phys 0034744 0 02.0e.00

0xc90d0000 7 503 1 phys 0025808 0 02.09.03

 [OK]

BusyBox v1.13.3 (2009-04-29 09:50:58 EDT) built-in shell (ash)

Enter 'help' for a list of built-in commands.

~ #

After the boot loader completes, the Linux root prompt (#) will be available in the
command line of your serial terminal, allowing you to navigate the file system and enter
standard Linux commands, such as ls, ps, and cd.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 12 508.921.4600

UEIPAC SDK User Manual

3.2 Root filesystem
A filesystem is the hierarchy of directories where files on a computer system are
organized. On Linux systems, the hierarchy starts in a root directory (designated by a
forward slash).

The root filesystem is stored on the same partition as the root directory; all other
filesystems are mounted in the root filesystem.

The content of the root filesystem includes a minimal set of directories and files required
by the system to function (/bin, /sbin, /lib, /dev, /etc).

On the UEIPAC, the root filesystem can be located on different storage hardware
depending on the product version (product versions align with different CPU types):

UEIPAC Product Version Available Storage Hardware for Root Filesystem
UEIPAC-300,
UEIPAC-600, &
UEIPAC-700

Root filesystem must be located on an SD card

UEIPAC-300-1G,
UEIPAC-600-1G,
UEIPAC-700-1G,
UEIPAC-600R,
UEIPAC-1200R,
UEIPAC-400-MIL,
UEIPAC-1200-MIL,
UEINET-PAC, &
UEIPAC-400F

Root filesystem can be located on any of the following:
 an SD card
 a RAM disk image (stored in flash)
 a 24MB partition located in flash

UEIPAC-300-1G-02
(& all other
UEIPAC-xxx-02)

Root filesystem can be located on any of the following:
 eUSB SSD drive
 an SD card
 a RAM disk image (stored in flash)
 a 24MB partition located in flash

UEIPAC-300-1G-03
 (& all other
UEIPAC-xxx-03)

Root filesystem can be located on any of the following:
 eUSB SSD drive
 an SD card
 a RAM disk image (stored in flash)
 a 120MB partition located in flash

The Linux kernel uses kernel parameters to specify the location of the root filesystem.
The boot loader (U-boot) passes the kernel parameters to the kernel as boot arguments.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 13 508.921.4600

UEIPAC SDK User Manual

You can set the boot arguments using the bootargs variable.

3.2.1 Booting from an SD card
UEIPACs with an SD card installed can boot from the SD card. The default bootup for
UEIPAC-XXX-02 versions that have an SSD installed is to boot from the SSD, and the
default for UEIPAC-XXX-03 versions is to boot from flash. All other versions boot from
the SD card by default.

Note that the root file system located on the SD card uses the EXT3 format.

To use a root filesystem stored on an SD card, the bootargs variable must include
root=62:1.

To power up and power down the UEIPAC cleanly, UEI recommends typing the “halt”
command before powering down the UEIPAC and the “reboot” command to restart the
UEIPAC.

If you power down the UEIPAC abruptly, the following message will appear at boot
time:

EXT2-fs warning: mounting unchecked fs, running e2fsck is recommended

If you get the EXT2-fs warning, you must check the file system for errors with the
following commands:

mount -o remount,ro /

e2fsck /dev/sdcard1

e2fsck 1.38 (30-Jun-2005)

/dev/sdcard: clean, 702/124160 files, 6632/247872 blocks

reboot

3.2.1.1 File-system corruption
Powering down the UEIPAC while it is writing data to a file can cause file system
corruption even in a non-related part of the file system.

File corruption can affect files that never get written or even affect files marked as read-
only.

The file-system will issue writes in a minimum size, typically 4KB, and a single 4KB
block may have data in it that is part of two different files. Those two files might even be
in different directories or have different access permissions.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 14 508.921.4600

UEIPAC SDK User Manual

Thus, a simple write to a log file can result in a read and rewrite of part of any file on the
partition. When power goes down in the middle of that rewrite, the result is silent data
corruption.
File-systems also have to modify a lot of metadata in various places in order to just create
a one byte file. A power failure during that operation could, for example, destroy the
names of several other files.

You can set-up the UEIPAC to ensure that it survives an uncontrolled power failure by
setting up the root file system on a read-only partition and storing temporary files in a
RAM disk.

This method ensures that the UEIPAC will always boot unless the SD card itself becomes
inoperable (because of wear out or random failure). Note that a small amount of
additional memory will be used for temporary file storage, (e.g., log files, lock files).

Keeping system files in a read-only partition has proven reliable in multiple customer
applications that incur frequent unscheduled power cycles.

3.2.1.2 Setting-up a root file system as read-only
See Appendix E for instructions on how to convert a read-write UEIPAC root file system
to a read-only one.

3.2.1.3 Restoring an SD card
It is sometimes necessary to restore an existing SD card or prepare a new one. The
following instructions explain how to do that on a UEIPAC:

The first thing is to boot the UEIPAC using an alternate root file system. RAM drive is
the only option on most UEIPACs.

1. Boot UEIPAC using a RAM drive (see instructions in section 3.2.4)

2. Run fdisk
Erase all partitions from the SD card and create one primary partition using all the
space available on the card:
fdisk /dev/sdcard
Command (m for help): d
Selected partition 1
Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4):1

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 15 508.921.4600

UEIPAC SDK User Manual

First Cylinder (1-1016, default 1):1
Last Cylinder … (1-1016, default 1016):1016

Command (m for help): w

3. The device node associated with the partition we just created is “/dev/sdcard1”.
Format this new partition with mke2fs (-j option sets file system type to ext3):
mke2fs -j /dev/sdcard1

4. Mount the SD card at /mnt
mount /dev/sdcard1 /mnt

5. Copy <UEIPAC SDK dir>/rfs/rfs.tgz from your host PC to /mnt on the
UEIPAC (you can use SCP or FTP)

6. untar the root file system:
cd /mnt
gunzip rfs.tgz
tar xvf rfs.tar

7. Copy rfs folder content to root of SD card
mv rfs/* .
rmdir rfs

8. Reboot the UEIPAC to start using the newly restored SD card
reboot

3.2.2 Booting from an SSD drive
The default bootup for UEIPAC-XXX-02 versions is to boot from the SSD drive. If they
do not have an SSD drive installed, the default boot up is from the SD card. The default
for UEIPAC-XXX-03 versions is to boot from flash.

The root file system located on the SSD uses the EXT3 format.

To use a root filesystem stored on an SSD drive, the bootargs variable must include
root=/dev/sda1 rw rootwait.

To power up and power down the UEIPAC cleanly, UEI recommends typing the “halt”
command before powering down and the “reboot” command to restart the UEIPAC.

If you power down the UEIPAC abruptly, the following message will appear at boot
time:

EXT2-fs warning: mounting unchecked fs, running e2fsck is recommended

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 16 508.921.4600

UEIPAC SDK User Manual

If you get the EXT2-fs warning, you must check the file system for errors with the
following commands:

mount -o remount,ro /

e2fsck /dev/sda1

e2fsck 1.38 (30-Jun-2005)

/dev/sda: clean, 702/124160 files, 6632/247872 blocks

reboot

3.2.2.1 Restoring an SSD drive
It is sometimes necessary to restore the SSD drive or prepare a new one. The following
instructions explain how to do that on a UEIPAC:

The first thing is to boot the UEIPAC using an alternate root file system. RAM drive is
the only option on most UEIPACs.

1. Boot UEIPAC using a RAM drive (see instructions in section 3.2.4)

2. Run fdisk
Erase all partitions from the SSD and create one primary partition using all the
space available on the card:
fdisk /dev/sda
Command (m for help): d
Selected partition 1
Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4):1
First Cylinder (1-1016, default 1):1
Last Cylinder … (1-1016, default 1016):1016

Command (m for help): w

3. The device node associated with the partition we just created is “/dev/sda1”.
Format this new partition with mke2fs (-j option sets file system type to ext3):
mke2fs -j /dev/sda1

4. Mount the SD card at /mnt
mount /dev/sda1 /mnt

5. Copy <UEIPAC SDK dir>/rfs/rfs.tgz from your host PC to /mnt on the
UEIPAC (you can use SCP or FTP)

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 17 508.921.4600

UEIPAC SDK User Manual

6. untar the root file system:
cd /mnt
gunzip rfs.tgz
tar xvf rfs.tar

7. Copy rfs folder content to root of the SSD drive
mv rfs/* .
rmdir rfs

8. Reboot the UEIPAC to start using the newly restored SSD drive
reboot

9. Press any key to enter U-boot and set bootargs
=> setenv bootargs console=ttyS0,57600 root=/dev/sda1 rw rootwait
=> saveenv
=> reset

3.2.3 Booting from an MTD partition (Flash)
A Memory Technology Device (MTD) is a type of device file in Linux for interacting
with flash memory.

The -03 versions of UEIPAC (with -03 CPU layers) are equipped with 128MB flash
where 120MB are available to store an MTD partition.

Note: UEIPAC-1G, UEIPAC-R, UEIPAC-F, UEIPAC-MIL and UEIPAC-XXX-02
models are equipped with 32MB of flash where 24MB is available to store an MTD
partition; however, please note to do this, users will need to customize the RAM disk
image to a bare minimum, (e.g., remove everything under /usr and most kernel modules).

The bootargs variable must include root=/dev/mtdblock0 rw rootfstype=jffs2 to use a
root filesystem stored on an MTD partition.
The root file system located on the MTD uses the JFFS2 format.

The JFFS2 file system format is very robust against power loss. (In filesystem terms,
"robust" means that data that is just being written when the system goes down may be
lost, but the file system itself does not get corrupt and the system can be rebooted without
need for any kind of file system check).

Run the commands below to format the MTD partition:

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 18 508.921.4600

UEIPAC SDK User Manual

1. Boot from RAM disk. Follow instructions in section 3.2.4.2 Loading the RAM
disk image to flash.

2. Erase the partition
flash_eraseall -j /dev/mtd0

3. Mount the partition
mount -t jffs2 /dev/mtdblock0 /mnt

4. Copy <UEIPAC SDK dir>/rfs/rfs.tgz from your host PC to /mnt on the UEIPAC
(you can use SCP or FTP)

5. untar the root file system:
cd /mnt
gunzip rfs.tgz
tar xvf rfs.tar

6. Copy rfs folder content to root of the MTD partition
mv rfs/* .
rmdir rfs

7. Reboot the UEIPAC
reboot

8. Press any key to enter U-boot and set bootargs
=> setenv bootargs console=ttyS0,57600 root=/dev/mtdblock0 rw
rootfstype=jffs2
=> setenv bootcmd bootm F8000000
=> saveenv
=> reset

3.2.4 Booting from a RAM disk
Booting from a RAM disk is faster than any of the other methods of booting; however,
the RAM disk size is limited to 16Mbytes and any data written to the RAM disk is lost
when the system shuts down or reboots.

The RAM disk is very useful if, for example, you want to reinitialize the SD card or want
to use an NFS share for persistent storage.

The RAM disk can only fit in the flash memory of UEIPAC models based on the 8347
CPU (UEIPAC-1G, UEIPAC-R, UEIPAC-F, or UEIPAC-MIL). The UEIPAC models
based on the 5200 CPU (only UEIPAC-300/-600/-700) need to upload the RAM disk
image via TFTP each time they boot.
3.2.4.1 Customizing the RAM disk image
Customizing the RAM drive image is necessary to:

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 19 508.921.4600

UEIPAC SDK User Manual

 add your program files to the disk image
 change the default IP address
 tweak the startup script if you wish to start a program automatically

Customization can only be done on a Linux PC. Some versions of Linux might require
you to install the uboot mkimage utility to proceed with the customization procedure.

 To install uboot mkimage under Ubuntu or Debian, type:
$sudo apt-get install uboot-mkimage

To customize the RAM disk image, do the following:

1. Extract compressed RAM disk image from the uImage file. The following
command converts the uRamdisk-x.y.z file to ramdisk.gz
$ dd if=uRamdisk-x.y.z bs=64 skip=1 of=ramdisk.gz
21876+1 records in
21876+1 records out

2. Uncompress RAM disk image
$ gunzip -v ramdisk.gz
ramdisk.gz: 66.6% -- replaced with ramdisk

3. Mount RAM disk image
$ mount -o loop –t ext2 ramdisk /mnt

Now files in the /mnt directory can be added, removed, or modified.

Once you are done, you can re-pack the RAM disk into a U-Boot image:

1. Unmount RAM disk image:
$ umount /mnt

2. Compress RAM disk image:
$ gzip -v9 ramdisk
ramdisk: 66.6% -- replaced with ramdisk.gz

3. Create new U-Boot image:
$ mkimage -T ramdisk -C gzip -n 'My UEISIM RAM disk' -d ramdisk.gz
new-uRamdisk-x.y.z
Image Name: UEIPAC RAM disk
Created: Wed Apr 11 17:32:41 2012
Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
Data Size: 14991743 Bytes = 14640.37 kB = 14.30 MB
Load Address: 0x00000000
Entry Point: 0x00000000

3.2.4.2 Loading the RAM disk image to flash
Follow the steps below to upload the RAM disk to memory and boot from it.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 20 508.921.4600

UEIPAC SDK User Manual

1. Copy the < UEIPAC SDK directory>/rfs/uRamdisk-x.y.z file to the root directory
of your TFTP server.

2. Power-up your UEIPAC and press any key to enter U-Boot.

3. Configure the UEIPAC’s IP address:
setenv ipaddr <IP address of the UEIPAC>

4. Configure U-Boot to use your host PC as TFTP server:
setenv serverip <IP address of your host PC>

NOTE: U-Boot only supports 1Gbps link speed on 8347 based UEIPACs. Make sure
your host PC supports 1Gbps or connect a 1Gbps network switch between the
UEIPAC and your host PC.

NOTE: After uploading the RAM disk using tftp, the number of bytes transferred
will print in the stdio messages. Note the number of bytes transferred.

5. Upload RAM disk:
tftp 4000000 uRamdisk-x.y.z

Console messages similar to the following will display in the serial window:

=> tftp 4000000 UserRamdisk-4.0.0
from server 192.168.100.59; our IP address is 192.168.100.2 Filename
'UserRamdisk-4.0.0'.
Load address: 0x4000000
Loading:
*.###
###
<...>
############
done
Bytes transferred = 14991807 (e4c1bf hex)

NOTE: The UEIPAC-XXX-03 models have a different start address than the other
8347-based models.

 Use step 6 for UEIPAC-300-1G, UEIPAC-600-1G, UEIPAC-700-1G,
UEIPAC-600R, UEIPAC-1200R, UEIPAC-400-MIL, UEIPAC-1200-MIL,
UEINET-PAC, UEIPAC-400F & UEIPAC-xxx-02 models.

