

DNA/DNR-1553-553
MIL-STD-1553 Communications

Interface
—

User Manual

Dual-channel, MIL-STD-1553 Communications Interface
for the PowerDNA Cube and RACKtangle Chassis

May 2010 Edition

PN Man-DNA-1553-0510

Version 1.6

© Copyright 1998-2010 United Electronic Industries, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by
any means, electronic, mechanical, by photocopying, recording, or otherwise without prior written permis-
sion.

Information furnished in this manual is believed to be accurate and reliable. However, no responsibility is
assumed for its use, or for any infringement of patents or other rights of third parties that may result from its
use.

All product names listed are trademarks or trade names of their respective companies.

See the UEI website for complete terms and conditions of sale:
http://www.ueidaq.com/company/terms.aspx

Contacting United Electronic Industries

Mailing Address:

27 Renmar Ave.
Walpole, MA 02081
U.S.A.

For a list of our distributors and partners in the US and around the world, please see http://www.ueidaq.com/
partners/

Support:

Telephone:(508) 921-4600
Fax:(508) 668-2350

Also see the FAQs and online “Live Help” feature on our web site.

Internet Support:

Support:support@ueidaq.com
Web-Site:www.ueidaq.com
FTP Site:ftp://ftp.ueidaq.com

Product Disclaimer:

WARNING!

DO NOT USE PRODUCTS SOLD BY UNITED ELECTRONIC INDUSTRIES, INC. AS CRITICAL COMPO-
NENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

Products sold by United Electronic Industries, Inc. are not authorized for use as critical components in life
support devices or systems. A critical component is any component of a life support device or system whose
failure to perform can be reasonably expected to cause the failure of the life support device or system, or to
affect its safety or effectiveness. Any attempt to purchase any United Electronic Industries, Inc. product for
that purpose is null and void and United Electronic Industries Inc. accepts no liability whatsoever in contract,
tort, or otherwise whether or not resulting from our or our employees' negligence or failure to detect an
improper purchase.

NOTE: Specifications in this document are subject to change without notice. Check with UEI for current
status.

mailto:support@ueidaq.com
http://www.ueidaq.com

iii

Tel::508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: DNx-MIL-1553TOC.fm

© Copyright 2010
United Electronic Industries, Inc.

Table of Contents
Chapter 1 Introduction . 1

1.1 Organization of this manual . 1

1.2 The MIL-1553 Interface Boards . 3

1.3 What is MIL-STD-1553? . 3
1.3.1 Physical Layer . 4

1.4 Bus Protocol . 5

1.5 Word Formats . 6
1.5.2 Command Word. 7
1.5.3 Data Word . 7
1.5.4 Status Word . 8
1.6.5 Remote Terminal (RT) . 9
1.6.6 Bus Controller (BC) . 9
1.6.7 Bus Monitor (MT) . 9
1.6.8 Monitor Terminal with RT Address (MT/RT) . 9

1.7 DNx-1553-553 Architecture . 10
1.7.1 Functional Description . 10

1.8 Specifications . 11

1.9 Software . 12

1.10 Wiring & Connectors . 13

1.11 Jumper Settings for Module Position . 14

Chapter 2 Programming with the High Level API . 15

2.1 Creating a Session . 15

2.2 Create MIL-1553 Ports . 15

2.3 Configure Timing. 16

2.4 Creating a Reader Object and Writer Object for each Port. 17

2.5 Starting the Session . 19

2.6 Reading/Writing Data from/to a Device. 19
2.6.1 Reading Bus Monitor . 20
2.6.2 Programming BusWriter Mode. 22
2.6.3 Programming and Working with a Bus Controller . 23
2.6.4 Programming and Working with Remote Terminals 32

2.7 Stopping the Session . 36

2.8 Destroying the Session . 36

Chapter 3 Programming with the Low-Level API . 37

3.1 Low-Level DqAdv Functions . 37

Appendix A – Accessories . 39

Index . 40

v

Tel::508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: DNx-MIL-1553LOF.fm

© Copyright 2010
United Electronic Industries, Inc.

Table of Figures
Chapter 1 Introduction . 1
1-1 Photo of DNR-1553-553 Interface Module... 3
1-2 Terminal Connection Types (One Bus Shown).. 4
1-3 Typical MIL-STD-1553 Bus.. 5
1-4 1553 Word Formats ... 7
1-5 Block Diagram of the DNx-1553-553 Interface Module ... 10
1-6 DNx-1553-553 Specifications .. 11
1-7 Pinout Diagram for DNX-MIL-1553 Layer .. 13
1-8 Jumper Block on Base Board for DNA-MIL-1553 Layer Position 14
1-9 Diagram of DNA-MIL-1553 Layer Position Jumper Settings.. 14

Chapter 2 Programming with the High Level API . 15
2-1 Bus Controller Memory Model ... 25

Chapter 3 Programming with the Low-Level API . 36
3-1 DNx-1553-553 Logic Block Diagram.. 37

Appendix A – Accessories . 84

Index . 85

DNx-1553-553 Interface Module
Chapter 1 1

Introduction
Chapter 1 Introduction

This document outlines the feature-set and describes the operation of the
DNx-1553-553 Communication Interface boards. The DNA- version is designed
for use with a PowerDNA Cube data acquisition system. The DNR- version is
designed for use with a DNR-12 RACKtangle or DNR-6 HalfRACK rack-
mounted systems. Both versions handle 1553 messaging over a dual redundant
MIL-1553 bus. Please ensure that you have the PowerDNA Software Suite
installed before attempting to run examples.

1.1 Organization
of this manual

The DNx-1553-553 User Manual is organized as follows:

• Introduction
This chapter provides an overview of the document content, the device archi-
tecture, connectivity, and logic of the layer. It also includes connector pinout,
notes, and specifications.

• Programming with the High-Level API
This chapter describes the use of the UeiDaq Framework High-Level API for
programming the board. It includes information such as how to create a ses-
sion, configure the session for 1553 bus communication, and interpret
results.

• Programming with the Low-Level API
This chapter describes the use of low-level API commands for configuring
and using the DNx-1553-553 series boards.

• Appendix A: Accessories
This appendix provides a list of accessories available for DNx-1553-553
board(s).

• Index
This is an alphabetical listing of the topics covered in this manual.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 1.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 1 2

Introduction
Document Conventions
To help you get the most out of this manual and our products, please note that
we use the following conventions:

Tips are designed to highlight quick ways to get the job done, or to
reveal good ideas you might not discover on your own.

NOTE: Notes alert you to important information.

CAUTION! Caution advises you of precautions to take to avoid injury,
data loss, and damage to your boards or a system crash.

Text formatted in bold typeface generally represents text that should be entered
verbatim. For instance, it can represent a command, as in the following
example: “You can instruct users how to run setup using a command such as
setup.exe.”

Frequently Asked Questions
For frequently answered questions, application notes, and support, visit us
online at:

http://www.ueidaq.com/faq/
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 1.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 1 3

Introduction
1.2 The MIL-1553
Interface
Boards

The DNx-1553-553 interface boards have the following features:

• 2 independent channels/ports

• Dual redundant bus interfaces

• Each channel is independently software-configurable as a Bus
Controller (BC), a Remote Terminal (RT), a Bus Monitor (MT) or
combination Remote Terminal/Monitor (RT/MT)

• Transformer-coupled Bus Interface standard, (Direct coupling software
selectable)

• Supports 1553A and 1553B protocols (Notice 1 and/or 2)

• Multiple RT simulation up to 31 RTs

• Completely independent bit rate settings for every port

• 350 Vrms isolation between 1553 bus, other I/O ports, and chassis

• Selective Message Monitoring in MT mode based on RT address or
Mode Code

Figure 1-1. Photo of DNR-1553-553 Interface Module

1.3 What is
MIL-STD-
1553?

MIL-STD-1553 is a military standard that defines mechanical, electrical, and
operating characteristics of a serial data communication bus for the U.S.
Department of Defense.It is now commonly used for both military and civilian
applications in avionics, aircraft, and spacecraft data handling. A 1553 system
typically uses a dual redundant, balanced-line, physical layer with a differential
network interface with time division multiplexing, half-duplex, command/
response data communication protocol with up to 31 remote terminal devices. It
was first used in the F-16 fighter aircraft and is now widely used by all branches
of the U.S. military and NATO.

[DNR-1553-553 Shown]
DNA version is functionally identical
with different bus connector and different
front panel
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 1.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 1 4

Introduction
The current standard, MIL-STD-1553B was introduced in 1978, the goal of
which was to define explicitly how each option should function, so that
compatibility among manufacturers could be guaranteed.

1.3.1 Physical Layer A single 1553 bus consists of a shielded twisted-wire pair with 70 - 85 ohm
impedance at 1 MHz. If a coaxial connector is used, the center pin is used for the
high Manchester bi-phase signal. All transmitter and receiver devices connect to
the bus either through coupling transformers or directly through stub connectors
and isolation transformers, as shown in Figure 1-2. Stubs can be a maximum of
1 foot in length for direct coupling or a maximum of 20 feet for transformer
coupling. To limit reflections, the data bus must be terminated by resistors equal
to the cable characteristic impedance (within ±2%). Figure 1-2 shows one of the
two buses. Each transceiver is also connected in the same way to the second
(redundant) bus. Note that although a 1553 system may also have additional
redundant buses, the DNx-1553-553 interface module is designed for systems
with two buses only.

Figure 1-2. Terminal Connection Types (One Bus Shown)

Although multi-stub couplers may be used in place of individual couplers
according to the standard, this does not apply when the DNx-MIL-1553 board is
used because the DNx-1553-553 interface module is designed with software-
selectable direct or transformer coupling and has termination resistors built in.
The data bus, therefore can be connected directly to the I/O connector of the
interface module.

TransceiverTransceiver Transceiver

Coupling
Transformer

Isolation
Resistors

Isolation
Transformer

Isolation
Resistors

Transformer
Coupled

Direct
Coupled

1 foot
maximum
stub
length

20 foot
maximum
stub
length

Data
Bus

Bus A
Termination

Bus A
Termination

ZcZc
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 1.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 1 5

Introduction
1.4 Bus Protocol All 1553 messages on the bus contain one or more 16-bit words, classified as
command, data, or status word types. Each word is preceded by a 3 s sync
pulse and is followed by an odd parity bit. Note that since the sync pulse —
1.5 s low followed by 1.5 s high — cannot occur in a Manchester code, it is
therefore unique. The words in a message are transmitted with no gap between
words, but a 4 s gap is inserted between successive messages. All devices
must start transmitting a response to a command within 4 to 12 s. If they do not
start transmitting within 14 s, they are considered to have not received the
command message.

A typical system is illustrated in Figure 1-3.

Figure 1-3. Typical MIL-STD-1553 Bus

All communication on the bus is controlled by the master bus controller (BC). A
Remote Terminal (RT) can receive or transmit only in response to a command
from the bus controller. The sequence of words in the message from the
controller to a terminal for transfer of data is:

master.command(terminal) --> terminal.status(master) -->
master.data(termiinal) --> master.command(terminal) -->terminal

where the notation is <source>.<word_type>(destination)>.

The message to initiate terminal-to-terminal communication is:

master.cmmand(terminal_1) --> terminal_1.status(master) -->
master.command(termiinal_2) -->terminal_2.status(master) -->
master.command(terminal_1) --> terminal_1.data(terinal_2) -->
master.command(terminal_2) --> terminal_2.status(master)

The sequences shown above ensure the terminal is functioning and ready to
receive data; the status request at the end of a transfer confirms that the data
was received and accepted. This sequence is the basis for the high reliability of
a 1553 data transfer. Note, however, that the sequences described do not
illustrate the actions that are taken under fault conditions, which are more
complex than those shown in the example.

Note that a remote terminal cannot initiate a data transfer by itself. It can only
request a data transfer in response to a poll by the master controller. Priority of
such requests is determined solely by the frequency of polling designed into the
system. If a terminal does not respond to a poll, this indicates existence of a
system fault.

Five types of transactions can occur between a Bus Controller (BC) and Remote
Terminals (RT), as follows:

Bus
Controller

Remote
Terminal

Remote
Terminal

Remote
Terminal

Bus
Monitor
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 1.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 1 6

Introduction
• Receive Data
The Bus Controller (BC) sends one 16-bit command word to an
addressed terminal, followed by 1 to 32 16-bit data words. The selected
terminal then sends a single 16-bit Status Word back to the Bus
Controller.

• Transmit Data
The Bus Controller (BC) sends one 16-bit command word to an
addressed terminal, followed by 1 to 32 16-bit data words. The selected
terminal then sends a single 16-bit Status Word back to the Bus
Controller, immediately followed by 1 to 32 data words.

• Broadcast Data
The Bus Controller (BC) sends one command word with a Terminal
Address of 31, which signifies a broadcast type of command, followed
by 1 to 32 data words. All terminals accept the data, but do not send a
response. This function is used for system updates such as time of day,
etc.

• Mode Code
The Bus Controller sends one command word with a subaddress of
either 0 or 31, signifying a Mode Code command type. Depending on
which command is sent, the command may or may not be followed by a
single word. The Remote Terminal responds with a Status Response
word, which may or may not be followed by a single data word.

• RT to RT Transfer
The Bus Controller sends a Receive Data command followed by a
Transmit Data command to a specific terminal. The terminal sends a
Status Word followed by 1 to 32 data words to a specified receiving
terminal. The receiving terminal the sends its Status Word, indicating
that it received the transmitted data

1.5 Word Formats The 1553 standard defines three word types:

• Command

• Data

• Status

Each word type has a specific format within a common structure. All words are
20 bits in length and the first three bits are a synchronization field, which enables
the decoding clock to re-sync at the beginning of each new word. The next 16
bits contain the information, in a format that varies with the word type. The last
bit in the word is a parity bit, which is based on odd parity for a single word.

All bit encoding is based on bi-phase Manchester II format, which provides a
self-clocking waveform. The signal is symmetrical about zero and is therefore
compatible with transformer coupling.

In Manchester coding, signal transitions occur only at the center of a bit time. A
logic “0” is defined as a transition from negative to positive level; a logic “1” is the
reverse. Note that the voltage levels on the bus are not the information signal;
all information is contained in the timing and direction of the zero crossings of
the signal on the bus.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 1.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 1 7

Introduction

AG
The terminal hardware provides the encoding and decoding of the various word
types. The encoder also calculates parity. For received messages, the decoder
signals the logic what sync type a word is and whether or not parity is valid. For
transmitted messages, input to the encoder defines what sync type to place at
the beginning of a word. The encoder calculates parity automatically for each
word.