 Use step 7 for UEIPAC-xxx-03 models.
 Skip step 6&7 for models based on 5200 CPU (UEIPAC-300, UEIPAC-600,

& UEIPAC-700)

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 21 508.921.4600

UEIPAC SDK User Manual

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 22 508.921.4600

UEIPAC SDK User Manual

6. On standard -1G Cubes, -R/F RACKs, -MIL & -02 models
but NOT -03 models or UEIPAC-300/600/700 models,
erase flash sectors and copy the RAM disk to flash (at start address FE300000):

NOTE: The parameters for the flash erase command include the start address of
the first sector and the end address of the last sector to erase. Flash sectors are
erased in 128kB chunks. The start address is a constant, and the end address of the
last sector is calculated based on the image size:

Start address: FE300000

Image size: number of bytes uploaded to the RAM disk in step 5. The
image size is printed to the screen when the image is finished uploading.
In the example in step 5, the image size is e4c1bf hex:

a. Add the image size to the base address to calculate the end address of the
image.
For example:
FE300000(base address) + E4C1BF(image size) = FF14C1BF(end
address)

b. Round the end address to the nearest end sector boundary. Since sectors
are in 128kB chunks (from 00000 to 1FFFF hex), the end sector boundary
can be calculated by performing a logical OR of 1FFFF on the address
calculated in step a.
For example:
FF14C1BF(end address) OR 1FFFF = FF15FFFF(end sector boundary for
image)

c. Erase the sectors from the base address to the end sector address:
erase fe300000 ff15ffff

d. Copy image from RAM to flash:
cp.b 4000000 fe300000 ${filesize}

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 23 508.921.4600

UEIPAC SDK User Manual

7. On UEIPAC XXX-03 models only, erase flash sectors and copy the RAM disk to
flash (at start address F8300000):

NOTE: The parameters for the flash erase command include the start address of
the first sector and the end address of the last sector to erase. Flash sectors are
erased in 128kB chunks. The start address is a constant, and the end address of the
last sector is calculated based on the image size:

Start address: F8300000

Image size: number of bytes uploaded to the RAM disk in step 5. The
image size is printed to the screen when the image is finished uploading.
In the example in step 5, the image size is e4c1bf hex:

a. Add the image size to the base address to calculate the end address of the
image.
For example:
F8300000(base address) + E4C1BF(image size) = F914C1BF(end
address)

b. Round the end address to the nearest end sector boundary. Since sectors
are in 128kB chunks (from 00000 to 1FFFF hex), the end sector boundary
can be calculated by performing a logical OR of 1FFFF on the address
calculated in step a.
For example:
F914C1BF(end address) OR 1FFFF = F915FFFF(end sector boundary for
image)

c. Erase the sectors from the base address to the end sector address:
erase f8300000 f915ffff

d. Copy image from RAM to flash (enter ${filesize} exactly as written):
cp.b 4000000 f8300000 ${filesize}

8. Update the bootargs variable to tell the kernel that its root file system is a RAM
disk (ramdisk_size is required if the RAM disk size grows past 64MB):

For UEIPAC 300, UEIPAC 600, UEIPAC-700 models (based on 5200 CPU):
 setenv bootargs console=ttyPSC0,57600
 ramdisk_size=<your RAM disk size> root=/dev/ram0 rw

For all other UEIPACs (1G Cubes and R/F RACK models based on 8347 CPU):
 setenv bootargs console=ttyS0,57600
 ramdisk_size=<your RAM disk size> root=/dev/ram0 rw

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 24 508.921.4600

UEIPAC SDK User Manual

9. Change boot command to unpack the RAM disk in memory before starting the
kernel:

For UEIPAC-300, UEIPAC-600, UEIPAC-700 models (based on 5200 CPU),
 RAM disk must be loaded from RAM
 setenv bootcmd bootm ffc10000 4000000

For UEIPAC-600R/1200R, UEIPAC-300/600/700-1G, UEIPAC-400/1200-MIL,
UEINET-PAC, UEIPAC-400F, and UEIPAC-XXX-02 versions
(1G Cubes, R/F RACKs, and -02 models all based on 8347 CPU),
 RAM disk can be loaded from flash
 setenv bootcmd bootm fe000000 fe300000

For UEIPAC-XXX-03 versions
(all -03 versions of the 1G Cubes, R/F RACKs models based on 8347 CPU),
 RAM disk can be loaded from flash
 setenv bootcmd bootm f8000000 f8300000

10. Save environment to make changes permanent and reset:
saveenv
reset

3.2.5 Booting from an NFS share
It is also possible to use an NFS network share to hold the root file system instead of the
SD card.
Refer to Appendix D. for instructions.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 25 508.921.4600

UEIPAC SDK User Manual

3.2.6 Revert to booting from an SD card
Follow the steps below to revert back to the default of booting from the SD card.

1. Power-up your UEIPAC and press any key to enter U-Boot.

2. Update the bootargs variable to tell the kernel that its root file system is an SD
card:
For UEIPAC-300, UEIPAC-600, & UEIPAC-700 models (based on 5200 CPU):
 Type:
 setenv bootargs console=ttyPSC0,57600 root=62:1 rw

For all other UEIPACs (1G Cubes and R/F RACK models, and all -02 and -03
versions based on 8347 CPU):
 Type:
 setenv bootargs console=ttyS0,57600 root=62:1 rw

3. Change the boot command to start kernel from the SD card:
For UEIPAC-300, UEIPAC-600, & UEIPAC-700 models (based on 5200 CPU):
 Type:
 setenv bootcmd bootm ffc10000

For UEIPAC-600R/1200R, UEIPAC-300/600/700-1G, UEIPAC-400/1200-MIL,
UEINET-PAC, UEIPAC-400F, and UEIPAC-XXX-02 versions
(1G Cubes, R/F RACKs, and -02 models all based on 8347 CPU),
 Type:
 setenv bootcmd bootm fe000000

For UEIPAC-XXX-03 versions
(all -03 versions of the 1G Cubes, R/F RACKs models based on 8347 CPU):
 Type:
 setenv bootcmd bootm f8000000

4. Save environment to make changes permanent and reset:
saveenv
reset

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 26 508.921.4600

UEIPAC SDK User Manual

3.3 Configuring the Network
3.3.1 Configuring a static IP address
Your UEIPAC is configured at the factory with the static IP address 192.168.100.2 to be
part of a private network.

You can change the IP address using the following command:
setip <IP address>

The IP address change takes effect immediately and is stored in the /etc/network.conf
configuration file.

3.3.1.1 Configuring the primary Ethernet port
Some UEIPACs are equipped with dual Ethernet controllers (UEIPAC-600R/1200R,
UEIPAC-300/600/700-1G, UEIPAC-400/1200-MIL, UEINET-PAC, UEIPAC-400F,
UEIPAC-XXX-02 & UEIPAC-XXX-03). Those two Ethernet ports are identical from the
hardware point of view.

eth0 (NIC1) is the primary port and eth1 (NIC2) is the auxiliary port by default. You can
change the role of each port with the procedure below:

1. Stop network service:
~# /etc/init.d/network stop

2. Edit /etc/network.conf and replace the line DEVICE=eth0 with DEVICE=eth1

3. Start network service:
~# /etc/init.d/network start

3.3.1.2 Configuring the auxiliary Ethernet port
Note that setip only configures the primary port (eth0)

To configure the auxiliary port (eth1), use ifconfig:
ifconfig eth1 <IP address>

Insert the ifconfig command in /etc/rc.local to make the change permanent upon reboot.

Note that you shouldn’t configure both Ethernet ports to be on the same subnet (for
example eth0:192.168.100.2 and eth1:192.168.100.3). This will confuse the kernel packet
routing.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 27 508.921.4600

UEIPAC SDK User Manual

3.3.2 Changing the default packet size (MTU)
You can change the MTU parameter for an ethernet port (default MTU is 1500 bytes)
with the ifconfig command.

For example, to change MTU for eth0 to 9000 bytes:
ifconfig eth0 mtu 9000

The command will generate an Invalid Argument message if you set the MTU value too
high. The highest value tolerated on current hardware is 9500 bytes.

Insert the command in /etc/rc.local to make the change permanent upon reboot.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 28 508.921.4600

UEIPAC SDK User Manual

3.3.3 Configuring dynamic IP address (using a DHCP server)
If you have a DHCP server available, you can configure the UEIPAC to automatically
fetch an IP address when it boots up:

 Edit the file /etc/network.conf file and change the line:
DHCP=no

to:
DHCP=yes

Setting DHCP=yes to enable DHCP configures eth0.

To configure DHCP on eth1 for UEIPACs equipped with dual Ethernet controller
(UEIPAC-600R/1200R, UEIPAC-300/600/700-1G, UEIPAC-400/1200-MIL, UEINET-
PAC, UEIPAC-400F, UEIPAC-XXX-02 or UEIPAC-XXX-03), use udhcpc:

udhcpc –i eth1 –s /etc/udhcp/default.script

After configuring DHCP on eth0 or eth1, you must restart the network to activate
changes:

/etc/init.d/network restart

Note that automated discovery mechanisms are not supported. After DHCP is configured
and the UEIPAC is restarted, you can learn the dynamically assigned IP address by
connecting to the UEIPAC over the serial connection and typing ifconfig at the serial
prompt.
Alternatively, you could configure the DHCP server to assign a fixed address to the
UEIPAC or you could assign a hostname using the udhcpc -x option:

udhcpc -i eth1 -x hostname:<newHostName> -s /etc/udhcp/default.script

Once the hostname is configured, you can use that name to log into the UEIPAC:
$telnet <newHostName>.<yourDomain>

For example, to assign a myPAC hostname to eth1 that will be permanent upon reboot, edit
the /etc/rc.local file and add the udhcpc command with the -x option:

udhcpc -i eth1 -x hostname:myPAC -s /etc/udhcp/default.script

Upon reboot, you connect to the UEIPAC using the myPAC hostname and your domain:
$telnet myPAC.ueidaq.com

Trying 192.168.0.227…

Connect to myPAC.ueidaq.com.

ueipac login:

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 29 508.921.4600

UEIPAC SDK User Manual

3.3.4 Name resolution
If your UEIPAC uses a static address, you need to edit the /etc/resolv.conf file to add the
IP address of your DNS server.

If your UEIPAC uses DHCP, the /etc/resolv.conf file is automatically populated, and
name resolution will work immediately.

3.3.5 Connecting through Telnet
Once the IP address is configured, you can connect to the UEIPAC over the network
instead of the serial port if you choose. Telnet is a network protocol that allows access
between your host PC and the UEIPAC using the exact same command line interface as
the serial connection.

Type the following command on your host PC, then login as “root”. The password is
“root”.

telnet <UEIPAC IP address>

Type the “exit” command to logout.

3.3.6 Connecting through SSH
Type the following command on your host PC. The password is “root”.

ssh root@<UEIPAC IP address>

Type the command “exit” to logout.

You can avoid typing the password each time you login using SSH keys:

1. Create private and public SSH keys on your host PC
ssh-keygen –t rsa

2. Copy the public key to /.ssh on the UEIPAC
scp ~/.ssh/id_rsa.pub root@<IP address>:/.ssh/authorized_keys

NOTE: If your UEIPAC does not have the ~/.ssh directory, the scp will display
an error message stating the directory does not exist. If that happens, telnet or
SSH onto the UEIPAC, and type: mkdir ~/.ssh
and then type the scp command again on your host PC.

3. You can now log on the UEIPAC using SSH without password

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 30 508.921.4600

UEIPAC SDK User Manual

3.3.7 Configuring DHCP server
The UEIPAC comes with the minimal DHCP server, udhcpd. You can use it when the
UEIPAC is a server to assign IP addresses to clients. This is useful when configuring
UEIPAC as a wifi access point so that it can assign IP addresses to the wifi devices
connecting to the access point.

Create an /etc/udhcpcd.conf file to specify the network interface that will lease the IP
addresses and the block of IP addresses that will be leased.

The start and end of the IP lease block

start 192.168.2.20

end 192.168.2.254

The interface that udhcpd will use

interface eth0

3.4 Configuring date and time
3.4.1 Changing the date
The UEIPAC is equipped with a real-time clock chip that preserves the date and time
settings when the UEIPAC is not powered.
By default, the date is set to the current date and time in the UTC (GMT) time zone.

To print the current date and time, use the following command:
date

To change the current date and time, use one of the following commands:
date –s MMDDhhmm
date –s YYYYMMDDhhmm.ss

As an example, “date –s 06021405” sets the new date to June second, 2:05 PM.

To make this change permanent upon reboot, save the date to the RTC chip with the
following command:

hwclock –w –u

3.4.2 Changing the time zone
To set the time zone you need to set the environment variable TZ.

As an example, type the following to set TZ:
export TZ=EST5EDT,M3.2.0,M11.1.0

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 31 508.921.4600

UEIPAC SDK User Manual

It will set the time zone to Eastern Time with daylight saving time starting on the
Sunday(0) of the second week(2) of March(3) and ending on Sunday(0) of the first
week(1) of November(11).

To make this change permanent upon reboot, add the command to the /etc/profile file.

You can find a detailed explanation on the syntax of TZ at:
http://www.gnu.org/software/libtool/manual/libc/TZ-Variable.html

3.4.3 Connecting to an NTP server
The “rdate” utility can be used to retrieve the time from an NTP server.

The following command prints the time returned by the NTP server:
rdate –p <NTP server IP address>

The following command changes the UEIPAC current date and time to match the ones
returned by the NTP server:

rdate –s <NTP server IP address>

To make this change permanent upon reboot, save the date to the RTC chip with the
following command:

hwclock –w -u

3.5 Changing the password
Type the following command and enter your new password two times when prompted:

passwd

You can now logout and login with your new password.

3.6 Configuring the web server
The UEIPAC comes enabled with a simple web server. HTML pages can be copied to the
folder /www to make them accessible from a remote web browser.

3.7 System logger
UEIPAC is configured with the system logger disabled by default to avoid unnecessary
access to the file system.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 32 508.921.4600

http://www.gnu.org/software/libtool/manual/libc/TZ-Variable.html

UEIPAC SDK User Manual

You can enable the system logger after adding the syslogd command to /etc/rc.local:
Log messages will be written to the /var/log/messages file.

You can also enable the kernel logger to log all kernel messages (which are by default
printed on the serial console) after adding the klogd command to /etc/rc.local

Lastly, to write your own messages to the system logger, include <syslog.h> in your
program and call the POSIX APIs openlog(), syslog(), and closelog().

Note that syslogd won’t work on a read-only file system because it needs to create a
socket in /dev (/dev/log). A solution to this issue is to create a symbolic link named
/dev/log that references a file in the /tmp folder.

ln –s /dev/log /tmp/.devlog

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 33 508.921.4600

UEIPAC SDK User Manual

4 Transferring files
You can use any of the NFS, FTP, SSH or TFTP protocols to transfer files between your
host PC and the UEIPAC.

4.1 NFS
If you have a NFS server running on your development machine, you can mount a shared
directory on the UEIPAC. This will make the shared directory available on the UEIPAC
local file system.

To mount a shared directory (for example /shared located on host at 192.168.100.1
mounted on /mnt):

mount -o nolock -t nfs 192.168.100.1:/shared /mnt/nfs_share

After typing this command, all files present in the host PC directory /shared will also be
accessible on the UEIPAC’s /mnt/nfs_share directory.

4.2 FTP Client
To connect to an external FTP server from the UEIPAC, use the commands “ftpput”
and “ftpget”.

To retrieve a file from an FTP server:
ftpget –u <username> -p <password> <FTP server IP address> <local
file name> <remote file name>

To send a file to an FTP server:
ftpput –u <username> -p <password> <FTP server IP address> <remote
file name> <local file name>

4.3 FTP Server
The UEIPAC comes with the vsftpd FTP server. The server is active by default.

You can login as “root” with password “root”. Logging in as root provides read and write
access to the entire file system.

4.4 SSH
The UEIPAC also comes with the dropbear SSH server preinstalled.

Use the command scp to transfer a file between your PC and the UEIPAC.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 34 508.921.4600

UEIPAC SDK User Manual

To send a file to the UEIPAC:
scp <source file path on PC> root@192.168.100.2:<destination path on
UEIPAC>

To receive a file from the UEIPAC:
scp root@192.168.100.2:<source file path on UEIPAC> <destination path
on PC>

4.5 TFTP Client
To retrieve a file from a TFTP server, use the following command:

tftp –g –r <remote file name> <TFTP server IP address>

4.6 Windows shared directory
To mount a directory shared by a Windows computer or a Network Attached Storage
(NAS), do the following:

1. Load the cifs kernel module:
modprobe cifs

2. Mount the network share:
mount –t cifs //hostip/share /mnt -o username=<user>,password=<pass>

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 35 508.921.4600

UEIPAC SDK User Manual

5 Connecting USB devices
You can only connect USB devices to PowerDNA Cubes or PowerDNR RACKs
equipped with a USB type A connector.

The Linux kernel supports most USB devices, but the UEIPAC only comes with drivers
for USB mass storage devices to save space on the SD card.

Please contact UEI if you plan to use any other USB device.

5.1 USB mass storage
USB mass storage devices use multiple form factors. They range from the smallest USB
flash drive to enclosures used to connect ATA or SATA hard-drives.

The UEIPAC supports all USB mass storage devices that comply with the USB mass
storage device class and are formatted with one of the following formats: FAT, EXT2.

After connecting a mass storage device to the UEIPAC, the following kernel messages
will appear on the serial console (if you are connected using telnet or SSH, use the
command dmesg to view kernel messages):

usb 1-1: new high speed USB device using fsl-ehci and address 2

usb 1-1: configuration #1 chosen from 1 choice

scsi0 : SCSI emulation for USB Mass Storage devices

usb 1-1: New USB device found, idVendor=08ec, idProduct=0011

usb 1-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3

usb 1-1: Product: USB Drive

usb 1-1: Manufacturer: Fujifilm

usb 1-1: SerialNumber: 0713B317290025CC

Load the USB storage kernel driver with the command below:
~# modprobe usb-storage

Note that you must append the string usb-storage at the end of the /etc/modules file to
automatically load this kernel module at boot time.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 36 508.921.4600

UEIPAC SDK User Manual

This should display kernel messages similar to the messages below:
[288.462755] Initializing USB Mass Storage driver...

[288.473169] scsi0 : usb-storage 1-1:1.0

[288.482325] usbcore: registered new interface driver usb-storage

[288.494529] USB Mass Storage support registered.