The formats for each word type are illustrated in Figure 1-4.

Figure 1-4. 1553 Word Formats

1.5.2 Command
Word

A Command Word format uses the first 5 bits for the address of the Remote
Terminal (0 to 31). The sixth bit is 0 for Receive and 1 for Transmit. The next 5
bits indicate the subaddress/mode code bits. If this field is a 00000B or 11111B,
the command is a Mode Code Command. All other bits direct the data to specific
functions in the subsystem. The next 5 bits define the Word Count or Mode Code
to be performed. If this field is 00000B or 1111B, the field defines a mode code
to be performed. If it is not, the field defines the number of data words to be
transmitted or received (depending on the T/R bit). A word count field of 00000B
means 32 data words.

The last bit is word parity. Only odd parity is used.

1.5.3 Data Word A data word contains the information being transferred in a message. The first 3
bit times contain a data sync, which is opposite to that used for a command or
status word.

Data words can be transmitted by either a remote terminal (transmit command)
or a bus controller (receive command). The remote terminal is the reference
point.

The next 16 bits may be used however the designer wishes. The only standard
requirement is that the most significant bit must be transmitted first.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SYNC TERMINAL ADDRESS T/R SUBADDRESS/MODE WORD COUNT/MODE CODE PAR.

5 1 5 5 1

SYNC DATA PAR.

116

SYNC ADDRESS RESERVED PAR.

5 1 1 11 1 3 1 1 1 1

SERVICE REQ.
INSTRUMENTATION

MESSAGE ERROR

TERMINAL FL
DYNAMIC BUS
ACCEPTANCE

SUBSYSTEM FLAG
BUSY

BROADCAST CMD
RECEIVED

BIT

TIMES

COMMAND
WORD

DATA
WORD

STATUS
WORD

OF RESPONDING
TERMINAL
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 1.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 1 8

Introduction
The last bit is an odd parity bit.

1.5.4 Status Word A remote terminal responds to a valid message by transmitting a status word.
The status word tells the bus controller whether or not a message was received
properly and what the state of the terminal is.

The status word is cleared after receiving a a valid command word. After the
status word is cleared, the bits are set again if the conditions that set the bits
initially still exist.If an error is detected in the data, the Message Error bit is set
and transmission of the status word is suppressed. Transmission of the status
word is also suppressed whenever a broadcast message is received.

The first 5 bits of the status word (bits 4-8) are the Terminal Address. The remote
terminal sets these bits to the address to which it has been programmed. The
bus controller examines these bits to ensure that the responding terminal is the
one to which the command word was addressed.

The next bit (9) is the Message Error bit, which is set by the terminal on detection
of an error or an invalid message. Whenever this bit is set, none of the data
received in the message is used. When an error is detected, the remote terminal
must suppress transmission of the status word.

The Instrumentation bit (10) differentiates a command word form a status word
(both have the same sync pattern). The instrumentation bit in a status word is
always set to ”0”. When used, the instrumentation bit in a command word is
always set to “1”. SInce this bit is the most significant bit of the subaddress field,
using it as an instrumentation bit reduces the number of available subaddresses
from 30 to 15. Because of this limitation, most systems today use techniques
other than the instrumentation bit to differentiate between command and status
words.

The Service Request bit (11) enables a terminal to inform the bus controller that
it needs to be serviced. A “1” in this bit indicates that service is needed. It is
typically used when the bus controller is polling the terminals.

Bits 12 - 14 are reserved for future use and must be set to “0”. Any other value
is an error.

A “1” in Bit 15 indicates that the terminal received a valid broadcast command.
Whenever a terminal receives a valid broadcast command, the terminal sets this
bit to “1” and suppresses transmission of its status word.

A “1” in Bit 16 (“busy” bit) tells the Bus Controller that the terminal cannot act on
a command to move data between the terminal and subsystem. This bit is
typically not used in modern system designs and is discouraged by Notice 2 of
the standard.

A “1” in Bit 17 is used as an indicator of existence of a fault in a subsystem. A “1”
in Bit 18 indicates that the remote terminal has received a mode code and has
accepted control of the bus. After setting this bit, the remote terminal becomes
the bus controller.

A “1” in Bit 19 (the Terminal Flag) indicates to the bus controller that a fault exists
in the remote terminal hardware.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 1.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 1 9

Introduction
1.6.5 Remote
Terminal (RT)

Any device that is not a Bus Controller or a Bus Monitor is, by definition, a
Remote Terminal.

A Remote Terminal can be used as an interface between the bus(es) and a
subsystem or as a connector between this bus and another 1553 bus. A
subsystem is the sender or user of the information transferred on the bus. A
remote terminal contains all the components needed to transfer the data from
the sender source to the destination user.

1.6.6 Bus Controller
(BC)

The Bus Controller (BC) manages the flow of data on the buses. Only one bus
controller can be active at a given time. A bus controller may be one of three
types: (1) Word Controller, (2) Message Controller, or (3) Frame Controller.

A Word controller, which handles one word at a time, is seldom used today
because of the processing burden it places on the subsystem.

A Message Controller handles one message at a time, interacting with the
computer only when a message is complete or when a fault occurs.

A Frame Controller can process multiple message in a defined sequence,
interrupting the computer only when the message stream is complete or after an
error is detected.

1.6.7 Bus Monitor
(MT)

A Bus Monitor is not able to transmit messages on the bus; its function is to
monitor and record messages being transmitted on the bus without disrupting
other devices. A bus monitor can be set up to record selected subsets of the
messages on the bus. It can also be set up as a backup bus controller, ready to
take over whenever needed.

1.6.8 Monitor
Terminal with
RT Address
(MT/RT)

When a monitor with RT address (MT/RT) receives a command addressed to its
terminal address, it responds as a remote terminal. For all other commands, it
responds as a monitor. The remote terminal functions may be used to modify the
operation of a specific monitor.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 1.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 1 10

Introduction
1.7 DNx-1553-553
Architecture

Figure 1-5 is a block diagram of the architecture of the DNx-1553-553 interface
module.

Figure 1-5. Block Diagram of the DNx-1553-553 Interface Module

1.7.1 Functional
Description

As shown in Figure 1-5, the module has two independent 1553 channels, each
connected to a dual-redundant data bus via coupling/isolation transformers or
isolation transformers only, and each with an independent dedicated transceiver.
The coupling transformers and the transformer taps can be selected by opto-
isolated relays under program control. (Note that different transformer ratios are
used for direct or transformer coupling.) Each channel can function
independently as a Bus Controller, Remote Terminal, or Bus Monitor, as
determined by the software (subject to the restrictions of the applicable MIL
standard).

DC/DC

FPGA

D
at

a
B

us
 A

D
at

a
 B

us
 B

Coupling
Trans-
former

Isolation
Trans-
former

Coupling
Trans-
former

Isolation
Trans-
former

D
B

-6
2

 C
on

n
ec

to
r

32
-B

it
6

6
M

H
z

B
u

s

1553 Transceiver

Channel 1

Coupling
Trans-
former

Isolation
Trans-
former

Coupling
Trans-
former

Isolation
Trans-
former

Coupling
Trans-
former

Isolation
Trans-
former

1553 Transceiver

Channel 2

Coupling
Trans-
former

Isolation
Trans-
former
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 1.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 1 11

Introduction
When the channel is operating as a transmitter, messages are sent from the
host through the DNx-1553-553 module to the selected Data Bus. The address
contained in the message itself determines the destination of the message. The
transceiver transmitter accepts Manchester-encoded biphase data and converts
it to differential voltages that are passed to the bus through the isolation and
coupling transformers (or through an isolation transformer circuit only, if direct
coupling is selected).

When the channel is operating as a receiver, the process described above is
reversed.

1.8 Specifi-
cations

Figure 1-6. DNx-1553-553 Specifications

Technical Specifications:
General Specifications
Number channels/ports 2, Independent
Channel configuration Dual redundant interfaces
Specification compliance MIL-STD-1553a or

MIL-STD-1553b including notices 1 & 2
Configuration Bus Controller (BC), Remote Terminal (RT) or

Bus Monitor (BM). Either channel may be set as
BC, RT or BM

Interface Transformer or direct coupling (software
selectable)

Isolation 350 Vrms
Power Consumption 5 W (not including load)
Bus Controller (BC) Specs
Configuration Independent Ports
Communication support BC to RT, RT to BC, RT to RT
Messaging protocols Standard Mode Codes, Broadcast messages
Message timing Scheduled or asynchronous with two levels of

priority
Programmability Major/minor frame timing, intermessage gap

times, time out and late response, BC retries
Error handling Automatic error detection and recovery.
Remote Terminal (RT) Specs
Modes Single or multiple RT emulator (up to 31

different RTs) RT - RT xfers with simulated RTs
may be implemented with user software.

RT/BM joint mode Allows the unit to act as an RT while logging
data as an BM

Error handling Automatic error detection and insertion.
Bus Monitor (BM) Specs
Monitor modes Full or selective monitoring by RT address
Monitored parameter In addition to bus data, BM mode time tags

data and capture Word/Message/Error status
and RT response time

Environmental
Operating Temp. (tested) -40°C to +85°C
Operating Humidity 0 - 95%, non-condensing
MTBF 275,000 hours
Vibration IEC 60068-2-6
 IEC 60068-2-64

5 g, 10-500 Hz, sinusoidal
5 g (rms), 10-500 Hz, broad-band random

Shock IEC 60068-2-27 50 g, 3 ms half sine, 18 shocks @ 6 orientations
30 g, 11 ms half sine, 18 shocks @ 6 orientations

Altitude 0 - 70,000 feet (0 - 21,336 m)
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 1.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 1 12

Introduction
1.9 Software Refer to Chapters 2 and 3 for information on how to program the DNx-1553-553
Interface Module.

UEIDAQ Framework is a programming facility that allows you to connect
transparently to a cube or RACKtangle and then configure the DNx-1553-553
module to communicate with other 1553 devices. Attach to the 1553-bus(es)
and then send and/or receive 1553 packets.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 1.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 1 13

Introduction
1.10 Wiring &
Connectors

Figure 1-7 illustrates the pinout of the DB-62 connector on the DNx-1553-553
Interface Module.

Figure 1-7. Pinout Diagram for DNX-MIL-1553 Layer

Parameters For detailed instructions for configuring the module and for setting operating
modes and parameters, refer to the Framework Functions DqAdv1553SetAll
and DqAdv1553SetAll, which are described in the Framework API Reference
Manual.

IO3BUSA1-P
IO4BUSA1-N

IO8GND-CH-1

IO21BUSB1-P
IO22BUSB1-N

IO26GND-CH-1

IO35BUSA2-P
IO36BUSA2-N

IO38GND-CH-2

IO40GND-CH-2

IO48GND-CH-2

IO53BUSB2-P
IO54BUSB2-N

IO56GND-CH-2

IO0GND-CH-1

IO18GND-CH-1

C
H

A
N

N
E

L
2

C
H

A
N

N
E

L
1

A

B

A

B

FJIO1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

1

21

22

42

43

62

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 1.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 1 14

Introduction
1.11 Jumper
Settings for
Module
Position

Figure 1-8 shows the physical layout of baseboard of the DNx-1553-553
Interface Module, highlighted to show the 16-pin jumper block for setting the
module position within the PowerDNA Cube.

NOTE: Layer position jumpers are not provided with the DNR versions of the
DNx-1553-553. The physical position of the layer within the DNR
RACKtangle enclosure is determined automatically by the system.

Figure 1-8. Jumper Block on Base Board for DNA-MIL-1553 Layer
Position

1.11.0.1 Jumper
Settings

A diagram of the jumper block is shown in Figure 1-9. To set the layer position
jumpers, place jumpers as shown in Figure 1-9.

NOTE: Since all layers are assembled in Cubes before shipment to a customer,
you should never have to change a jumper setting unless you change a
layer from one position to another in the field.

Figure 1-9. Diagram of DNA-MIL-1553 Layer Position Jumper
Settings

1

J1

2

1516

9

11

1314

12

10

34

56

78

Note: The removal of a “daughter card” is required for this
layer to gain access to the jumper header

See Figure 1-9 for
placement of jumpers for
various layer positions in a
Cube.

Layer’s Position as marked on the Faceplate*

I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6

Jx
 P

in
s

9-10

11-12

13-14

15-16

* All I/O Layers are sequentially enumerated from top to the bottom of the Cube

 - Open - Closed
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 1.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 15

Programming with the High Level API
Chapter 2 Programming with the High Level API

This section describes how to program a DNx-1553-553 layer using the UeiDaq
Framework High-Level API. UeiDaq Framework is object-oriented and its
objects can be manipulated in the same manner in various development
environments, such as Visual C++. Visual Basic, LABView, or DASYLab.

UeiDaq Framework is bundled with examples for supported programming
languages. They are located under the UEI Programs group in

Start >> Programs >> UEI >> Framework >> Examples

The following subsections focus on the C++ API, but the concept is the same
regardless of the programming language used.

Please refer to the ”UeiDaq Framework User Manual” for more information on
using other programming languages.

2.1 Creating a
Session

The Session object controls all operations on your PowerDNA device.
Therefore, the first task is to create a session object:

CUeiSession session;

2.2 Create MIL-
1553 Ports

MIL-1553 ports are configured using the session object’s method
“CreateMIL1553Port”, as follows:

// port 0 - bus controller
CUeiMIL1553Port* pPort0 = session.CreateMIL1553Port(

“pdna://192.168.100.2/dev0/milb0“,
UeiMIL1553CouplingTransformer,
UeiMIL1553OpModeBusController

);

// port 1 - remote terminal
CUeiMIL1553Port* pPort1 = session.CreateMIL1553Port(

“pdna://192.168.100.2/dev0/milb1“,
UeiMIL1553CouplingTransformer,
UeiMIL1553OpModeRemoteTerminal
);

Each created port can be used in one of three modes (but there can be only one
Bus Controller port):

• UeiMIL1553OpModeBusMonitor – a Bus Monitor port allows you to
receive ongoing activity on the bus using a CUeiMIL1553Reader object. In
this mode of operation, the CUeiMIL1553Writer object also allows you to
send unscheduled continuous data on the bus. In
UeiMIL1553OpModeBusMonitor, a user can monitor a bus and send
messages using BusWriter. Bus monitor is enabled in all configurations,
including RT and BC.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 16

Programming with the High Level API
• UeiMIL1553OpModeRemoteTerminal – An RT port allows you to program
remote terminals and to send/receive data from the remote terminal data
memory. In UeiMIL1553OpModeRemoteTerminal, up to 32 RTs (including
the 31st broadcast RT) and 30 SAs per each RT (SA0 and SA31 are
reserved for mode commands).