[289.483586] scsi 0:0:0:0: Direct-Access SanDisk Cruzer
8.02 PQ: 0 ANSI: 0 CCS

[289.503867] sd 0:0:0:0: [sda] 62562239 512-byte logical blocks:
(32.0 GB/29.8 GiB)

[289.522154] sd 0:0:0:0: [sda] Write Protect is off

[289.532494] sd 0:0:0:0: [sda] No Caching mode page present

[289.543548] sd 0:0:0:0: [sda] Assuming drive cache: write through

[289.559485] sd 0:0:0:0: [sda] No Caching mode page present

[289.570534] sd 0:0:0:0: [sda] Assuming drive cache: write through

[289.585852] sda: sda1

[289.594927] sd 0:0:0:0: [sda] No Caching mode page present

[289.605996] sd 0:0:0:0: [sda] Assuming drive cache: write through

[289.618236] sd 0:0:0:0: [sda] Attached SCSI removable disk

Note the device node name assigned to this USB device is in the format “sdxn”:
 x is a for the first drive, b for the second and so on.
 n is the partition number

The kernel message above shows that the USB mass storage device’s first partition is
using the device node sda1

You can mount the file system located on this device with the command:
mount /dev/sda1 /mnt

The files are now accessible under the directory /mnt

You must unmount the file system before unplugging the device to avoid file corruption:
umount /mnt

5.2 Wifi network interface
The UEIPAC comes with drivers for wifi network USB interfaces that use the following
chipsets:

 Realtek RTL8187

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 37 508.921.4600

UEIPAC SDK User Manual

 Ralink RT2570, RT2571

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 38 508.921.4600

UEIPAC SDK User Manual

5.2.1 Load kernel modules

At the command line prompt type one of the following commands depending on your
wifi chipset:

modprobe rtl8187

modprobe rt2x00usb

modprobe rt2500usb

modprobe rt73usb

Wifi network interface names follow the format of wlan0, wlan1, etc.

The iwconfig utility is used to configure wifi communication parameters.

You can verify that your interface was properly detected by typing the command
iwconfig. A new entry wlan0 should appear:

lo no wireless extensions.

eth0 no wireless extensions.

eth1 no wireless extensions.

wmaster0 no wireless extensions.

wlan0 IEEE 802.11bg ESSID:""

 Mode:Managed Frequency:2.412 GHz Access Point: Not-
Associated

 Tx-Power=0 dBm

 Retry min limit:7 RTS thr:off Fragment thr=2352 B

 Encryption key:off

 Power Management:off

 Link Quality:0 Signal level:0 Noise level:0

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

5.2.2 Connection to an open access point
To connect to an open access point, use the following procedure:

1. Specify that you want to connect as a client to a network with an access point:
iwconfig wlan0 mode managed

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 39 508.921.4600

UEIPAC SDK User Manual

2. Set the ESSID of the access point:
iwconfig wlan0 essid <name of your access point>

3. Bring up wifi interface:
ifconfig wlan0 up

4. You can now scan the access points accessible by your wifi interface:
iwlist wlan0 scan

5. If there is a DHCP server on your network, get an IP address for your wifi
interface:
udhcpc –i wlan0 –s /etc/udhcp/default.script

Otherwise, assign a static IP address to your wifi interface:
ifconfig wlan0 192.168.100.3 netmask 255.255.255.0

route add default gateway 192.168.100.1

5.2.3 Connection to an access point with WEP security

The procedure is almost identical to connecting to an open access point. In addition, you
need to specify your WEP key:

iwconfig wlan0 key <WEP key in hexadecimal>

128-bit WEP uses 26 hex characters, and 64-bit WEP uses 10.

5.2.4 Connection to an access point with WPA/WPA2 security

1. Generate the pre-shared key using the password of the access point.
wpa_passphrase <name of your access point> <access point password>

2. Edit the /etc/wpa_supplicant.conf file and update the following fields:
 ssid : the ID of your access point
 psk : the pre-shared key generated with wpa_passphrase
 proto : WPA for WPA security and RSN for WPA2 security
 key_mgmt : WPA-PSK
 pairwise : TKIP for WPA and TKIP CCMP for WPA2
 group : TKIP for WPA and TKIP CCMP for WPA2

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 40 508.921.4600

UEIPAC SDK User Manual

The following is an example /etc/wpa_supplicant.conf file:
ctrl_interface=/var/run/wpa_supplicant

ctrl_interface_group=0

ap_scan=1

network={

ssid=<put your access point ESSID here>

proto=WPA

key_mgmt=WPA-PSK

pairwise=TKIP

group=TKIP

psk=<put pre-shared key generated with wpa_passphrase here>

priority=2

}

3. Specify that you want to connect as a client to a network with an access point in
managed mode:
iwconfig wlan0 essid <name of your access point> mode managed

4. Run wpa_supplicant in daemon mode to authenticate with the access point:
wpa_supplicant –iwlan0 –c/etc/wpa_supplicant.conf –Dwext –B

5. Run iwconfig to verify that the authentication worked:
wlan0 IEEE 802.11bg ESSID:"fred"

Mode:Managed Frequency:2.447 GHz Access Point: 00:13:10:AA:FA:10

Bit Rate=1 Mb/s Tx-Power=27 dBm

Retry min limit:7 RTS thr:off Fragment thr=2352 B

Encryption key:B507-40C4-9A48-806D-D664-910F-B354-6CF4-DEBF-EA54-
CE6F-B291-BD0E-593F-BFA9-405D [2] Security mode:open

Power Management:off

Link Quality=80/100 Signal level:-31 dBm

Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:0 Invalid misc:0 Missed beacon:0

6. If there is a DHCP server on your network, get an IP address for your wifi
interface:
udhcpc –i wlan0 –s /etc/udhcp/default.script

Otherwise, assign a static IP address to your wifi interface:
ifconfig wlan0 192.168.100.3 netmask 255.255.255.0

route add default gateway 192.168.100.1

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 41 508.921.4600

UEIPAC SDK User Manual

5.2.5 Direct connection to another computer in ad-hoc mode

1. Specify that you want to connect in ad-hoc mode:
iwconfig wlan0 mode ad-hoc

2. Set the ESSID of the access point:
iwconfig wlan0 essid <name of your access point>

3. Bring up wifi interface:
ifconfig wlan0 up

4. If there is a DHCP server on your network, get an IP address for your wifi
interface:
udhcpc –i wlan0 –s /etc/udhcp/default.script

Otherwise, assign a static IP address to your wifi interface:
ifconfig wlan0 192.168.100.3 netmask 255.255.255.0

route add default gateway 192.168.100.1

5.3 UMTS/GSM modem
The UEIPAC comes with drivers for Sierra Wireless modems and supports USB modems
connected to the UEIPAC USB port and embedded mini PCI Express modems connected
to a CAR-550 carrier card.

Information in this section is based on using a Sierra wireless MC8790 card, which offers
UMTS/HSPA and quad-band GSM/GPRS/EDGE network access for roaming on high-
speed networks worldwide.

5.3.1 Prerequisite

You need to purchase a data plan with a cell phone provider that supports UMTS and/or
GSM/GPRS.

 ATT and T-Mobile provide such a service in the USA.

Once you purchased a data plan, you will receive a SIM card that you need to insert in
the CAR-550 before being able to establish a connection.

Don't forget to activate your account as soon as you receive your SIM card (usually done
over the phone or on-line).

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 42 508.921.4600

UEIPAC SDK User Manual

5.3.2 Manual configuration

From the UEIPAC point of view, the wireless modem is seen as a serial port to which it
can send Hayes AT commands as if it were an old fashion RTC modem.

UEIPAC uses the PPP software to control the modem and configure a network
connection with your phone provider.

5.3.2.1 Load kernel modules

At the command line prompt, type the following commands:
modprobe sierra
modprobe ppp

You should see the following messages printed on the console:
~ # modprobe sierra
usbcore: registered new interface driver usbserial
usbserial: USB Serial Driver core
USB Serial support registered for Sierra USB modem
sierra 1-1:1.0: Sierra USB modem converter detected
usb 1-1: Sierra USB modem converter now attached to ttyUSB0
sierra 1-1:1.1: Sierra USB modem converter detected
usb 1-1: Sierra USB modem converter now attached to ttyUSB1
sierra 1-1:1.2: Sierra USB modem converter detected
usb 1-1: Sierra USB modem converter now attached to ttyUSB2
sierra 1-1:1.3: Sierra USB modem converter detected
usb 1-1: Sierra USB modem converter now attached to ttyUSB3
sierra 1-1:1.4: Sierra USB modem converter detected
usb 1-1: Sierra USB modem converter now attached to ttyUSB4
sierra 1-1:1.5: Sierra USB modem converter detected
usb 1-1: Sierra USB modem converter now attached to ttyUSB5
sierra 1-1:1.6: Sierra USB modem converter detected
usb 1-1: Sierra USB modem converter now attached to ttyUSB6
usbcore: registered new interface driver sierra
sierra: v.1.3.2:USB Driver for Sierra Wireless USB modems

~ # modprobe ppp
PPP generic driver version 2.4.2

5.3.2.2 Configure provider

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 43 508.921.4600

UEIPAC SDK User Manual

The system is pre-configured to connect to AT&T network. If you are using a different
provider, edit the /etc/ppp/peers/gsm_chat file:

1. Look for the following line:
OK 'AT+CGDCONT=1,"IP","ISP.CINGULAR"'

2. Replace it with the Access Point Name (APN) of you provider.
For example T-mobile's APN is “epc.tmobile.com”, so the line in
/etc/ppp/peers/gsm_chat becomes:

OK 'AT+CGDCONT=1,"IP","EPC.TMOBILE.COM"'

See Table 1 for example APNs for several European countries.

Table 1 Examples of Providers & Access Point Names
Country Provider APN Authentication Phone

Number
User Password

Austria A1 at+cgdcont=1,"IP","a1.net" PAP/CHAP *99***1# ppp@A1net.at ppp
Belgium Mobistar at+cgdcont=1,"IP","web.pro.be

"
Terminal based *99# mobistar mobistar

France Orange at+cgdcont=1,"IP","orange.fr" Terminal based *99***1# orange orange
Germany D2

Vodafone
at+cgdcont=1,"IP","web.vodaf
one.de"

PAP/CHAP *99***1# none none

Netherlands KPN at+cgdcont=1,"IP","internet" Terminal based *99***1# Internet none
Netherlands Orange at+cgdcont=1,"IP","internet","

",0,0
Terminal based *99***1# none none

Netherlands Vodafone at+cgdcont=1,"IP","web.vodaf
one.nl"

Terminal based *99# vodafone vodafone

5.3.2.3 Start PPP daemon

Issue the following command to start the PPP daemon and configure the network
connection.

/etc/init.d/pppd start

After a few seconds, the script will return, printing the message “[OK]” if it successfully
configured the network connection or “[Failed]” if it did not.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 44 508.921.4600

UEIPAC SDK User Manual

~ # /etc/init.d/pppd start
Starting pppd...PPP BSD Compression module registered
PPP Deflate Compression module registered [OK]

In case of failure, type the dmesg command to print the log and send that information to
UEI technical support.

Type the command ifconfig to print the network connections currently configured on
your UEIPAC. There should be three connections: local, eth0 and ppp0.

eth0 Link encap:Ethernet HWaddr 00:0C:94:00:C5:CB
 inet addr:192.168.100.2 Bcast:192.168.100.255
Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
 Base address:0x4000

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

ppp0 Link encap:Point-to-Point Protocol
 inet addr:166.203.211.199 P-t-P:10.64.64.64
Mask:255.255.255.255
 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
 RX packets:14 errors:0 dropped:0 overruns:0 frame:0
 TX packets:15 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:3
 RX bytes:182 (182.0 B) TX bytes:257 (257.0 B)

Verify that ppp0 was assigned an IP address.

You can now connect to the internet from your UEIPAC.

5.3.3 Automatic startup

To automatically load the kernel modules, edit the /etc/modules file and add the
following lines at the end of the file:

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 45 508.921.4600

UEIPAC SDK User Manual

sierra
ppp

To automatically start the ppp daemon, add a symbolic link to /etc/init.d/pppd in the
/etc/rc.d directory using the following command:

ln -s /etc/init.d/pppd /etc/rc.d/S30pppd

5.4 Serial Port
The UEIPAC comes with a driver for USB-serial devices based on the Prolific PL-2303
chipset.

5.4.1 Load kernel modules

At the command line prompt, type the following:
modprobe pl2303

You will see the following messages printed on the serial console (type dmesg to see
those messages when logged in via telnet or SSH):

usbcore: registered new interface driver usbserial

USB Serial support registered for generic

usbcore: registered new interface driver usbserial_generic

usbserial: USB Serial Driver core

USB Serial support registered for pl2303

pl2303 1-5.1:1.0: pl2303 converter detected

usb 1-5.1: pl2303 converter now attached to ttyUSB0

usbcore: registered new interface driver pl2303

pl2303: Prolific PL2303 USB to serial adaptor driver

Make note of the device node attached to the serial port. In the example above, it is
/dev/ttyUSB0.

You will use this device node to address the serial port. Refer to the
SampleLinuxSerialPort sample for example C code showing how to program a standard
Linux serial port. Sample code can be found in the following directory:

 < UEIPAC SDK directory>/sdk/examples

5.4.2 Automatic startup

To automatically load the kernel modules, edit the /etc/modules file and add the
following lines at the end of the file:

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 46 508.921.4600

UEIPAC SDK User Manual

pl2303

5.5 LibUSB
The UEIPAC comes with the LibUSB library to facilitate programming of USB devices
for which there is no driver.

It allows the enumeration of USB devices as well as access to USB communication pipes:
 control transfers which are typically used for command or status operations
 interrupt transfers which are initiated by a device to request some action from the

host
 isochronous transfers which are used to carry data the delivery of which is time

critical (such as for video and speech)
 bulk transfers which can use all available bandwidth but are not time critical

5.5.1 Prerequisite
LibUSB uses usbfs which is a filesystem specifically designed for USB devices. Once
this filesystem is mounted, it can be found at /proc/bus/usb/. It consists of information
about all the USB devices that are connected to the computer.
LibUSB makes use of this filesystem to interact with the USB devices.

5.5.1.1 Mount USBFS manually
Type the following command to mount USBFS:

mount -t usbdevfs none /proc/bus/usb

5.5.1.2 Mount USBFS automatically
Add the following line to /etc/fstab to automatically mount USBFS at boot time:

none /proc/bus/usb usbfs defaults 0 0

5.5.2 Write a program using libusb
The UEIPAC ships with a simple example showing how to enumerate USB devices and
query information: SampleLibUSB.

LibUSB API documentation is available at http://www.libusb.org.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 47 508.921.4600

http://www.libusb.org/

UEIPAC SDK User Manual

6 Serial Port

6.1 UEI Serial Server
UEI Serial Server makes PowerDNx serial devices (such as SL-501 and SL-508)
accessible as standard Linux serial ports that can be programmed using the POSIX
termios API.

The mapping configuration file is a text file with a [settings] section for global
parameters and a [ttyUEI??] section for each mapped serial port.

For example:
 [settings]

 timeoutms=1000

 retrycount=4

 pollperiodms=10

 [ttyUEI0]

 ipAddress=127.0.0.1

 device=2

 port=0
 #mode: 0=RS-232, 1=RS-485HD, 2=RS-485-FD

 mode=0

 baudRate=9600

 #parity: 0=none, 1=odd, 2=even

 parity=0

 #stop Bits: 0=no stop bit, 1=1 stop bit, 2=1.5 stop bit

 stopBits=0

 #data bits: 5,6,7 or 8 data bits

 dataBits=8

 [ttyUEI1]

 ipAddress=127.0.0.1

 device=2

 port=1

 mode=0

 baudRate=57600

 parity=1

 stopBits=1

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 48 508.921.4600

UEIPAC SDK User Manual

 dataBits=7

This example configuration file configures the serial server to return an error
if it cannot communicate with the IOM after timeoutms milliseconds.
The server can retry communication for retrycount times before giving up.
The server will periodically poll serial ports for new incoming data using the
pollperiodms value to specify the period in milliseconds.

This file creates two virtual serial ports /dev/ttyUEI0 and /dev/ttyUEI1 to
control physical ports 0 and 1 on device 2 located on the UEIPAC.

 /dev/ttyUEI0 is configured to run at 9600 bits per sec, no parity, no stop bits and
8 data bits

 /dev/ttyUEI1 is configured to run at 57600 bits per sec, parity odd, 1 stop bits and
7 data bits

Note that the communication settings are only default values. The serial port will be re-
configured to use whatever communication settings you specify when opening the port
from your application.