• UeiMIL1553OpModeBusController – A Bus Controller port allows you to
program a bus controller /scheduler and to send and receive data from and to
bus controller data memory. In UeiMIL1553OpModeBusController
mode, a user can program bus controller operation.

Note that BusWriter does not work in RT or BC mode and that Bus Monitor
works in all modes.

Bus Controller and Remote Terminal mode cannot be used on the same port
simultaneously, but can be used on the same layer on different ports of an
aircraft simulation MIL-1553 network.

Each port created can be used in one of four coupling modes:

• UeiMIL1553CouplingDisconnected – port is completely
disconnected from the bus.

• UeiMIL1553CouplingTransformer – normal mode of operation.

• UeiMIL1553CouplingLocalStub – isolation coupler of the layer,
which requires a special version of the hardware.

• UeiMIL1553CouplingDirect – direct connection without isolation
transformer. Sometimes used in laboratories when a coupled network is
not available. This mode is normally not recommended.

The normal coupling is UeiMIL1553CouplingTransformer.

The UeiMIL1553CouplingLocalStub coupling option requires a local stub
to be populated on the 1553 board (this is an extra cost option). Direct coupling
is used sometimes a in laboratory environment but is extremely rare, probably in
cases in which there is no network and an RT is connected directly to the board
using two wires.

Note that you will need to create one reader and one writer per port to access
port data in any mode of operation.

A user can select which bus on which to transmit data using the
CUeiMIL1553Port::SetRxBus() method. Note that for transmission of
messages, either bus A or bus B should be selected (default is bus A).
CUeiMIL1553Port::SetRxBus() selects which bus to listen to. Table 2-1
on page 17 describes the bus settings that are allowed for various modes of
operation:
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 17

Programming with the High Level API
Table 2-1. Selection of Transmit Bus

2.3 Configure
Timing

On MIL-1553 ports, messages are represented in a tUeiMIL1553*Frame
structures. Note that the same approach is used for all modes of operation. Bus
monitor, bus controller, and remote terminal timing depend on the frame type
specified.

session.ConfigureTimingForMessagingIO(1, 0);
session.GetTiming()->SetTimeout(1000);

Asynchronous operations with MIL-1553-553 layers are currently not
implemented. If a user needs to operate RT or BM asynchronously, the best way
is to use it in a separate thread.

2.4 Creating a
Reader Object
and Writer
Object for
each Port

Before a user can communicate with the layer reader and (for everything except
a BM), writer objects need to be created for each port, as shown below:

CUeiMIL1553Reader* readers = new CUeiMIL1553Reader(session.
GetDataStream(), session.GetChannel(ch)->GetIndex());
CUeiMIL1553Writer* writers[ch] = new CUeiMIL1553Writer(session.
GetDataStream(), session.GetChannel(ch)->GetIndex());

By doing this, you are creating MIL-1553-553 specific Reader and Writer classes
and connecting them to the appropriate data stream and channel.

The default behavior of reader and writer objects is to block until the specified
number of frames is ready to be transferred. You can also configure those
objects to work asynchronously. The method used to program readers and
writers asynchronously is very dependent on the programming language. You
can find more information on how to do this in the Reference manual for each
development environment.

Settings

BM (BW) RT BC

Listen (Rx) Transmit (Tx) Listen (Rx) Transmit (Tx) Listen (Rx) Transmit (Tx)

Rx A A only A only A only

Rx B B only B only B only

Rx
Both

A and B
(normal)

A and B
(normal)

A and B
(normal)

Tx A A only A only A only

Tx B B only B only B only

Tx Both prohibited A or B (reply
on the bus on

which
command

was
received)

A or B
(first use A
and then B
upon bus

error, if error
recovery is
enabled)
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 18

Programming with the High Level API
CUeiMIL1553Reader and CUeiMIL1553Writer are polymorphic. There are
multiple overloaded implementations of these functions that can accept different
types of frames. The type of frame dictates the data passed and the operation to
be performed.

The following types of frames are defined:

• CUeiMIL1553BCSchedFrame class – program major and minor BC frames.

This class is used to construct and manipulate tUeiMIL1553BCSchedFrame
to simplify its use. It can be used with both CUeiMIL1553Reader::read()
and CUeiMIL1553Writer::write()

class CUeiMIL1553BCSchedFrame : public tUeiMIL1553BCSchedFrame

• CUeiMIL1553BCCBDataFrame class – assemble and store data into a BC
control block.

This class is used to construct and manipulate CUeiMIL1553BCCBDataFrame
to simplify its use. It can be used only with CUeiMIL1553Writer::write().

class CUeiMIL1553BCCBDataFrame : public tUeiMIL1553BCCBDataFrame

• CUeiMIL1553BCCBStatusFrame class – request and manipulate BC
control block status data as well as the status and data the RT replied with.

This class is used to construct and manipulate
CUeiMIL1553BCCBStatusFrame to simplify its use. It can be used only with
CUeiMIL1553Reader::read().

class CUeiMIL1553BCCBStatusFrame : public tUeiMIL1553BCCBStatusFrame
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 19

Programming with the High Level API
• CUeiMIL1553RTFrame class – write or read RT "send" and "transmit" data
areas.

This class is used to construct and manipulate a CUeiMIL1553RTFrame to
simplify its use. It can be used with both CUeiMIL1553Reader::read() and
CUeiMIL1553Writer::write()

class CUeiMIL1553RTFrame : public tUeiMIL1553RTFrame

• CUeiMIL1553BMFrame class – read BM messages separated by idle state
of the bus.

This class is used to construct and manipulate a CUeiMIL1553BMFrame to
simplify its use. It can be used only with CUeiMIL1553Reader::read().

class CUeiMIL1553BMFrame : public tUeiMIL1553BMFrame

• CUeiMIL1553BMCmdFrame class – read BM messages separated by 1553
protocol commands.

This class is used to construct and manipulate CUeiMIL1553BMCmdFrame to
simplify its use. It can be used only with CUeiMIL1553Reader::read().

class CUeiMIL1553BMCmdFrame : public tUeiMIL1553BMCmdFrame

• CUeiMIL1553RTStatusFrame class – write or read RT "send" and
"transmit" data areas.

This class is used to construct and manipulate CUeiMIL1553RTStatusFrame
to simplify its use. It can be used only with CUeiMIL1553Reader::read().

class CUeiMIL1553RTStatusFrame : public tUeiMIL1553RTStatusFrame

• CUeiMIL1553RTControlFrame class – run-time control of RT.

This class is used to construct and manipulate
CUeiMIL1553RTControlFrame to simplify its use. It can be used only with
CUeiMIL1553Writer::write().

class CUeiMIL1553RTControlFrame : public tUeiMIL1553RTControlFrame

• CUeiMIL1553FilterEntry class – run-time control of RT.