Run the serial server with the following command:
 ueiserialserver <config file name>

Once the server is started, you can use the /dev/ttyUEI?? nodes like any other
serial port with the termios API or any other program designed to access serial
ports.

The UEIPAC comes with microcom installed on the SD card. You can run microcom to
test the serial ports.

Start the serial server with at least two configured ports: /dev/ttyUEI0 and
/dev/ttyUEI1

For the following example, we will assume that the two serial ports are connected with a
NULL modem cable.

Open two separate command line shells and start the microcom program for each of the
Serial ports you wish to test:

microcom -s 19200 /dev/ttyUEI0

microcom -s 19200 /dev/ttyUEI1

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 49 508.921.4600

UEIPAC SDK User Manual

If both serial ports are tied with a NULL modem cable, anything you type in one of the
session will appear on the other session.

6.2 Using the CPU layer’s serial port for general purpose
To use the CPU layer’s serial port for general purpose, edit the /etc/inittab file and add
the ‘#’ character in front of the line:
ttyS0::respawn”-/bin/sh

Then reboot.

This will disable the serial console and let you control the serial port from your program
using the POSIX termios API.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 50 508.921.4600

UEIPAC SDK User Manual

7 Testing the I/O layers

7.1 devtbl
The devtbl command will print a list of the I/O layers that are detected in the module.

PowerDNA Driver, version 2.1.0

Address Irq Model Option Phy/Virt S/N Pri LogicVer

0xc9080000 7 207 1 phys 0027887 0 02.0c.05

0xc9090000 7 403 1 phys 0030384 0 02.0c.05

0xc90a0000 7 403 1 phys 0030385 0 02.0c.05

0xc90b0000 7 501 1 phys 0029693 0 02.0c.05

0xc90c0000 7 601 1 phys 0030279 0 02.0c.05

~ #

7.2 Run examples
All examples are compiled during the install process and are ready to be transferred and
executed.

Compiled versions of each example are also available on the UEIPAC file system in the
“/usr/local/examples” directory. There is at least one example for each supported I/O
layer. Sample code examples are named “SampleXXX” (where XXX is the model ID of
each layer).

To access the samples, change directory to “<UEIPAC SDK directory>/sdk/examples”
and copy the chosen example to your UEIPAC using one of the methods described in
section 4, (e.g., telnet, ssh, etc.).

For example using FTP:
ftp <UEIPAC IP address>

bin

cd tmp

put SampleXXX

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 51 508.921.4600

UEIPAC SDK User Manual

By default , the example uses the first I/O layer (device 0). You can change the device
using command line options. The following are a few of the available options:

-h : displays help

-d n: selects the device to use (default: 0)

-f n.nn: sets the rate of the DAQ operation (default: 1000 Hz)

-c "x,y,z,..." : selects the channels to use (default: channel 0)

For example the following command runs the AI-207 test program using device 2 and
channels 3, 5,and 7:

/tmp # ./Sample207 -d 2 -c "3,5,7"

There are 3 channels specified: 3 5 7

 0: ch3 bdata 310dfff6 fdata 15.781501V

 0: ch5 bdata 310dfff7 fdata 15.781501V

 0: ch7 bdata 310dfff6 fdata 15.781501V

 1: ch3 bdata 310dfff6 fdata 15.781501V

 1: ch5 bdata 310dfff6 fdata 15.781501V

 1: ch7 bdata 310dfff6 fdata 15.781501V

...

All examples are configured to stop when they receive the SIGINT signal. You can send
this signal by typing CTRL+C or with the following command if the program runs in the
background or if you are logged on a different console than the one running the program:

killall –SIGINT Sample207

7.3 PowerDNA server
PowerDNA server emulates the behavior of a PowerDNA IO module running the
standard DAQBIOS firmware. It emulates a subset of the DAQBIOS protocol so that the
UEIPAC can be accessed from PowerDNA Explorer or the PowerDNA C API.
It only works in immediate, RTDMAP and RTVMAP modes. ACB, Messaging and
Asynchronous modes are not supported.

PowerDNA server is automatically started by inetd.
Inetd monitors incoming packets and automatically starts the appropriate server (FTP,
WWW, SSH and PDNA).

If you need to stop the PowerDNA server from automatically starting, edit
/etc/inetd.conf and comment out the pdnaserver line. You can also disable other
network services this way (FTP, SSH, etc.).

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 52 508.921.4600

UEIPAC SDK User Manual

8 Application development

8.1 Prerequisites
Verify the “<UEIPAC SDK directory>/powerpc-604-linux-gnu/bin” directory is added to
your PATH environment variable. This will allow you to invoke the GCC cross compiler
without having to specify its full path.

The cross compiler is required to run the different Makefiles that build the PowerDNA
library and the examples (this should have been done automatically by the install script).

Note that application development on the UEIPAC uses the PowerDNA API library. In
conjunction with this chapter, please refer to the “PowerDNA API Reference Manual”
for API descriptions.

8.2 Compiling and running Hello World
The UEIPAC SDK comes with the GNU toolchain compiled to run on your host PC and
build binaries targeting the PowerPC processor that runs on your UEIPAC.

The SDK comes with all the familiar GNU tools: ar, as, gcc, ld, objdump… To avoid
confusion with a different version of those tools (for example, a version compiled to run
and produce binaries for your host PC), their names are prefixed with “powerpc-604-
linux-gnu-”. For example, the GNU C compiler is named “powerpc-604-linux-gnu-gcc”.

The following steps will guide you in writing your first program and running it on your
UEIPAC.

1. Create a file called hello.c

2. Edit the file and enter the following text:

#include<stdio.h>

int main(int argc, char* argv[])
{
 printf(“Hello World from UEIPAC\n”);
 return 0;
}

3. Compile the file with the command:

powerpc-604-linux-gnu-gcc hello.c –o hello

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 53 508.921.4600

UEIPAC SDK User Manual

4. Download the compiled program “hello” to the Cube or RACK:

ftp <UEIPAC IP address>
bin
cd tmp
put hello

5. Login on your UEIPAC using either Telnet or the serial console and type the
following commands:

cd /tmp
chmod +x hello
./hello

You should see the text “Hello World from UEIPAC” printed in the console window.

8.3 Debugging Hello World
The UEIPAC SDK contains a version of the GNU debugger compiled to run on your host
PC and debug binaries targeting the PowerPC processor. Its name is “powerpc-604-linux-
gnu-gdb”. The debugger allows you to debug a program remotely from your host PC.

The following steps will guide you in debugging the “hello world” program:

1. Rebuild the hello program using the –g option. This will include debug symbols
in the binary file.
powerpc-604-linux-gnu-gcc –g hello.c –o hello

2. Upload the new binary to the UEIPAC using FTP.

3. On the UEIPAC console, start the GDB server to debug the program remotely (It
will communicate with the host on port 1234):
gdbserver :1234 hello

4. On the host, start GDB and connect to the target
powerpc-604-linux-gnu-gdb hello
target remote <UEIPAC IP address>:1234

5. Set the shared library search path so that GDB will find the proper library used by
your program:
set solib-absolute-prefix <UEIPAC Install Dir>
set solib-search-path <UEIPAC Install Dir>/powerpc-604-linux-gnu/
powerpc-604-linux-gnu/lib

Note that this step is only necessary if you wish to step inside the code of the
shared libraries. If you don’t set this variable, GDB will print a few error
messages about library mismatch but you can still go ahead and debug your
program.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 54 508.921.4600

UEIPAC SDK User Manual

The program is now in “running” state and GDB paused its execution. The following
debug actions are available:

6. Insert a breakpoint at the beginning of the “main” function:
break main

7. Resume execution with the cont command (GDB will pause the execution again
when entering the “main” function).

8. Step in your program using the “n” command to step over each line of execution
and “s” to step inside any called functions.

To avoid typing the same commands over and over when starting a debugging session,
you can create a file named “.gdbinit” in your home directory. This file will contain
commands that you want GDB to execute at the beginning of a session.

For example the following “.gdbinit” file automatically connects to the target and pauses
the execution in the main function each time you start gdb:

set solib-absolute-prefix <UEIPAC Install Dir>

set solib-search-path <UEIPAC Install
Dir>/powerpc-604-linux-gnu/powerpc-604-linux-gnu/lib

target remote 192.168.100.2:1234

break main

cont

To learn how to fully use the GDB debugger, the GDB documentation is available at
http://sourceware.org/gdb/documentation/.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 55 508.921.4600

http://sourceware.org/gdb/documentation/

UEIPAC SDK User Manual

8.4 PowerDNA Library
The PowerDNA library implements the API used to program the PowerDNA I/O layers:

 Source code is installed in “<UEIPAC SDK directory>/sdk/DAQLib”.
 Examples are located in “<UEIPAC SDK directory>/sdk/examples”.
 Documentation is located in “<UEIPAC SDK directory>/doc”.

The UEIPAC SDK uses a subset of the PowerDNA Software Suite API. It even allows
you to control other IO modules that run the standard DAQBios firmware from the
UEIPAC the same way you would from a host PC running Windows or Linux.

The PowerDNA API uses the IP address specified in the function DqOpenIOM() to
determine whether you wish to access the layers local to the UEIPAC or “remote” layers
installed in a remote PowerDNA IO module. Set the IP address to the loopback address
“127.0.0.1” and the API will know that you want to access the “local” layers.

The PowerDNA API implements various modes to communicate with the I/O layers:

Mode Description

Immediate This is the easiest mode for point by point input/output on all layers.
It also is the least efficient because it requires one call for each
incoming and/or outgoing request. You cannot achieve maximum
performance with this mode

Immediate mode examples are named “SampleXXX”

Data Mapping
(DMAP)

This is the most efficient mode for point by point input/output on AI,
AO, DIO and CT layers. Incoming and outgoing data from/to
multiple layers are all packed in a single call.

DMAP mode examples are named “SampleDMapXXX”

Buffered (ACB) Allows access to AI, AO, DIO and CT layers at full speed.
It is designed to correct communication errors that might happen on
the network link. The error correction mechanism will cause issues
with real-time deadlines

ACB mode examples are named “SampleACBXXX”

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 56 508.921.4600

UEIPAC SDK User Manual

Mode Description

Messaging Allows access to messaging layers (serial, CAN, ARINC-429) at full
speed. It is designed to correct communication errors that might
happen on the network link. The error correction mechanism will
cause issues with real-time deadlines

Messaging mode examples are named “SampleMsgXXX”

Variable Size
Data Mapping
(VMAP)

Allows access to all layers at full speed, transferring incoming and
outgoing data in buffers in one call.

VMAP mode examples are named “SampleVMapXXX”

Autonomous
Variable Size
Data Mapping
(AVMAP):

Allows access to all layers at full speed, transferring incoming and
outgoing data in buffers in one call.

AVMAP mode examples are named “SampleAVMapXXX”

Asynchronous Allows I/O layers to asynchronously notify the user application upon
hardware or board-specific events

Asynchronous mode examples are named “SampleAsyncXXX”

The UEIPAC SDK supports the immediate (also known as “point by point”), DMAP,
VMAP, and AVMAP modes to control the “local” layers and Async mode on select
layers, as well.

The other modes (ACB and MSG) are designed to work over Ethernet and have built-in
error correction which is not needed on the UEIPAC. You can, however, use those modes
to control “remote” layers installed in I/O modules that run the DAQBios firmware over
the network.

Firmware Running on the IO Module

I/O Mode DAQBios UEIPAC
(Local layers)

UEIPAC
(Remote layers)

Immediate Yes Yes Yes
ACB Yes No Yes

DMAP Yes Yes Yes

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 57 508.921.4600

UEIPAC SDK User Manual

Firmware Running on the IO Module

MSG Yes No Yes
VMAP Yes Yes Yes

AVMAP Yes Yes Yes
Asynchronous *Select I/O layers

(refer to sample code)
*Select I/O layers

(refer to sample code)
*Select I/O layers

(refer to sample code)

8.4.1 PowerDNA API
The following section details the subset of PowerDNA APIs available when running your
program on a UEIPAC.

Refer to the “PowerDNA API Reference Manual” document to get detailed information
about each API.

8.4.1.1 Initialization, miscellaneous API
The following APIs are used to initialize the library, obtain a handle on the kernel driver
and perform miscellaneous tasks such as translating error code to readable messages.

 DqInitDAQLib
 DqCleanUpDAQLib
 DqOpenIOM
 DqCloseIOM
 DqTranslateError
 All DqCmd*** APIs

8.4.1.2 Offline Data Conversion API
UEI recommends logging acquired data in its raw format to save UEIPAC CPU cycles,
and then later scaling the data on a host PC.

Offline data conversion APIs include all DqConv*** API. These offline data conversion
API are available with UEIPAC versions 3.4.2 and later.

8.4.1.3 Immediate mode API
Immediate Mode APIs are used to read/write I/O layers in a software-timed fashion. They
are designed to provide an easy way to access I/O layers at a non-deterministic pace.

Each I/O layer comes with its own set of immediate mode APIs. For example, you will
use the DqAdv201*** APIs to control an AI-201.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 58 508.921.4600

UEIPAC SDK User Manual

Most DqAdvXYZ*** APIs, where XYZ is the model number of a supported I/O layer,
are supported on the UEIPAC.

8.4.1.4 DMAP API
In DMAP mode, the UEIPAC continuously refreshes a set of channels that can span
multiple layers at a specified rate paced by a hardware clock.
Values read from or written to each configured channel are stored in an area of memory
called the DMAP. At each clock tick, the firmware synchronizes the DMAP values with
their associated physical channels.

Supported APIs that use RTDMAP mode are called DqRtDmap***.

The following is a quick tutorial on using the RTDMAP API (handling of error codes is
omitted):

1. Initialize the DMAP to refresh at 1000 Hz:
DqRtDmapInit(handle, &dmapid,1000.0);

2. Add channel 0 from the first input subsystem of device 1:
chentry = 0;

DqRtDmapAddChannel(handle, dmapid, 1, DQ_SS0IN, &chentry, 1);

3. Add channel 1 from the first output subsystem of device 3:
chentry = 1;

DqRtDmapAddChannel(handle, dmapid, 3, DQ_SS0OUT, &chentry, 1);

4. Start all devices that have channels configured in the DMAP:
DqRtDmapStart(handle, dmapid);

5. Update the value(s) to output to device 3:
outdata[0] = 5.0;

DqRtDmapWriteScaledData(handle, dmapid, 3, outdata, 1);

6. Synchronize the DMAP with all devices:
DqRtDmapRefresh(handle, dmapid);

7. Retrieve the data acquired by device 1:
DqRtDmapReadScaledData(handle, dmapid, 1, indata, 1);

8. Stop the devices and free all resources:

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 59 508.921.4600

UEIPAC SDK User Manual

DqRtDmapStop(handle, dmapid);

DqRtDmapClose(handle, dmapid);

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 60 508.921.4600

UEIPAC SDK User Manual

8.4.1.5 VMAP API
In VMAP mode, the UEIPAC continuously acquires/updates data in buffers.
Each layer is programmed to acquire/update data to/from its internal FIFO at a rate paced
by its hardware clock.

The content of all the layers’ FIFOs is accessed in one operation.

Supported APIs to use VMAP mode are DqRtVmap***.

The following is a quick tutorial on using the RTVMAP API (handling of error codes is
omitted):

1. Initialize the VMAP to acquire/generate data at 1kHz:
DqRtVmapInit(handle, vmapid, 1000.0);

2. Add channels from the first set of input ports of a messaging layer (serial, 1553,
ARINC, etc.) at device 0 as follows:

//configure input ports 0, 1, 2, and 3
int channels[] = {0, 1, 2, 3 };
int flags[] = {0, 0, 0, 0 };

DqRtVmapAddChannel(handle, vmapid,0,DQ_SS0IN,channels,flags,4);

3. Add channels from the first analog input, analog output, and/or digital I/O layer
(analog input (input subsystem) in this example), for device 1, as follows:

//initialize a VMAP channel, which for AI/AO/DIO layers is a
// virtual channel streaming all physical channels (interleaved)

int vmapChannel = 0; // the actual value doesn’t matter
int flag = 0;

DqRtVmapAddChannel(handle, vmapid, 1, DQ_SS0IN, &vmapChannel,
&flag, 1);

//add the input channels 0, 1, 2, 3, and 4
int channels[] = {0, 1, 2, 3, 4 };
int flags[] = {0, 0, 0, 0, 0 };

DqRtVmapSetChannelList(handle, vmapid, 1, DQ_SS0IN, channels,
flags, 5);

4. Start all devices that have channels configured in the VMAP:
DqRtVmapStart(handle, vmapid);

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 61 508.921.4600

UEIPAC SDK User Manual

5. Specify how much input data to transfer during the next refresh.
DqRtVmapRqInputDataSz(handle, vmapid, 0, numScans*sizeof(uint16),
&act_size, NULL);

6. Synchronize the VMAP with all devices:
DqRtVmapRefresh(handle, vmapid);

7. Retrieve the data acquired by device 0:
DqRtVmapGetInputData(handle, vmapid, 0, numScans*sizeof(uint16),
&data_size, &avl_size, (uint8*)bdata);

NOTE: On UEIPAC versions 3.4.2 and later, users can log data in a raw format
to save CPU cycles and later scale the data offline on the host PC.
Refer to DqConv*** data conversion API for descriptions.