This class is used to construct and manipulate CUeiMIL1553FilterEntry to
simplify its use. It can be used only with CUeiMIL1553Writer::write().

class CUeiMIL1553FilterEntry : public tUeiMIL1553FilterEntry

• CUeiMIL1553RTParametersFrame class – specify RT parameters during
initialization

This class is used to construct and manipulate
CUeiMIL1553RTParametersFrame to simplify its use. It can be used only
with CUeiMIL1553Writer::write().

class CUeiMIL1553RTParametersFrame : public tUeiMIL1553RTParametersFrame
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 20

Programming with the High Level API
• CUeiMIL1553TxFifoFrame class – write data to BusWriter.

This class is used to construct and manipulate CUeiMIL1553TxFifoFrame to
simplify its use. It can be used only with CUeiMIL1553Writer::write().

class CUeiMIL1553TxFifoFrame : public tUeiMIL1553TxFifoFrame

• CUeiMIL1553BCStatusFrame class – receive BC status information

This class is used to construct and manipulate CUeiMIL1553BCStatusFrame
to simplify its use. It can be used only with CUeiMIL1553Writer::read().

class CUeiMIL1553BCStatusFrame : public tUeiMIL1553BCStatusFrame

• CUeiMIL1553BCControlFrame class – control BC execution process.

This class is used to construct and manipulate CUeiMIL1553BCStatusFrame
to simplify its use. It can be used only with CUeiMIL1553Writer::write().

class CUeiMIL1553BCControlFrame : public tUeiMIL1553BCControlFrame

Frame type UeiMIL1553FrameTypeBusMon is used to receive data from the
bus monitor. Each command and status word on the bus is stored in a separate
frame.

Call the session object’s method “ConfigureTimingForMessagingIO” to
perform message communication, provided that the device allows it.

2.5 Starting the
Session

You can start the session by calling the session object’s method “Start”:

// Start the session
mySession.Start();

Note that if you don’t explicitly start the session, it will be automatically started
the first time you try to transfer data using a reader or writer object.

2.6 Reading/
Writing Data
from/to a
Device

To write or read data to/from a MIL-1553-553 board, do the following:

CUeiMIL1553RTDataFrame* pFrame = new CUeiMIL1553RTDataFrame;
writer->Write(numFramestoWrite, pFrame, &numFramesWritten);
reader->Read(numFramestoRead, pFrame, &numFramesRead);

Note that the first read or write from a 1553 channel configures all operations
and starts the layer.

2.6.1 Reading Bus
Monitor

Bus Monitor is the simplest function to use.

To do so, first create a new bus monitor frame:

CUeiMIL1553BMFrame* bmFrm = new CUeiMIL1553BMFrame;

Then read bus monitor data from that accumulated in the 1553 bus monitor
buffer (it can accumulate up to 1024 32-bit data words).
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 21

Programming with the High Level API
readers[1]->Read(1, bmFrm, &numFramesRead);

You can either work with the frame members directly or use helper methods to
display data as strings:

if (numFramesRead) std::cout << bmFrm->GetBmDataStr() << std::endl;

Raw bus monitor data is represented as follows:

First 32-bit word: —

bit 31: parity error on the bus, if any
bit 30: set to 1 for command or status
bits 29 thru 16: time in 15.15ns interval since previous command or status.
bits 15 thru 0: command or status as received from the bus.

If there is data following the command, it is represented in the following format:

bit 31: parity error on the bus, if any
bit 30: set to 0 for data word
bits 29 thru 16: time in 15.15ns interval since previous command or status.
bits 15 thru 0: data as received from the bus.

If timestamps are enabled using the
CUeiMIL1553Port::EnableTimestamping() method,
(timestamps are enabled by default), the last two words contain a 32 bit
“absolute” timestamp of the message in 10us resolution (timestamps are reset
when the session starts) and the various flags defining the current bus status
and which bus (A or B) the command was received on. See “PowerDNA API
Reference Manual” for further detail.

A Bus Monitor works as follows:

Each time a command/status word is decoded on the 1553 A/B bus, it is
validated against an RT filter. If the RT address is not included in the monitoring,
all command/status and consequential data are ignored. If the RT address is
included into the monitoring, the timestamp is stored into the internal register
and the command/status with gap timeout counter is stored into the FIFO. After
that, each received data word is stored into the FIFO until the next command/
status word is received and the process repeats itself. Once a data gap interval
is detected OR another control/status word is received, the following optional
information is stored into the BM FIFO:

• Timestamp word (30 LSBs of the timestamp) – optional

• Flags/status word (status information and extra bits of the timestamp if
enabled)

• Bus IDLE tag, 0xC0000000, which indicates that the 1553 bus that was
driving the BM went into the idle state. The idle tag is used internally in
the firmware to separate messages and is not exposed in the
datastream into CUeiMIL1553BMFrame.

• Note that when BMALL bit is cleared (normal operation), the BM follows
messages from bus A or B, but only one bus at the time. If for any
reason, in violation of the 1553 protocol, any device sends data on both
buses, only the transmission from one bus will be logged, data from the
other bus will be processed upon the “first” bus going into the idle state;
in the case in which more than one word was received prior to switching
to the “second” bus, the data from the “second” bus will be corrupted.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 22

Programming with the High Level API
BM data structure:

Command/Status/Data format in BM data

Timestamp “LSB part” word format in BM data

Flag word format in BM data

SetTxBus(tUeiMIL1553PortActiveBus portBus) can be used to select
which bus to listen on – A or B or both. By default, a bus controller listens to
communication on both buses.

Command/Status, all 32-bits used, bit 30=1

Data word 0

Data word N

Optional: Timestamp[29:0] , bit 30=0

Optional: Flags[29:0] , bit 30=0

Bit Name Description

31 PARITY One in this bit indicates parity error

30 WORD_TYPE Word type (1=command/status, 0=data)

29-16 GAP1553 Gap interval on 1553 bus measured in 66MHz clocks, 248.2uS

max; 0x3FFF indicates that gap counter has expired

15-0 DATA1553 1553 data from/to the decoders

Bit Name Description

31-30 ZERO Upper two bits are always zeroes for the flags

29-0 TIME_LSB 30 LSBs of the timestamp tag

Bit Name Description

31-30 ZERO Upper two bits are always zeroes for the flags

29 RES29 Reserved for future use

24 RES24 Reserved for future use

23 OVRE =1 if decoder data overrun was detected

22 PE =1 if parity error was detected

21 DBE =1 if error detected during data bits reception

20 SBE =1 if error detected during SYNC bit reception

19 ZCE =1 if invalid combination is detected (positive line <> !negative

line) ~ 150nS after zero crossing

18 SET =1 if edge-edge timing is invalid for the SYNC bit

17 DET =1 if edge-edge timing is invalid for the data bit

16 TOUT =1 if timeout is detected while waiting for the edge on positive
and negative input lines

15-1 TIME_MSB 15 MSBs of the 45-bit timestamp tag (currently bits15-3 are
reserved and bits 2-1 contain upper two bits of the timestamp)

0 BUSID 1553 bus ID 1=A, 0=B
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 23

Programming with the High Level API
2.6.2 Programming
BusWriter
Mode

In Bus Monitor mode, a user can send arbitrary data packets on the bus using
the BusWriter mechanism.