8. Stop the devices and free all resources:
DqRtVmapStop(handle, vmapid);

DqRtVmapClose(handle, vmapid);

8.4.1.6 AVMAP API
In AVMAP mode, the UEIPAC continuously updates data in buffers.
Each input layer is programmed to acquire data from its internal FIFO at a rate paced by
its hardware clock.
The user application is notified when a user-programmable amount of data is in the FIFO
and ready for retrieval.

The content of all the layers’ FIFOs is accessed in one operation.

Supported APIs to use AVMAP mode are DqRtVmap***.

The following is a quick tutorial on using the AVMAP API (handling of error codes is
omitted):

1. Initialize the VMAP to acquire/generate data at 1kHz:
DqRtVmapInit(handle, vmapid, 1000.0);

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 62 508.921.4600

UEIPAC SDK User Manual

2. Add channels from the first input subsystem of device 0 (for analog I/O boards,
the last parameter is “1” which represents 1 FIFO holding data for all channels):
int channels[] = {0, 1, 2, 3 };

DqRtVmapAddChannel(handle, vmapid, 0, DQ_SS0IN, channels, flags,
1);

3. For analog input boards, add the number of actual channels per I/O board from
the first input subsystem of device 0:
// in header

#define CHANNELS 4

//in main program

DqRtVmapSetChannelList(handle, vmapid, 0, DQ_SS0IN, channels,
CHANNELS);

4. Set up scan rate for individual device/subsystem:
DqRtVmapSetScanRate(handle, vmapid, 0, DQ_SS0IN, 1000.0);

5. Start all devices that have channels configured in the VMAP:
DqRtVmapStart(handle, vmapid);

6. Set FIFO watermark level to trigger data transfer:
wtrmrk = 10;
DqRtAsyncVMapSetWatermark (handle, 0, vmapid, wtrmrk);

7. Enable the AVMAP:
DqRtAsyncXMapEnable(handle, vmapid);

8. Issue software trigger to trigger board:
DqCmdSwTrigger(handle, vmapid);

9. Specify how much input data to transfer during the next refresh.
DqRtVmapRqInputDataSz(handle, vmapid, 0, numScans*sizeof(uint16),
&act_size, NULL);

10. Retrieve data acquired by device, this call blocks until there is enough data in the
FIFO:
DqRtVmapRefresh(handle, vmapid, 0);

11. Get retrieved data acquired by device 0:
DqRtVmapGetInputData(handle, vmapid, 0, numScans*sizeof(uint16),
&data_size, &avl_size, (uint8*)bdata);

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 63 508.921.4600

UEIPAC SDK User Manual

NOTE: On UEIPAC versions 3.4.2 and later, users can log data in a raw format
to save CPU cycles and later scale the data offline on the host PC.
Refer to DqConv*** data conversion API for descriptions.

12. Stop the devices and free all resources:
DqRtAXMapEnable(handle, FALSE);

DqRtVmapStop(handle, vmapid);

DqRtVmapClose(handle, vmapid);

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 64 508.921.4600

UEIPAC SDK User Manual

8.4.1.7 Asynchronous Event API
The Asynchronous API allows you to get notified in your application when a user-
programmable asynchronous event occurs.

The types of events supported varies depending on which type of I/O board you are
configuring.

The following are examples of events supported for different I/O board types:

Type of I/O Board Type of Asynchronous Events3 Examples of Supported
Boards

Digital I/O Boards Edge detection / Change of state
and Periodic Events

DNx-DIO-401/3/4/5/6,
DNx-DIO-449

Serial I/O Boards Timeout conditions, RX or TX
done, and pattern detection Events

DNx-SL-501, DNx-SL-508

CAN-Bus Boards FIFO watermark and bus error
Events

DNx-CAN-503

Counter/Timer Boards Count complete Events DNx-CT-601, DNx-CT-602
Avionics Protocol Boards Many protocol-specific Events DNx-1553-553,

DNx-429-516

The following is a quick tutorial on using the event API for a digital I/O board, located as
device 0 in the IOM and programmed to read the states of all digital input pins on a rising
or falling change of state (COS) on port 0 pin 0 (handling of error codes is omitted):

1. Open asynchronous communication with device drivers:
DqAddIOMPort(hd, &a_handle, DQ_UDP_DAQ_PORT_ASYNC, 1000);

2. Set up channels as inputs or outputs
(this example uses all channels as inputs, which is the default; otherwise,
configure I/O directionality: for example, for a DIO-403 use DqAdv403SetIo()).

3. Initialize events of device 0 by clearing buffer:
DqAdv403ConfigEvents(a_handle, 0, EV403_CLEAR, 0, 0);

3 Refer to SampleAsyncXXX sample code for descriptions of types of events supported and specific usage.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 65 508.921.4600

UEIPAC SDK User Manual

4. Configure a COS event on a rising or falling edge on port 0 pin 0 for device 0:
uint8 pos_edge_masks[DQ_DIO403_PORTS] = { 0, 0, 0, 0, 0, 0 };

uint8 neg_edge_masks[DQ_DIO403_PORTS] = { 0, 0, 0, 0, 0, 0 };

pos_edge_masks[0] = 1 << 0;

neg_edge_masks[0] = 1 << 0;

DqAdv403ConfigEvents(a_handle, 0, EV403_DI_CHANGE, pos_edge_masks,
neg_edge_masks);

NOTE: To configure periodic events, use the DqAdv403ConfigEvents32() API.
Also note that each I/O board type has its own DqAdvXXXConfigEvents() API
that is used for event configuration.

5. Enable events on device 0:
DqRtAsyncEnableEvents(a_handle, 0, 1);

6. Wait for the next event on device 0. If no event occurs after 1 second, the function
returns the error code, “DQ_TIMEOUT_ERROR”:
ret = DqCmdReceiveEvent(a_handle, 0, 1000000, &pEvent, &size);

7. Process the event:

The DqCmdReceiveEvent() API returns a pEvent structure of size size.
This structure will vary with each I/O board type.
Refer to DqAdvXXXConfigEvents() API for descriptions of the members of
correlating pEvent structures.

Note that the returned pEvent will always contain the event that was received
(pEvent->event) and any data associated with the event (pEvent->data[]).

The data returned (pEvent->data[]) may need ntohl conversion.

UEI provides byte order conversion API that detect and convert for the correct
endianness. For example, use UEI DqNtohl() for the conversion of the
timestamp:
pEv403 = (pEV403_ID)pEvent->data;

tstamp = DqNtohl(hd, pEv403->tstamp);

8. To finish, disable asynchronous events on device 0:
DqRtAsyncEnableEvents(hd, 0, 0);

9. Close asynchronous communication:
DqCloseIOM(a_handle);

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 66 508.921.4600

UEIPAC SDK User Manual

NOTE: The Asynchronous Event API described in this section was introduced in version
4.0.8. For UEIPAC releases prior to 4.0.8, the UEIPAC only supported the event API
described in Appendix A, which only applied to programs running on a UEIPAC,
accessing local UEIPAC hardware.

8.4.1.8 Unsupported APIs
All other APIs than the ones mentioned above are not supported on the UEIPAC.
This includes all the ACB (DqACB***), DMAP (DqDmap***), and MSG (DqMsg***)
APIs.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 67 508.921.4600

UEIPAC SDK User Manual

8.4.2 Building and running the examples
To build and run examples, change your current directory to
“<UEIPAC SDK directory>/sdk/examples” and type make to make sure that your setup
can build the samples correctly.

If you get any errors while building the examples, check that the path to the cross-
compiler is in your PATH environment variable and that the environment variable
UEIPACROOT is set to the SDK directory.
You can now transfer any of the built examples to the UEIPAC, using FTP and run them.

Each example accepts command line options to specify the following parameters:
 -d <device id>: specify the device
 -c <channel list>: specify the channel list
 -f <frequency>: specify the rate
 -n <number of Scans>: specify the number of samples per channels

As an example, the following command runs the Sample201example to acquire channels
0,2 and 4 from device 1:

Sample201 –d 1 –c “0,2,4”

8.4.3 Building your own program
The first step is to compile your program, use the “–I” option to tell the compiler where
the PowerDNA API headers are:

powerpc-604-linux-gnu-gcc –I ${UEIPACROOT}/includes –c myprogram.c

Then to link your program, use the “–L” option to tell the linker where the PowerDNA
API library is and the “–l” option to tell the linker to link against the PowerDNA library:

powerpc-604-linux-gnu-gcc –L ${UEIPACROOT}/includes –l powerdna
myprogram.o –o myprogram

The PowerDNA API is implemented in two libraries:
 libpowerdna.so implements the PowerDNA API for regular Linux processes
 libpowerdna_rt.so implements the PowerDNA API for real-time tasks

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 68 508.921.4600

UEIPAC SDK User Manual

8.5 Synchronization
UEIPACs include hardware and software resources to synchronize one or more chassis to
an external source.

UEIPACs can be synchronized using a common pulse-per-second (PPS) reference signal
routed via 10-pin sync port at the front of the chassis.

UEIPACs using the Real-time Linux kernel can alternatively be synchronized using the
IEEE-1588 Precision Time Protocol (PTP) standard over Ethernet.

You configure PTP or PPS synchronization in your application using APIs that begin
with DqSync***. Refer to the PowerDNA API Reference Manual for API descriptions.

8.5.1 PTP Synchronization
PTP synchronization is supported UEIPACs equipped with -02 and -03 CPU layers with
Logic 02.12.46 (2018) or later and running the Real-time Linux kernel.

The IEEE-1588 PTP standard defines the protocol for establishing a master/slave
relationship between a reference clock (the PTP grandmaster) and all other devices in the
system that will synchronize their clocks to the master clock (slaves). The master/slave
hierarchy is established through an exchange of PTP packets containing clock attributes
(clock accuracy, etc.). Once the best master (grandmaster) clock is established, the
grandmaster periodically sends synchronization packets containing timestamps to each
slave UEIPAC for local clock alignment.

UEIPACs support the following PTP configuration:
 PTP v2 (IEEE 1588-2008)
 PTP over IPv4/UDP (Annex D)
 Multicast transmission mode (unicast point-to-point is not currently supported)
 Hardware timestamping
 Capable of being a PTP slave device (UEIPACs as the PTP grandmaster is not

currently supported)
 Capable of connecting via an end-to-end boundary clock (transparent clocks are

not currently supported)
 Supported for I/O board synchronization only

Note that the UEIPAC’s real-time clock cannot be synchronized to PTP time. For
example, typing date at the UEIPAC’s Linux prompt will not return PTP time.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 69 508.921.4600

UEIPAC SDK User Manual

8.5.2 External PPS Synchronization
Synchronization to an external PPS reference is supported on UEIPACs having CPU
Logic 02.12.2D (2017) or later.

UEIPACs can synchronize to an external pulse per second reference provided by a master
PPS source. Typically this is a one pulse per second (1PPS) signal. The 1PPS is routed to
each chassis and input over the 10-pin sync port at the front of the UEIPAC.

Once locked to a common 1PPS pulse, UEIPACs can be programmed to generate internal
I/O board clocks and triggers for all configured boards in a system, synchronized to the
common reference. This allows time alignment among each of the I/O boards on all the
synchronized chassis, as well as allowing the synchronization of timestamps.

UEIPACs are capable of internally generating a 1PPS pulse and acting as the 1PPS
master or receiving a 1PPS pulse and acting as a 1PPS slave.

8.6 Real-Time Programming
The UEIPAC supports Real-Time Linux and the Xenomai Real-Time framework.

8.6.1 Programming with Real-Time Linux
The UEIPAC can be updated to a Real-Time Linux kernel. Real-Time Linux is a single-
kernel real-time solution to mainline Linux that removes all unbounded latencies and
provides faster response times.

Real-Time Linux is primarily mainline Linux but additionally includes the
PREEMPT_RT patch. PREEMPT_RT maximizes preemptible sections of the Linux
kernel by reworking the kernel spinlock primitives. Additionally, PREEMPT_RT runs
interrupt handlers in kernel threads, allowing threads to be interruptible, prioritized, and
preempted.

Mainline Linux is continually incorporating PREEMPT_RT patch components and will
eventually include all PREEMPT_RT functionality, making the patch unnecessary in
time.

Features that PREEMPT_RT implement to accommodate real-time performance include
the following:

 Using high resolution timers (which were included in mainline a few years ago)
 Modifying kernel locking primitives to be preemptible (spinlocks, mutex)
 Converting interrupt handlers into preemptible kernel threads

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 70 508.921.4600

UEIPAC SDK User Manual

Real-Time Linux doesn’t require any special toolsets, and users can use a standard C
library, a Linux driver, and POSIX application.

Users should be familiar with real-time POSIX for best results.

All mainline Linux examples provided by UEI (i.e., SampleDMAP* and
SampleVMAP*) can be used as a base for your real-time application.

To optimize your application for real-time execution, consider the following:
1. Perform non-real-time tasks first, such as opening files, allocating memory, and

opening the IOM (calling DqOpenIOM).

2. Use a real-time scheduling policy (e.g., SCHED_FIFO or SCHED_RR).
Priority is set as a value from 1 to 99, where higher value priorities are scheduled
before lower priority threads.

struct sched_param schedp;

// Configure this process to run with the real-time scheduler
 memset(&schedp, 0, sizeof(schedp));
 schedp.sched_priority = 99; // highest priority
 sched_setscheduler(0, SCHED_FIFO, &schedp);

//if you want to use pthreads, consider pthread_setschedparam()

3. Lock the address space, (e.g., call mlock or mlockall function):

// no memory-swapping for this program
 mlockall(MCL_CURRENT | MCL_FUTURE);

4. Set up periodic real-time tasks, (e.g., initialization for data collection).

5. Use CLOCK_MONOTONIC for timing your real-time tasks.
 CLOCK_MONOTONIC starts ticking when the kernel is started and can’t be

adjusted.
 CLOCK_REALTIME is relative to 01/01/1970 and can be adjusted

(manually, via NTP or PTP), which will disrupt a program’s timing.

struct timespec next;

// get absolute time at the beginning of the loop
// the thread will wake-up periodically at
// T1=next+period, T2=next+2*period
clock_gettime(CLOCK_MONOTONIC, &next);

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 71 508.921.4600

UEIPAC SDK User Manual

while (1)

{

 // Add period interval to previous wake-up time; this will
 // give the ‘next’ wake-up time
 timespec_add_ns(&next, periodns);

 // do your work here

 // set the absolute time at which the kernel will
 // wake up the thread
 clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &next, NULL);

}

6. Enable priority inheritance if needed when using POSIX mutex.

7. Release resources and exit.

8.6.2 Programming with Xenomai Real-Time framework
The UEIPAC comes with support for the Xenomai Real-Time framework (see
http://www.xenomai.org).

Xenomai is a real-time development framework cooperating with the Linux kernel, in
order to provide hard real-time support to user-space applications, seamlessly integrated
into the Linux environment.

Xenomai uses the flow of interrupts to give real-time tasks a higher priority than the
Linux kernel:

 When an interrupt is asserted, it is first delivered to the real-time kernel, instead of
the Linux kernel. The interrupt will be also delivered later to the Linux kernel
when the real-time kernel is done.

 Upon receiving an interrupt, the real-time kernel can schedule real-time tasks.
 Only when the real-time kernel is not running anything will the interrupt be

passed on to the Linux kernel.
 Upon receiving the interrupt, Linux can schedule its own processes and threads.
 Xenomai’s real-time kernel highest priority allows it to preempt the Linux kernel

whenever a new interrupt arrives with no delay and repeat the cycle

Xenomai allows real-time tasks to run either strictly in kernel space or within the address
space of a Linux process.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 72 508.921.4600

http://www.xenomai.org/

UEIPAC SDK User Manual

A real-time task in user space still has the benefit of memory protection but is scheduled
by Xenomai directly instead of by the Linux kernel. The worst case scheduling latency of
such kind of task is always near the hardware limits and predictable.

Using Xenomai parlance, real-time tasks are running in the primary domain while the
Linux kernel and its processes are running in secondary domain.

A real-time task always starts in primary domain; however, it will jump to secondary
domain (and be scheduled by the Linux kernel instead of Xenomai’s RT kernel) upon
invoking a non-RT system call. Non-RT system calls are all system calls that are not
implemented by Xenomai. This includes memory allocation (malloc), file access,
network access (sockets), process and thread management.

You need to make sure that the time critical part of your application runs in the primary
domain. One way to do this is to partition an application in two or more tasks: the high
priority tasks run the time critical code and communicate with other lower-priority tasks
using Xenomai’s IPC objects such as message queues and FIFOs.
The library libpowerdna_rt.so implements a version of the PowerDNA API that is safe
to call from time critical code running in primary domain.

All real-time Xenomai examples have the suffix _rt. For example Sample207 is a
standard Linux sample program while Sample207_rt is a Xenomai real-time sample
program.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 73 508.921.4600

UEIPAC SDK User Manual

8.7 Running a program automatically after boot
Edit the file /etc/rc.local and add an entry for any number of programs that you want to
run after the UEIPAC completes the power-up sequence.
In the example below, the /etc/rc.local file is modified to run the Sample201 example at
boot time.

#!/bin/sh
#
rc.local
#
This script is executed at the end of the boot sequence.
Make sure that the script will "exit 0" on success or any other
value on error.
#

listlayers > /etc/layers.xml
sync
devtbl

start Sample201
/usr/local/examples/Sample201 &

exit 0

Note that Sample201 is executed in the background (‘&’ prefix). To stop Sample201 you
must send the SIGINT signal with the following command. This is equivalent to typing
CTRL+C on the console if Sample201 was running in the foreground):

killall –SIGINT Sample201

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 74 508.921.4600

UEIPAC SDK User Manual

8.8 Running a program periodically
The UEIPAC comes with crond installed to periodically run scripts and programs.

Enable the init script to start crond at boot time:
mv /etc/rc.d/K30crond /etc/rc.d/S30crond

Add a new schedule entry to the cron configuration file:
crontab –e

Press i to switch to insert mode and type the new schedule entry using the following
format: <minute> <hour> <day> <month> <dayofweek> <command>

<Minute> - Minutes after the hour (0-59).
<Hour> - 24-hour format (0-23).
<Day> - Day of the month (1-31).
<Month>- Month of the year (1-12).
<Dayofweek>. Day of the week (0-6, where 0 indicates Sunday).

An asterisk in a schedule entry indicates "every". It means that the task will occur on
"every" instance of the given field. So a "*" on the Month field indicates the task will run
"every" month of the year. A * in the Minutes field would indicate that the task would
run "every" minute.

A comma is used to input multiple values for a field. For example, if you wanted a task to
run at hours 12, 15 and 18, you would enter that as "12,15,18".

As an example, the following entry will append the string “Hello UEIPAC” to the file
/tmp/crontest every day at 2:30 and 15:30.

30 2,15 * * * echo “Hello UEIPAC” >> /tmp/crontest

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 75 508.921.4600

UEIPAC SDK User Manual

9 Firmware installation and upgrade

9.1 Installing or upgrading the Linux kernel
Your UEIPAC comes with a Linux kernel already installed into flash memory.

It is possible to update that Linux kernel if needed.

Note that when installing or upgrading the kernel or firmware through U-Boot and
Ethernet, you must connect to the UEIPAC via a Gigabit network switch.

You first need to install a TFTP server on your host PC and copy the new kernel image
you received from UEI technical support to the TFTP server’s directory.

Kernel image files are named:
UEIPAC Product Version Linux Kernel image

(with Xenomai support)
Real-Time Linux Kernel image
(with PREEMPT_RT patch)

UEIPAC-300,
UEIPAC-600, &
UEIPAC-700

cuImage.ueipac5200 N/A

UEIPAC-300-1G,
UEIPAC-600-1G,
UEIPAC-700-1G,
UEIPAC-600R,
UEIPAC-1200R,
UEIPAC-400-MIL,
UEIPAC-1200-MIL,
UEINET-PAC,
UEIPAC-400F,
UEIPAC-300-1G-02,
(& all other
UEIPAC-xxx-02)

cuImage.ueipac834x cuImage.ueipac834x-rt

UEIPAC-300-1G-03
 (& all other
UEIPAC-xxx-03)

cuImage.ueipac834x-03 cuImage.ueipac834x_rt-03

You can find the image of the Kernel that shipped with your UEIPAC in the folder
“<UEIPAC SDK directory>/kernel”.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 76 508.921.4600

UEIPAC SDK User Manual

That same folder also contains scripts to download the kernel sources and build the kernel
yourself, see Appendix G..
To start the installation or upgrade, connect to the UEIPAC through the serial port and
power-up the Cube or RACK. Press any key before the 2 seconds countdown ends to
enter U-Boot’s command line interface.

To continue with your installation or upgrade, follow one of the procedures provided
below (choose which procedure based on which UEIPAC you have).

NOTE: U-Boot only supports 1Gbps link speed on 8347 based UEIPACs. Make sure
your host PC supports 1Gbps or connect a 1Gbps network switch between the
UEIPAC and your host PC.

9.1.1 UEIPAC with Freescale 5200 CPU (100 MBit Ethernet)
The following procedure is used to update the kernel for the UEIPAC-300, UEIPAC-600,
and UEIPAC-700 systems.

1. Erase the unprotected part of flash memory:
erase ffc10000 ffefffff

2. Configure the UEIPAC’s IP address:
setenv ipaddr <IP address of the UEIPAC>

3. Configure U-Boot to use your host PC as TFTP server:
setenv serverip <IP address of your host PC>

4. Download the new kernel from the TFTP server:
tftp 200000 cuImage.ueipac5200

5. Write kernel into flash (make sure you literally type “${filesize}”):
cp.b 200000 ffc10000 ${filesize}

6. Set U-Boot’s boot command to automatically boot Linux:
setenv bootcmd bootm ffc10000

7. Save environment variables to flash:
saveenv

8. Reset and boot the new kernel:
reset

9.1.2 UEIPAC and UEIPAC-XXX-02 versions with Freescale 8347 CPU (1GBit
Ethernet)

The following procedure is used to update the kernel for the UEIPAC-600R/1200R,
UEIPAC-300/600/700-1G, UEIPAC-400/1200-MIL, UEINET-PAC, UEIPAC-400F, and
UEIPAC-XXX-02 systems.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 77 508.921.4600

UEIPAC SDK User Manual

1. Erase the unprotected part of flash memory:
erase fe000000 fe2fffff

2. Configure the UEIPAC’s IP address
setenv ipaddr <IP address of the UEIPAC>

3. Configure U-Boot to use your host PC as TFTP server:
setenv serverip <IP address of your host PC>

4. Download the new kernel from the TFTP server

 For mainline Linux: tftp 200000 cuImage.ueipac834x

 For Real-Time Linux: tftp 200000 cuImage.ueipac834x-rt

5. Write kernel into flash (make sure you literally type “${filesize}”)
cp.b 200000 fe000000 ${filesize}

6. Set U-Boot’s boot command to automatically boot Linux
setenv bootcmd bootm fe000000

7. Save environment variables to flash
saveenv

8. Reset and boot the new kernel:
reset

9.1.3 UEIPAC-XXX-03 versions (with Freescale 8347 CPU, 1GBit Ethernet)
The following procedure is used to update the kernel for the UEIPAC-XXX-03 systems.

1. Erase the unprotected part of flash memory:
erase f8000000 f82fffff

2. Configure the UEIPAC’s IP address
setenv ipaddr <IP address of the UEIPAC>

3. Configure U-Boot to use your host PC as TFTP server:
setenv serverip <IP address of your host PC>

4. Download the new kernel from the TFTP server

 For mainline Linux: tftp 200000 cuImage.ueipac834x-03

 For Real-Time Linux: tftp 200000 cuImage.ueipac834x_rt-03

5. Write kernel into flash (make sure you literally type “${filesize}”)
cp.b 200000 f8000000 ${filesize}

6. Set U-Boot’s boot command to automatically boot Linux
setenv bootcmd bootm f8000000

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 78 508.921.4600

UEIPAC SDK User Manual

7. Save environment variables to flash
saveenv

8. Reset and boot the new kernel:
reset

9.2 Initializing an SD card
Your UEIPAC is delivered pre-installed with an SD card containing the root file system
necessary to run Linux.

You might want to initialize a new SD card if the factory-installed card becomes
unusable or if you decide to upgrade to a faster or bigger one.

9.2.1 On a Linux PC
Note that you need to run Linux on your host PC to initialize an SD card. This is required
because the SD card must be formatted with the ext2 file system.

Make sure automatic mounting is disabled for removable medias.

You can either type the commands below to manually format and initialize an SD card or
you can run scripts included in the UEIPAC SDK to automate the procedure.

9.2.1.1 Automated Procedure
The UEIPAC SDK includes scripts to automatically partition and initialize a one or two
partition SD card:

 <ueipac sdk dir>/rfs/createsdcard.sh creates one ext2 partitions and copies all
system files.

 <ueipac sdk dir>/rfs/createsdcard_2parts.sh creates two ext2 partitions and copies
all system files to the first one. The second partition is entirely available to store
user data.

 <ueipac sdk dir>/rfs/createsdcard_vfat.sh creates one VFAT and one ext2
partition and copies all system files to the second one (otherwise it confuses
windows and you can’t read the vfat partition on a windows PC). The first
partition is entirely available to store user data.

9.2.1.2 Manual Procedure
1. Insert the SD card in a USB adapter connected to your host PC.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 79 508.921.4600

UEIPAC SDK User Manual

2. Find the name of the device node associated with the card. Type the command
dmesg and look for a message at the end of the log similar to:
SCSI: device sdb: 1984000 512-byte hdwr sectors (1016 MB)

This message tells us that the device node we are looking for is “/dev/sdb”.

3. Unmount the SD card if necessary
sudo umount /dev/sdb1

4. Erase all partitions from the SD card and create one primary partition using all the
space available on the card (the example below uses a 1GB card with 1016 cylinders, use
whatever default value is suggested for the last cylinder):
fdisk /dev/sdb
Command (m for help): d
Selected partition 1
Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4):1
First Cylinder (1-1016, default 1):1
Last Cylinder … (1-1016, default 1016):1016

Command (m for help): w

5. Unmount the SD card if necessary
sudo umount /dev/sdb1

6. The device node associated with the partition we just created is “/dev/sdb1”.
Format this new partition with mke2fs (-j option sets file system type to ext3):
sudo mke2fs -j /dev/sdb1

7. CD to a temporary directory and untar the root file system:
cd /tmp
sudo tar xvfz <UEIPAC SDK directory>/rfs.tgz

8. Mount the new partition (on some Linux distributions it might already be
mounted. Verify this with the df command) then copy the root file system to the SD
card:
sudo mount /dev/sdb1 /mnt
sudo cp –rd /tmp/rfs/* /mnt

9. Unmount the SD card and insert it in the UEIPAC. It is now ready to boot.
sudo umount /dev/sdb1

9.2.2 On the UEIPAC itself
Boot the UEIPAC from the RAM disk instead of the SD card (follow instructions
detailed in chapter 3.2).

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 80 508.921.4600

UEIPAC SDK User Manual

1. Set the IP address:
setip <IP address of the UEIPAC>

2. Format the SD card:
mke2fs -j /dev/sdcard1

3. Mount the SD card:
mount /dev/sdcard1 /mnt

4. Transfer the root file system image to the UEIPAC from a Linux or Windows PC:
scp rfs-x.y.z.tgz root@<IP address of UEIPAC>:/mnt

5. Uncompress the image:
gunzip /mnt/rfs-x.y.z.tgz
tar xvf /mnt/rfs-x.y.z.tar
mv /mnt/rfs/* /mnt
sync

9.3 Running the standard DAQBios firmware
Starting with the 2.0 release, UEIPACs come with both a Linux kernel and DAQBios
firmware loaded in flash. You can select which one you want to run by setting a
configuration variable in the U-Boot boot loader.

Connect to the UEIPAC through the serial port and power-up the Cube or RACK. Press
any key before the 2 seconds countdown ends to enter U-Boot’s command line interface.

9.3.1 Configure UEIPAC with Freescale 5200 CPU to run DAQBios firmware
Configure UEIPAC-300, UEIPAC-600, & UEIPAC-700 systems with the following:

1. Set U-Boot’s boot command to start the DAQBios firmware automatically:
setenv bootcmd fwjmp
saveenv

2. Reset and boot the DAQBios firmware:
reset

9.3.2 Configure UEIPAC with Freescale 5200 CPU to run Linux
Configure UEIPAC-300, UEIPAC-600, & UEIPAC-700 systems with the following:

1. Set U-Boot’s boot command to start Linux automatically:
setenv bootcmd bootm ffc10000
saveenv

2. Reset and boot the Linux kernel:
reset

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 81 508.921.4600

UEIPAC SDK User Manual

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 82 508.921.4600

UEIPAC SDK User Manual

9.3.3 Configure UEIPAC and UEIPAC-XXX-02 with Freescale 8347 CPU to run
DAQBios firmware

Configure UEIPAC-600R/1200R, UEIPAC-300/600/700-1G, UEIPAC-400/1200-MIL,
UEINET-PAC, UEIPAC-400F, and UEIPAC-XXX-02 systems with the following:

1. Set U-Boot’s boot command to start the DAQBios firmware automatically:
setenv bootcmd go ff800100
saveenv

2. Reset and boot the DAQBios firmware:
reset

9.3.4 Configure UEIPAC and UEIPAC-XXX-02 with Freescale 8347 CPU to run
Linux

Configure UEIPAC-600R/1200R, UEIPAC-300/600/700-1G, UEIPAC-400/1200-MIL,
UEINET-PAC, UEIPAC-400F, and UEIPAC-XXX-02 systems with the following:

1. Set U-Boot’s boot command to start Linux automatically:
setenv bootcmd bootm fe000000
saveenv

2. Reset and boot the Linux kernel:
reset

9.3.5 Configure UEIPAC-XXX-03 with Freescale 8347E CPU to run DAQBios
firmware

Configure UEIPAC-XXX-03 systems with the following:

1. Set U-Boot’s boot command to start the DAQBios firmware automatically:
setenv bootcmd go ff800100
saveenv

2. Reset and boot the DAQBios firmware:
reset

9.3.6 Configure UEIPAC-XXX-03 with Freescale 8347E CPU to run Linux
Configure UEIPAC-XXX-03 systems with the following:

1. Set U-Boot’s boot command to start Linux automatically:
setenv bootcmd bootm f8000000
saveenv

2. Reset and boot the Linux kernel:
reset

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 83 508.921.4600

UEIPAC SDK User Manual

10 Third-party software

10.1Third-party libraries installed by default on UEIPAC
The libraries below typically implement C APIs that you can call from your own
program.

10.1.1 zeromq
ØMQ (also known as ZeroMQ, 0MQ, or zmq) is an embeddable networking library.

10.1.2 libmodbus
Libmodbus provides a C API to implement MODBUS/TCP or MODBUS/RTU slaves
and masters.

10.1.3 expat
Expat is an XML parsing library.

10.1.4 sqlite
SQLite is a software library that implements a self-contained, serverless, zero-
configuration, transactional SQL database engine.

10.1.5 gpsd
gpsd is a utility that can listen to a GPS or AIS receiver and re-publish the positional data
in a simpler format.

10.1.6 GSL
The GNU Scientific Library (GSL) is a numerical library for C and C++ programmers.

10.1.7 libusb
libusb is a C library that gives applications easy access to USB devices.

10.1.8 mosquitto
Mosquitto is an open source message broker that implements the MQ Telemetry
Transport protocol (MQTT).

10.1.9 audiofile
The Audio File Library is a C-based library for reading and writing audio files in many
common formats.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 84 508.921.4600

UEIPAC SDK User Manual

10.2Building third-party software with buildroot
1. Download buildroot at www.buildroot.org
2. Run make menuconfig
3. Go to Target options menu

Set Architecture to PowerPC
Set Architecture variant to 603

4. Go to Toolchain menu
Set Toolchain type to external toolchain
Set Toolchain path to <Type your UEIPAC SDK install path here>/powerpc-604-
linux-gnu
Set Toolchain prefix to powerpc-604-linux-gnu
Set Toolchain kernel header version to 3.2.x
Set External Toolchain version to 6.x
Set External Toolchain C Library to glibc
Enable RPC support
Enable C++ support

5. Go to Target package menu
6. Select the software package(s) you want to build
7. Save and Exit
8. Run make

The built files are accessible in the target folder.