To use BusWriter, an appropriate frame needs to be created first:

CUeiMIL1553TxFifoFrame* outFrm = new CUeiMIL1553TxFifoFrame;

Then, the frame needs to be filled with appropriate information:

outFrm->CopyData(messageSize, data);
outFrm->SetCommand(startRt, startSa, messageSize, UeiMIL1553CmdBCRT);
writer->Write(1, outFrm, &numFramesWritten);

The following command codes are defined:

UeiMIL1553CmdBCRT, // Remote terminal to receive data from bus controller
UeiMIL1553CmdRTBC, // Remote terminal to transmit data to bus controller
UeiMIL1553CmdRTRT, // One remote terminal to transmit data to another remote

 // terminal
UeiMIL1553CmdModeTxNoData, // Tx Status word
UeiMIL1553CmdModeTxWithData, // Remote terminal to transmit data and/or
 // status word to bus controller
UeiMIL1553CmdModeRxWithData, // Remote terminal to receive data for mode
 // command from bus controller
UeiMIL1553CmdBCRTBroadcast, // Remote terminal to receive broadcast data
 // from bus controller
UeiMIL1553CmdRTRTBroadcast, // One remote terminal to broadcast data to
 // other remote terminals
UeiMIL1553CmdModeTxNoDataBroadcast, // Mode command without data, remote
 // terminals should not reply
UeiMIL1553CmdModeRxWithDataBroadcast, // Mode command with data, remote
 // terminals should receive data

There are two overloaded methods of SetCommand():

SetCommand(int Rt_, int Sa_, int WordCount_, tUeiMIL1553CommandType
Command_)
and
SetCommand(int Rt_, int Sa_, int Rt2_, int Sa2_, int WordCount_,
tUeiMIL1553CommandType Command_)

The second SetCommand method is used to send RT-RT type commands.

Another useful method is SetDelay(int Delay_) which inserts a delay in
microseconds before execution of the command. SetDelay() can be used to
create a certain communication pattern on the bus without needing to use a bus
controller.

SetTxBus(tUeiMIL1553PortActiveBus portBus) can be used to select
which bus to use – A or B.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 24

Programming with the High Level API
2.6.3 Programming
and Working
with a Bus
Controller

The Bus Controller is by far the most complicated functional element on a
MIL-1553-553 layer.

The DNx-1553-553 layer supports full implementation of the BC — all 1553
transfer types are supported, major and minor frame timing is fully
programmable, and the BC also implements recovery of failed transactions and
auto-status requests for the RTs that are in the “dead” state.

A Bus Controller uses the following memory model (note that terms “descriptor”
and “entry” are used interchangeably and both refer to the single record in the
major or minor frame tables):

1. One major frame is defined. A major frame may contain up to 256 entries
for the minor frames.

2. A user can define up to sixteen different minor frames (i.e., minor frame
types). Each type allows you to perform one of two sets of up to 128 trans-
actions on the bus (only one block of 128 elements is active at a time, a
second may be updated from the host, allowing double-buffering support)

3. Major and minor frame descriptors are stored in the on-board FPGA mem-
ory. They contain control bits that are set by the host and status bits that
represent important status information about execution of the particular
descriptor. They are set by the BC.

4. For each of the descriptors in every minor frame, there is a dedicated 128
16-bit word area in the external memory called a Bus Controller Control
Block (BCCB) that contains flags that define the type of the transfer, retry
behavior, and other parameters. The area also contains validation data and
status information for the transactions performed plus RT->RT/BC data as
well.

5. Up to 16 (minor frame types)*256(minor frame entries) = 4096 unique
BCCBs may be defined per channel and used on a single DNx-1553-553
layer, occupying 1048576 16-bit memory words. These BCCBs can be
addressed statically (when the Framework automatically assigns a BCCB
for each minor entry using the following formula:
 <minor_frame_type*256>+<minor_frame_entry_number>
or they may be assigned by the user.

For data coherency support, two double-buffering techniques are defined for
major frame processing called a “SWAP” cycle and “minor frame double-
buffering”. They complement each other:

“SWAP” Cycle in a Major Frame

• Any of the major frame descriptors may be marked with a “SWAP” flag
(UeiMIL1553MjSwapEnabled). Marking the entry does not affect its
current operation.

• “SWAP” cycle is initiated by writing CUeiMIL1552ControlFrame with the
proper command set.

• An actual “SWAP” cycle takes place at the beginning of the next major frame
cycle (takes an extra 16uS). During the SWAP cycle, all entries in the major
frame descriptor table that are marked for “SWAP” have the current value of
the “Enable” bit inverted, i.e., currently enabled entries will be disabled and
currently disabled entries enabled. Entries where a “SWAP” flag was cleared
stay unaffected. This allows replacing of all minor frames at the same time.

The “SWAP” operation could be performed as follows:
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 25

Programming with the High Level API
CUeiMIL1553BCControlFrame* bccontrol = new CUeiMIL1553BCControlFrame;
bccontrol->SwapMjEntries();
writer->Write(1, bccontrol, &numFramesWritten);

Minor Frame Double-Buffering

Each minor frame is split into two blocks, the first uses descriptors 0-127 and
second uses descriptors 128-255. Only one sub-frame is actively used by the
BC and, as a result, only half of the BCCBs are accessed by the BC engine. This
allows the host to change the other half without worrying about overriding the
same data that is currently being processed by the BC.

A “Sub-frame” is selected by the value that is written to the port. 16 LSBs define
which part of the minor frame is selected, a 0 in the corresponding position
indicates that descriptors 0-127 should be used, a 1 indicates 128-255. Note
that an actual change takes place for all minor frames at the end of the major
frame cycle after all descriptors are processed in order to set the initial value to
this register and initiate a SWAP cycle for the BC. The current and pending sub-
frame for each minor frame are accessible in the same register.

The following code demonstrates how to select block “1” (entries 128-255) for
minor frames 2 and 3:

CUeiMIL1553BCControlFrame* bccontrol = new CUeiMIL1553BCControlFrame;
minor_blocks = (1L<<2)|(1L<<3);
bccontrol->SelectMnBlock(minor_blocks);
writer->Write(1, bccontrol, &numFramesWritten);

Double-buffering of the minor frames allows safe replacement of the data
associated with each entry of the minor frame descriptor table.

A bus controller also provides a lot of information for a failed 1553 transaction
that may be used for proper recovery – see a detailed description of the BCCB
in the UeiDaq Framework Reference Manual.

Figure 2-1 is a graphical representation of the Bus Controller Memory Model.
The notes listed below the figure contain explanatory information.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 26

Programming with the High Level API
.