10.3Building third-party software from source
You can install pretty much any open source software package designed for Linux on
your UEIPAC provided that those software packages can be cross-compiled.
The following sections describe a few standard methods of cross-compiling software
packages.

10.3.1 Software with an autoconf configure script
Most software packages that use autoconf can be configured with the following command
on a Linux PC:

./configure –-host=powerpc-604-linux-gnu –-build=i686-pc-linux-gnu
–-prefix=<root file system>

Use the following command on a Window/Cygwin PC:
./configure –-host=powerpc-604-linux-gnu –-build=i686-pc-cygwin
–-prefix=<root file system>

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 85 508.921.4600

UEIPAC SDK User Manual

The configure script will then verify that the UEIPAC cross-compiler is operational and
create the Makefiles required to build the software package.
To build type:

make

To install the built binaries, type:
make install

10.3.2 Other software
Read the README and INSTALL files that often come with open source packages for
instructions about cross-compiling.

If there are no configure scripts and no instructions you might still be able to build a
software package to run on the UEIPAC with the command:

CC=powerpc-604-linux-gnu-gcc LD=powerpc-604-linux-gnu-ld
RANLIB=powerpc-604-linux-gnu-ranlib make

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 86 508.921.4600

UEIPAC SDK User Manual

Appendix A. Event API

A.1 DqEmbConfigureEvent

Syntax:
int DqEmbConfigureEvent(int handle, DQ_EMBEDDED_EVENT

event, unsigned int param);
Input:

int handle Handle to the IOM
DQ_EMBEDDED_EVENT event Event to configure
unsigned int param Event specific parameter

Return:
DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_SUCCESS command processed successfully

Description:
Configure hardware to notify the specified event.
Possible events are:
DqEmbEventSyncIn: Digital edge at the syncin connector, set param to 0

for rising edge or 1 for falling edge.
DqEmbEventTimer: Timer event, set param to desired frequency.

A.2 DqEmbWaitForEvent

Syntax:
int DqEmbWaitForEvent(int handle, int timeout,

DQ_EMBEDDED_EVENT *event);
Input:

int handle Handle to the IOM
int timeout Timeout in milliseconds
DQ_EMBEDDED_EVENT event Received event.

Return:
DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_SUCCESS command processed successfully

Description:
Wait for any configured event to occur. If no event happens before the timeout

expiration the function returns the event “DqEmbEventTimeout”.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 1 508.921.4600

UEIPAC SDK User Manual

A.3 DqEmbCancelEvent

Syntax:
int DqEmbCancelEvent(int handle, DQ_EMBEDDED_EVENT

event);
Input:

int handle Handle to the IOM
DQ_EMBEDDED_EVENT event Event to cancel

Return:
DQ_ILLEGAL_HANDLE invalid IOM handle
DQ_SUCCESS command processed successfully

Description:
Cancel specified event.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 2 508.921.4600

UEIPAC SDK User Manual

Appendix B. Using Eclipse IDE to program the UEIPAC

B.1 Download and install Eclipse
There are several ways to install Eclipse with support for C/C++ programming.

If you are already using Eclipse (for Java programming for example) you can keep your
existing Eclipse and just install the additional plug-ins CDT (C/C++ developer tools) and
TM (target management).

Otherwise, download the Eclipse IDE for C/C++ developers package available at http://
www.eclipse.org/downloads. The procedures described in this appendix are based on the
Eclipse IDE 2018-09 release; for other releases, the displays and instructions may vary
slightly.

Unzip the package in a folder of your choice (for example “c:\eclipse\” under Windows
or “/opt/eclipse” under Linux) and run the eclipse.exe program to start Eclipse.

B.2 Set up preferences
Edit Eclipse preferences to add the path to the Cygwin tools (such as make) and the
UEIPAC cross-compiler.

1. Select the menu option Window » Preferences, and then in the left sidebar click
C/C++ » Build » Environment.

2. Click Add to add a variable named PATH with value set to the Cygwin bin
directory and the powerpc-604-linux-gnu/bin directory.
For example:
c:/cygwin/bin;c:/cygwin/home/<username>/uei/ueipac-4.0.2/powerpc-604-
linux-gnu/bin

3. Click Add to add a variable named UEIPACROOT with value set to the
UEIPAC SDK install directory.

c:/cygwin/home/<username>/uei/ueipac-4.0.2

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 1 508.921.4600

http://www.eclipse.org/downloads
http://www.eclipse.org/downloads

UEIPAC SDK User Manual

Figure 3 Setting up environment

4. Click Apply and then OK to store Environment variables.

B.3 Open and build examples
1. Select the menu option File » New » Makefile Project with Existing Code.

2. Type a project name.

3. Browse to the location of the example you wish to build (examples are located
<Cygwin directory>\home\<your user name>\uei\ueipac-x.y.z\sdk\examples).

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 2 508.921.4600

UEIPAC SDK User Manual

Figure 4 Eclipse Import Existing Code Window

4. Click Finish to create the project.

5. Select the Project » Build Project menu to build the example. Note that this
build may produce errors.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 3 508.921.4600

UEIPAC SDK User Manual

Figure 5 Eclipse Build Project Window

The indexer will report errors about header files it can’t find.

The following procedure configures discovery options to allow the indexer to find
required programs:

1. Select the menu option Window » Preferences.

2. In the left sidebar, select C/C++, and then click Property Pages Settings.

3. Click the Display “Discovery Options” page check box to enable. (Refer to
Figure 6 below)

4. Click Apply and Close.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 4 508.921.4600

UEIPAC SDK User Manual

Figure 6 Eclipse Property Pages Settings Window

5. Select the menu option Project » Properties and in the left sidebar, click C/C++
Build » Discovery Options.

6. Verify Automate discover of paths and symbols is checked, and Discovery
profile is set to Managed Build System – per project. (Refer to Figure 7 below).

7. Change the Compiler invocation commands to powerpc-604-linux-gnu-g++ and
powerpc-604-linux-gnu-gcc:

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 5 508.921.4600

UEIPAC SDK User Manual

Figure 7 Eclipse Discovery Options Window

8. Check Show output in a dedicated console in the Console view to see output
messaging in the Eclipse Console pane.

9. Click Apply and OK. The indexer will automatically find all header files next
time you build the project.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 6 508.921.4600

UEIPAC SDK User Manual

B.4 Execute a program

1. Select the Run » Run Configurations… menu option.

2. Select the C/C++ Remote Application option, and right-click to select New
Configuration to open a new remote launch configuration. The Create, manage,
and run configurations Sample pane will open:

3. Enter a name for this new launch configuration. The default is
<sampleName>_Default.

4. Verify that the Project is set correctly, or press Browse… to select the right
project.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 7 508.921.4600

UEIPAC SDK User Manual

5. Verify that the C/C++ Application is set to the binary built from your project.

6. Set up your connection to the UEIPAC Remote Host by clicking New. A Create a
new connection window will open:

7. Select SSH and click OK. A New Connection window will open:

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 8 508.921.4600

UEIPAC SDK User Manual

8. Verify Password based authentication is checked.

9. Enter the IP address of the UEIPAC for the Host field, and enter the User name
and Password. The default username and password for the UEIPAC is root and
root. Click Finish.

10. If you get Authentication message, click Yes.

11. Click Browse for Remote Absolute File Path for C/C++ Application and select
the directory:

12. Click Apply:

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 9 508.921.4600

UEIPAC SDK User Manual

13. Click Run to download the binary to the UEIPAC and execute it. You will see the
result in the Console:

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 10 508.921.4600

UEIPAC SDK User Manual

B.5 Debugging your program on the UEIPAC
The UEIPAC examples are already compiled with debug information, and the Makefile
in each sample directory includes the –g compiler flag to produce debug information
when compiling updated samples.

1. Select the Run » Debug Configurations… menu option to open the Debug
dialog box.

2. Select the C/C++ Remote Application, and right-click to select New
Configuration. The debug name created is your project name with “_Default”
appended. In this example, the debug name is Sample217_Default; however, you
can rename the debug configuration to whatever you wish.
(Refer to the figure on the following page).

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 11 508.921.4600

UEIPAC SDK User Manual

3. In the Debugger tab, set GDB debugger to powerpc-604-linux-gnu-gdb.

4. Click Debug to download the program to the UEIPAC and start debugging it.

5. Eclipse will suggest that you switch to the Debug perspective, click Switch.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 12 508.921.4600

UEIPAC SDK User Manual

The debugger will pause the program execution at the beginning of main().

Set a breakpoint on a line in main() (Right-click the line and select Toggle breakpoint)
then press F8 to resume execution.

The debugger will pause the program again at the line where the breakpoint was set.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 13 508.921.4600

UEIPAC SDK User Manual

You can now execute the program step by step pressing the keys F5 and F6

More information about debugging programs is available in Eclipse’s online help. Select
the menu option Help » Help Contents.
In the Help window, search for “Debugging a project”.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 14 508.921.4600

UEIPAC SDK User Manual

Appendix C. Creating a new Eclipse project for UEIPAC

The following procedure creates a new UEIPAC project in Eclipse. If you are
downloading Eclipse for the first time or setting up Eclipse for UEIPAC projects that
already have existing code, please refer to above.

C.1 Create a new project

1. Select the menu option File » New » Project.

2. Select C/C++ >> C/C++ Project, and click Next >.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 1 508.921.4600

UEIPAC SDK User Manual

3. Select a template, and click Next >:

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 2 508.921.4600

UEIPAC SDK User Manual

4. Enter a Project name, select Cross GCC and click Next.

5. Enter Author and basic properties in the Basic Settings window, and click Next.

6. Click Next in the Select Configurations window. Paths will be configured in a
later step.

7. In the Cross GCC Command window, set prefix to powerpc-604-linux-gnu-
(don’t forget the ‘-’ at the end of the prefix).

8. Set path to <UEIPAC SDK folder>/powerpc-604-linux-gnu/bin, and then click
Finish.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 3 508.921.4600

UEIPAC SDK User Manual

C.2 Configure the environment
Eclipse needs to know where the make utility and the compiler binaries are located (even
though they were already set during the project configuration).

1. In the Project Explorer pane, right-click your project and select Properties.

2. Select C/C++ Build, and then click Environment.

3. Click PATH, and then click Edit… An Edit variable window will open:

4. Append c:\cygwin\bin; c:\cygwin\home\<username>\uei\ueipac-x.y.z\
powerpc-604-linux-gnu\bin; to the existing value, and click OK.

C.3 Build and run

1. Select the Run » Run Configurations… menu option to open the Run dialog
box.

2. Select the C/C++ Remote Application option, and right-click New
Configuration to create a new remote launch configuration:

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 4 508.921.4600

UEIPAC SDK User Manual

3. Verify that the C/C++ Application is set to the binary built from your project.
(This is set to Debug\HelloUEIPAC in the example below).

4. Enter the path and name in the Remote Absolute File Path for C/C++
Application to set the location where the application should be uploaded on the
UEIPAC file system. (This is set to /tmp/HelloUEIPAC in the example below).

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 5 508.921.4600

UEIPAC SDK User Manual

5. Click New… A Create a new connection window will open:

6. Select SSH and click OK. A New Connection window will open:

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 6 508.921.4600

UEIPAC SDK User Manual

7. Verify Password based authentication is checked.

8. Enter the IP address of the UEIPAC for the Host field, and enter the User name
and Password. The default username and password for the UEIPAC is root and
root. Click Finish.

9. Click Browse for Remote Absolute File Path for C/C++ Application and select
the directory:

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 7 508.921.4600

UEIPAC SDK User Manual

10. Click Apply, and then click Run:

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 8 508.921.4600

UEIPAC SDK User Manual

C.4 Adding DNA API calls to your program

1. Right-click your project, and select Properties.

2. Select C/C++ Build, and then click Settings.

3. Click Cross GCC Compiler » Includes and add an include path set to c:\cygwin\
home\<username>\uei\ueipac-x.y.z\include.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 9 508.921.4600

UEIPAC SDK User Manual

4. Click Cross GCC Linker » Libraries and add a library set to powerdna and
library search path set to c:\cygwin\home\<username>\uei\ueipac-x.y.z\lib.

Add PowerDNA library calls to your code, build and run.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 10 508.921.4600

UEIPAC SDK User Manual

Appendix D. Booting from NFS

D.1 Configure shared RFS on host PC
1. Install an NFS server on your Linux machine.

2. Untar the rfs.tgz file that comes on the UEIPAC CD-ROM.

3. Share the rfs directory (usually done by adding an entry in the /etc/exports file)
/etc/exports file should look like this:

/home/frederic/UEIPAC/rfs
192.168.100.0/255.255.255.0(rw,sync,no_subtree_check,no_root_squas
h)

4. Remove the file rfs/etc/rc.d/S10network (kernel does the network configuration
while booting and overwriting it will kill the NFS session).

5. Create the directory rfs/etc/mnt (used to mount the SD card later).

6. Edit the file rfs/etc/fstab and change the mount point for /dev/sdcard1 to /mnt
rfs/etc/fstab should look like this:

/dev/sdcard1 /mnt ext2 defaults,noatime 1 1
none /proc proc defaults 0 0
none /sys sysfs defaults 0 0
none /dev/pts devpts defaults 0 0

This will make the SD card accessible under /mnt when the UEIPAC boots over
NFS.

D.2 Configure U-Boot
1. Power-up the UEIPAC and press a key to enter U-Boot.

2. Type the following to set the console type, which depends on what type of CPU is
in your UEIPAC:
For UEIPAC-300, UEIPAC-600, & UEIPAC-700 models (based on 5200 CPU):
 setenv consoledev ttyPSC0

For all other UEIPACs (1G Cubes and R/F RACK models based on 8347 CPU):
 setenv consoledev ttyS0

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 1 508.921.4600

UEIPAC SDK User Manual

3. Type the following commands :
setenv gateway <your gateway ip address>
setenv netmask <your netmask>
setenv baudrate 57600
setenv netdev eth0
setenv rootpath <The remote path where rfs is located on your host
PC>
run nfsargs
run addip
setenv bootargs ${bootargs} console=${consoledev},${baudrate}
saveenv
printenv

4. Verify that your bootargs variable looks like this:
For UEIPAC-300, UEIPAC-600, & UEIPAC-700 models (based on 5200 CPU):
 bootargs=root=/dev/nfs rw
 nfsroot=192.168.100.1:/home/frederic/UEIPAC/rfs
 console=ttyPSC0,57600
 ip=192.168.100.2:192.168.100.1::255.255.255.0::eth0:off panic=1

For all other UEIPACs (1G Cubes and R/F RACK models based on 8347 CPU):
 bootargs=root=/dev/nfs rw
 nfsroot=192.168.100.1:/home/frederic/UEIPAC/rfs
 console=ttyS0,57600
 ip=192.168.100.2:192.168.100.1::255.255.255.0::eth0:off panic=1

5. Reset the UEIPAC which will now find its root file system on the NFS share
reset

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 2 508.921.4600

UEIPAC SDK User Manual

Appendix E. Building the Linux kernel

E.1 Install tools
Note that you can only build the UEIPAC Linux kernel on a PC running Linux connected
to the internet.

Before you begin, verify that you have the following tools installed:
 git
 make
 patch
 UBoot mkimage

Use the package manager of your Linux distribution to install those tools.

For example, use the following commands on Ubuntu:
sudo apt-get install git

sudo apt-get install make

sudo apt-get install patch

sudo apt-get install uboot-mkimage

E.2 Build the kernel for UEIPAC-300, UEIPAC-600,
UEIPAC-700

The UEIPAC kernel for the UEIPAC-300, UEIPAC-600, & UEIPAC-700 includes a
Xenomai real-time extension.

1. Change to the kernel directory:
cd <UEIPAC SDK directory>/kernel

2. Run the build_xenomail.sh script.
./build_xenomai.sh

3. Run the get_kernel.sh script:
./get_kernel.sh -xenomai –cpu 5200

NOTE: This script might take a long time to execute depending on the speed of
your internet connection.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 1 508.921.4600

UEIPAC SDK User Manual

Once the script is finished, you will find a new directory containing the kernel source
with patches applied: linux-v4.9.51 (or whatever the current version is of the Linux
kernel with Xenomai patches).

4. Change the current directory to the Linux source directory.

5. Run the build_kernel.sh script:
./build_kernel.sh -xenomai –cpu 5200

You can find the build kernel in arch/powerpc/boot/cuImage.ueipac5200.

NOTE: The build scripts build the default UEIPAC kernel. You can customize the kernel
configuration by using the menuconfig tool:

make ARCH=powerpc CROSS_COMPILE=powerpc-604-linux-gnu- menuconfig

You can then follow the build script to compile the kernel and modules and install the
modules.

E.3 Build the kernel for UEIPAC-XXX-1G, RACK and
UEIPAC-XXX-02 versions with 8347 CPU

The following procedure is used to download, configure and build the kernel for the
UEIPAC-600R/1200R, UEIPAC-300/600/700-1G, UEIPAC-400/1200-MIL, UEINET-
PAC, UEIPAC-400F, and UEIPAC-XXX-02 systems.

Note that with these products, you have the option of using the Linux kernel with
Xenomai patches or the Real-Time Linux kernel with the PREEMPT_RT patch.

1. Change to the kernel directory:
cd <UEIPAC SDK directory>/kernel

2. If using the Linux kernel with Xenomai patches, run the build_xenomail.sh
script.
./build_xenomai.sh

3. Run the get_kernel.sh script:

 For Linux with Xenomai, run:
./get_kernel.sh -xenomai –cpu 834x

 For Real-Time Linux, run:
./get_kernel.sh -rt –cpu 834x

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 2 508.921.4600

UEIPAC SDK User Manual

NOTE: This script might take a long time to execute depending on the speed of
your internet connection.

Once the script is finished, you will find a new linux-v<LINUX_VER> directory
containing the kernel source with patches applied:

 For Linux with Xenomai: linux-v4.9.51 (or whatever the current version is
of the Linux kernel with Xenomai patches).

 For Real-Time Linux: linux-v4.4.115 (or whatever the current version is of
the Real-Tim Linux kernel).

4. Change the current directory to the Linux source directory.
5. Run the build_kernel.sh script:

 For Linux with Xenomai, run:
./build_kernel.sh -xenomai –cpu 834x

 For Real-Time Linux, run:
./build_kernel.sh -rt –cpu 834x

You can find the built kernel in arch/powerpc/boot/cuImage.ueipac834x and the
modules in module_ueipac834x.

NOTE: The build scripts build the default UEIPAC kernel. You can customize the kernel
configuration by using the menuconfig tool:

make ARCH=powerpc CROSS_COMPILE=powerpc-604-linux-gnu- menuconfig

You can then follow the build script to compile the kernel and modules and install the
modules.

E.4 Build the kernel for UEIPAC-XXX-03 versions
The following procedure is used to download, configure and build the kernel for the
UEIPAC-XXX-03 systems.

Note that with these UEIPAC-XXX-03 systems, you have the option of using the Linux
kernel with Xenomai patches or the Real-Time Linux kernel with the PREEMPT_RT
patch.

1. Change to the kernel directory:
cd <UEIPAC SDK directory>/kernel

2. If using the Linux kernel with Xenomai patches, run the build_xenomail.sh
script.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 3 508.921.4600

UEIPAC SDK User Manual

./build_xenomai.sh

3. Run the get_kernel.sh script:

 For Linux with Xenomai, run:
./get_kernel.sh -xenomai –cpu 834x -o 3

 For Real-Time Linux, run:
./get_kernel.sh -rt –cpu 834x –o 3

NOTE: This script might take a long time to execute depending on the speed of
your internet connection.

Once the script is finished, you will find a new linux-v<LINUX_VER> directory
containing the kernel source with patches applied:

 For Linux with Xenomai: linux-v4.9.51 (or whatever the current version is
of the Linux kernel with Xenomai patches).

 For Real-Time Linux: linux-v4.4.115 (or whatever the current version is of
the Real-Tim Linux kernel).

4. Change the current directory to the Linux source directory.

5. Run the build_kernel.sh script:

 For Linux with Xenomai, run:
./build_kernel.sh -xenomai –cpu 834x -o 3

 For Real-Time Linux, run:
./build_kernel.sh -rt –cpu 834x -o 3

You can find the built kernel in arch/powerpc/boot/cuImage.ueipac834x and the
modules in module_ueipac834x.

NOTE: The build scripts build the default UEIPAC kernel. You can customize the kernel
configuration by using the menuconfig tool:

make ARCH=powerpc CROSS_COMPILE=powerpc-604-linux-gnu- menuconfig

You can then follow the build script to compile the kernel and modules and install the
modules.

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 4 508.921.4600

UEIPAC SDK User Manual

Appendix F. Converting root file system to read only

F.1 Modify RFS on SD card
1. Edit /etc/fstab as follow to mount a ram disk at /var (ram disk maximum size is set

to 2MBytes):

/dev/sdcard1 / ext3 defaults,noatime 1 1
none /proc proc defaults 0 0
none /sys sysfs defaults 0 0
none /dev/pts devpts defaults 0 0
tmpfs /var tmpfs defaults,size=2M 0 0

2. Create a new script /etc/varsetup.sh with the content below. It sets up the folders
needed in /var and maps a few writable folders at /tmp, /mnt and /home

mkdir /var/tmp
mkdir /var/log
mkdir /var/lib
mkdir /var/lib/misc
mkdir /var/spool
mkdir /var/spool/cron
mkdir /var/spool/cron/crontabs
mkdir /var/run
mkdir /var/lock
mkdir /var/mnt
mkdir /var/home

mount --bind /var/tmp /tmp
mount --bind /var/mnt /mnt
mount --bind /var/home /home

3. Edit /etc/inittab as follow to execute varsetup.sh

Mount all filesystem listed in /etc/fstab
::sysinit:/bin/mount –a

Create and mount non-persistent folders
::sysinit:/etc/varsetup.sh

Configure local network interface
::sysinit:/sbin/ifconfig lo 127.0.0.1 up
::sysinit:/sbin/route add -net 127.0.0.0 netmask 255.0.0.0 lo

run rc scripts
::sysinit:/etc/rcS

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 1 508.921.4600

UEIPAC SDK User Manual

Start a shell on the console
ttyS0::respawn:-/bin/sh

unmount root file system when shutting-down
::shutdown:/bin/umount -a -r

4. Create symbolic links to files stored in /etc that need to be kept writeable.

ln –s /var/resolv.conf /etc/resolv.conf
ln –s /var/layers.xml /etc/layers.xml

F.2 Configure U-Boot
1. Connect the console serial port, power-up the UEIPAC and press a key to enter

U-Boot.

2. Type the following commands to load the root file system as read-only:

setenv bootargs console=ttyS0,57600 root=62:1 ro
saveenv

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 2 508.921.4600

UEIPAC SDK User Manual

Appendix G. Updating RAM disk image

The UEIPAC software CDROM contains a RAM disk image uRamdisk-x.y.z that you
can upload to flash and boot from on 1G and R UEIPAC models (see section 3.2).

This appendix explains how to modify this image to add your own files (typically your
program and associated configuration files).

This operation can only be done on a Linux workstation. You also need to install the
uboot mkimage utility. For example, with Ubuntu type:

bash$ sudo apt-get install uboot-mkimage

1. Extract compressed RAM disk image from uImage file. The following command
converts the file uRamdisk-x.y.z to ramdisk.gz:

bash$ dd if=uRamdisk-x.y.z bs=64 skip=1 of=ramdisk.gz
21876+1 records in
21876+1 records out

2. Uncompress RAM disk image:

bash$ gunzip -v ramdisk.gz
ramdisk.gz: 66.6% -- replaced with ramdisk

3. Mount RAM disk image:

bash$ mount -o loop ramdisk /mnt/tmp

Now you can add, remove, or modify files in the /mnt/tmp directory. Once you are done,
you can re-pack the RAM disk into a U-Boot image:

1. Unmount RAM disk image:

bash$ umount /mnt/tmp

2. Compress RAM disk image :

bash$ gzip -v9 ramdisk
ramdisk: 66.6% -- replaced with ramdisk.gz

3. Create new U-Boot image:

bash$ mkimage -T ramdisk -C gzip -n 'UEIPAC RAM disk' -d

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 1 508.921.4600

UEIPAC SDK User Manual

ramdisk.gz new-uRamdisk-x.y.z
Image Name: UEIPAC RAM disk
Created: Wed Apr 11 17:32:41 2012
Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
Data Size: 2425561 Bytes = 2368.71 kB = 2.31 MB
Load Address: 0x00000000
Entry Point: 0x00000000

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 2 508.921.4600

UEIPAC SDK User Manual

Appendix H. Bonding/Teaming Ethernet ports

Teaming/Bonding describes various methods to combine multiple network links in parallel to
provide redundancy and/or increase data throughput.

This chapter describes the configuration of a fault tolerant link between a UEIPAC and a host
PC. Bonding is only possible on UEIPACs equipped with two independent network ports.

In this mode, only one network adapter (the primary) is active. The secondary adapter takes over
as soon as it detects that the primary adapter can't connect to its peer.

1. Power-up your UEIPAC and open a serial terminal program.
2. Tear-down existing network connections.

ifconfig eth0 down

ifconfig eth1 down

3. Load bonding kernel module with parameters set to the following:

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 1 508.921.4600

http://uei-wiki1.ueidaq.com/ueiwiki/index.php/Image:Ueipac_bonding.jpg

UEIPAC SDK User Manual

 monitor the link to the host PC every 500ms
 fault tolerance mode
 use eth0 as primary connection

modprobe bonding arp_ip_target=192.168.103.1 arp_interval=500
mode=active-backup primary=eth0

4. Bring-up bond0 connection.

ifconfig bond0 up

5. Assign eth0 and eth1 as slaves to bond0.

ifenslave bond0 eth0 eth1

6. Configure an IP address for bond0.

ifconfig bond0 192.168.103.2 netmask 255.255.255.0

© Copyright 2019 www.ueidaq.com

United Electronic Industries, Inc. 2 508.921.4600

	1 Introduction
	1.1 Kernel Options

	2 Setting up a development system
	2.1 Windows host
	2.2 Linux host
	2.2.1 Preparing your 64-bit Linux host
	2.2.2 Installing UEIPAC software on your Linux host

	2.3 SDK directory layout

	3 Configuring the UEIPAC
	3.1 Connecting through the serial port
	3.2 Root filesystem
	3.2.1 Booting from an SD card
	3.2.1.1 File-system corruption
	3.2.1.2 Setting-up a root file system as read-only
	3.2.1.3 Restoring an SD card

	3.2.2 Booting from an SSD drive
	3.2.2.1 Restoring an SSD drive

	3.2.3 Booting from an MTD partition (Flash)
	3.2.4 Booting from a RAM disk
	3.2.4.1 Customizing the RAM disk image
	3.2.4.2 Loading the RAM disk image to flash

	3.2.5 Booting from an NFS share
	3.2.6 Revert to booting from an SD card

	3.3 Configuring the Network
	3.3.1 Configuring a static IP address
	3.3.1.1 Configuring the primary Ethernet port
	3.3.1.2 Configuring the auxiliary Ethernet port

	3.3.2 Changing the default packet size (MTU)
	3.3.3 Configuring dynamic IP address (using a DHCP server)
	3.3.4 Name resolution
	3.3.5 Connecting through Telnet
	3.3.6 Connecting through SSH
	3.3.7 Configuring DHCP server

	3.4 Configuring date and time
	3.4.1 Changing the date
	3.4.2 Changing the time zone
	3.4.3 Connecting to an NTP server

	3.5 Changing the password
	3.6 Configuring the web server
	3.7 System logger

	4 Transferring files
	4.1 NFS
	4.2 FTP Client
	4.3 FTP Server
	4.4 SSH
	4.5 TFTP Client
	4.6 Windows shared directory

	5 Connecting USB devices
	5.1 USB mass storage
	5.2 Wifi network interface
	5.2.1 Load kernel modules
	5.2.2 Connection to an open access point
	5.2.3 Connection to an access point with WEP security
	5.2.4 Connection to an access point with WPA/WPA2 security
	5.2.5 Direct connection to another computer in ad-hoc mode

	5.3 UMTS/GSM modem
	5.3.1 Prerequisite
	5.3.2 Manual configuration
	5.3.2.1 Load kernel modules
	5.3.2.2 Configure provider
	5.3.2.3 Start PPP daemon

	5.3.3 Automatic startup

	5.4 Serial Port
	5.4.1 Load kernel modules
	5.4.2 Automatic startup

	5.5 LibUSB
	5.5.1 Prerequisite
	5.5.1.1 Mount USBFS manually
	5.5.1.2 Mount USBFS automatically

	5.5.2 Write a program using libusb

	6 Serial Port
	6.1 UEI Serial Server
	6.2 Using the CPU layer’s serial port for general purpose

	7 Testing the I/O layers
	7.1 devtbl
	7.2 Run examples
	7.3 PowerDNA server

	8 Application development
	8.1 Prerequisites
	8.2 Compiling and running Hello World
	8.3 Debugging Hello World
	8.4 PowerDNA Library
	8.4.1 PowerDNA API
	8.4.1.1 Initialization, miscellaneous API
	8.4.1.2 Offline Data Conversion API
	8.4.1.3 Immediate mode API
	8.4.1.4 DMAP API
	8.4.1.5 VMAP API
	8.4.1.6 AVMAP API
	8.4.1.7 Asynchronous Event API
	8.4.1.8 Unsupported APIs

	8.4.2 Building and running the examples
	8.4.3 Building your own program

	8.5 Synchronization
	8.5.1 PTP Synchronization
	8.5.2 External PPS Synchronization

	8.6 Real-Time Programming
	8.6.1 Programming with Real-Time Linux
	8.6.2 Programming with Xenomai Real-Time framework

	8.7 Running a program automatically after boot
	8.8 Running a program periodically

	9 Firmware installation and upgrade
	9.1 Installing or upgrading the Linux kernel
	9.1.1 UEIPAC with Freescale 5200 CPU (100 MBit Ethernet)
	9.1.2 UEIPAC and UEIPAC-XXX-02 versions with Freescale 8347 CPU (1GBit Ethernet)
	9.1.3 UEIPAC-XXX-03 versions (with Freescale 8347 CPU, 1GBit Ethernet)

	9.2 Initializing an SD card
	9.2.1 On a Linux PC
	9.2.1.1 Automated Procedure
	9.2.1.2 Manual Procedure

	9.2.2 On the UEIPAC itself

	9.3 Running the standard DAQBios firmware
	9.3.1 Configure UEIPAC with Freescale 5200 CPU to run DAQBios firmware
	9.3.2 Configure UEIPAC with Freescale 5200 CPU to run Linux
	9.3.3 Configure UEIPAC and UEIPAC-XXX-02 with Freescale 8347 CPU to run DAQBios firmware
	9.3.4 Configure UEIPAC and UEIPAC-XXX-02 with Freescale 8347 CPU to run Linux
	9.3.5 Configure UEIPAC-XXX-03 with Freescale 8347E CPU to run DAQBios firmware
	9.3.6 Configure UEIPAC-XXX-03 with Freescale 8347E CPU to run Linux

	10 Third-party software
	10.1 Third-party libraries installed by default on UEIPAC
	10.1.1 zeromq
	10.1.2 libmodbus
	10.1.3 expat
	10.1.4 sqlite
	10.1.5 gpsd
	10.1.6 GSL
	10.1.7 libusb
	10.1.8 mosquitto
	10.1.9 audiofile

	10.2 Building third-party software with buildroot
	10.3 Building third-party software from source
	10.3.1 Software with an autoconf configure script
	10.3.2 Other software
	Appendix A. Event API
	A.1 DqEmbConfigureEvent
	A.2 DqEmbWaitForEvent
	A.3 DqEmbCancelEvent

	Appendix B. Using Eclipse IDE to program the UEIPAC
	B.1 Download and install Eclipse
	B.2 Set up preferences
	B.3 Open and build examples
	B.4 Execute a program
	B.5 Debugging your program on the UEIPAC

	Appendix C. Creating a new Eclipse project for UEIPAC
	C.1 Create a new project
	C.2 Configure the environment
	C.3 Build and run
	C.4 Adding DNA API calls to your program

	Appendix D. Booting from NFS
	D.1 Configure shared RFS on host PC
	D.2 Configure U-Boot

	Appendix E. Building the Linux kernel
	E.1 Install tools
	E.2 Build the kernel for UEIPAC-300, UEIPAC-600, UEIPAC-700
	E.3 Build the kernel for UEIPAC-XXX-1G, RACK and UEIPAC-XXX-02 versions with 8347 CPU
	E.4 Build the kernel for UEIPAC-XXX-03 versions

	Appendix F. Converting root file system to read only
	F.1 Modify RFS on SD card
	F.2 Configure U-Boot

	Appendix G. Updating RAM disk image
	Appendix H. Bonding/Teaming Ethernet ports