Figure 2-1. Bus Controller Memory Model

M
aj

or
 fr

am
e

M
in

or
 fr

am
e

BC
 C

on
tro

l b
lo

ck
s

de
sc

rip
to

r t
ab

le
s

de
sc

rip
to

r t
ab

le
s

in
 e

xt
er

na
l m

em
or

y
25

6x
18

(1
6x

)
12

8x
16

25
6x

18
O

ne
 b

lo
ck

 fo
r e

ac
h

D
es

c
0

D
es

c
0

m
in

or
 fr

am
e

de
sc

rip
to

r
D

es
c

1
D

es
c

1
D

es
c

0
FL

A
G

s
D

es
c

1
Va

lid
at

io
n

pa
ra

m
et

er
s

R
X

 d
at

a
Er

ro
r/s

ta
tu

s
fro

m
 B

C
D

es
c

25
5

D
es

c
25

5
R

T
S

ta
tu

s/
tim

es
ta

m
p

D
es

c
25

5
TX

 d
at

a

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

R
SV

17
A

D
D

R
6

AD
D

R
5

AD
D

R
4

AD
D

R
3

A
D

D
R

2
A

D
D

R
1

A
D

D
R

0
R

SV
9

EN
O

T
C

B
R

R
E

D
ER

R
ER

R
C

E
N

 =
1

- e
na

bl
e

cu
rr

en
t e

nt
ry

, i
f t

hi
s

bi
t =

0
de

sc
rip

to
r i

s
ig

no
re

d
O

T
E

xe
cu

te
 o

nc
e

fla
g

- i
f s

et
, e

nt
ry

 w
ill

be
 e

xe
cu

te
d

on
ce

 a
nd

 th
en

 it
 w

ill
be

 a
ut

om
at

ic
al

ly
 d

is
ab

le
d.

C

B
St

at
us

 b
it

- i
nd

ic
at

es
 b

us
 th

at
 w

as
 u

se
d

la
st

 ti
m

e
en

try
 w

as
 p

ro
ce

ss
ed

 (0
=B

us
 A

)
R

R
St

at
us

 b
it

, =
1

if
15

53
 R

T
th

at
 w

as
 in

 e
rr

or
 s

ta
te

 re
sp

on
de

d
w

ith
 s

ta
tu

s
E

D
St

at
us

 b
it,

 =
1

if
en

try
 w

as
 e

xe
cu

te
d

at
 le

as
t o

nc
e

E
R

R
St

at
us

 b
it,

 =
1

if
en

try
 w

as
 e

xe
cu

te
d

w
ith

 e
rro

r
E

R
R

C
E

rr
or

 c
ou

nt
er

, c
ou

nt
s

nu
m

be
r o

f r
et

ry
 a

tte
m

pt
s,

 if
 n

um
be

r o
f r

et
rie

s
is

 a
bo

ve
 s

pe
ci

fie
d

in
 B

C
B

bl
oc

k,
 e

rr
or

 b
it

is
 s

et
. S

uc
ce

ss
fu

ll
ex

ec
ut

io
n

of
 th

e
15

53
 c

om
m

an
d

se
qu

en
ce

 c
le

ar
s

th
is

 c
ou

nt
er

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

R
SV

17
R

SV
16

R
SV

15
R

SV
14

AD
D

R
11

AD
D

R
10

AD
D

R
9

A
D

D
R

8
LI

N
K

E
N

O
T

IR
Q

SW
A

P
E

D
M

R
F

EN
E

na
bl

e
de

sc
rip

to
r,

if
th

is
 b

it
=0

 d
es

cr
ip

to
r i

s
ig

no
re

d
an

d
ne

xt
 e

nt
ry

 is
 p

ro
ce

ss
ed

, u
nt

il
en

d
of

 th
e

de
sc

rip
to

r t
ab

le
.

D
es

cr
ip

to
r m

ay
 b

e
te

m
po

ra
ry

 d
is

ab
le

d
in

 o
rd

er
 to

 re
pl

ac
e

da
ta

 in
si

de
 o

f t
he

 m
in

or
 fr

am
e

an
d/

or
 m

in
or

 fr
am

e
de

sc
rip

to
rs

O

T
E

xe
cu

te
 o

nc
e

fla
g

- i
f s

et
, e

nt
ry

 w
ill

be
 e

xe
cu

te
d

on
ce

 a
nd

 th
en

 it
 w

ill
be

 a
ut

om
at

ic
al

ly
 d

is
ab

le
d.

M

ay
 b

e
us

ed
 fo

r t
he

 m
in

or
 fr

am
e

fil
le

d
w

ith
 a

pe
rio

di
c

m
es

sa
ge

s
IR

Q
Is

su
e

IR
Q

 u
po

n
co

m
pl

et
io

n
of

 th
e

m
in

or
 fr

am
e

ex
ec

ut
io

n
(S

L5
53

_P
O

R
T_

BC
I_

U
IR

Q
)

SW
A

P
E

na
bl

e
en

try
 if

 d
is

ab
le

d
or

 d
is

ab
le

 if
 e

na
bl

ed
 u

po
n

S
W

AP
 re

qu
es

t;
S

W
AP

 re
qu

es
t a

llo
w

s
si

m
ul

ta
ne

ou
s

ch
an

ge
 o

f t
he

se
qu

en
ce

 in
 th

e
m

aj
or

 fr
am

e
de

sc
rip

to
r t

ab
le

 a
t t

he
 b

eg
in

ni
ng

 o
f t

he
 m

aj
or

 fr
am

e
cy

cl
e

W
rit

e
to

 S
L5

53
_P

O
R

T_
BC

SW
P

 (0
x2

1A
4/

0x
28

A4
) i

ni
tia

te
s

S
W

AP
 c

yc
le

 u
po

n
ne

xt
 m

aj
or

 fr
am

e
cl

oc
k

ED
St

at
us

 b
it,

 =
1

if
en

try
 w

as
 e

xe
cu

te
d

at
 le

as
t o

nc
e

M
R

F
M

in
or

 fr
am

e
ID

 (0
-1

5)
LI

N
K

Li
nk

 d
es

cr
ip

to
r t

o
th

e
pr

ec
ee

di
ng

 m
in

or
 fr

am
e,

 d
o

no
t w

ai
t f

or
 th

e
cl

oc
k

AD
D

R
11

-8
 a

nd
 A

D
D

R
6-

0
- I

nd
ex

 o
f t

he
 a

dd
re

ss
 o

f B
C

C
B

(b
its

 1
1-

8
an

d
6:

0
of

 1
2-

bi
t B

C
C

B#
),

bi
t A

D
D

R
A7

 is
 ta

ke
n

fro
m

 S
L5

53
_P

O
R

T_
BC

FB
S

re
gi

st
er

�

R
SV

x
R

es
er

ve
d

bi
ts

, m
us

t b
e

w
rit

te
n

w
ith

 0
 fo

r t
he

 c
om

pa
tib

ilit
y

Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 27

Programming with the High Level API
Notes for Figure 2-1:

1. The minor frame CB status bit is also used by the BC state machine and
should only be changed if for some reason, a BC should start transmitting
on a different bus.

2. The RR bit is set by the BC if an RT that was in an “error” state replied with
valid status. This bit along with ERR and ERRC bits should then be cleared
to return the RT to normal operation.

3. An ERR bit, if set, must be cleared from the DNA side.

4. An ERRC bit is self-cleared if the number of retries is less than that allowed
in the BCCB and the transaction on the 1553 bus completed without error.
Otherwise, the DNA side should clear this counter.

5. A BC state machine operates without checking descriptor tables for coher-
ency. It is recommended that you use the “SWAP” feature to update entries;
i.e., keep two mirror copies of the major frame sequences and update the
currently inactive one. This limits the number of unique minor frames by 8
or 15 (if only one minor frame is updated at a time).

6. ADDR bits allow each minor frame to access any of the available BCCB
descriptors.

Bus Controller Programming Example

First, we need to allocate different frames to use with bus controller. We will
need three types of frames for BC: BCCB Data, BCCD Status and BCCB
Scheduler (one minor and one major):

CUeiMIL1553BCSchedFrame* major = new
CUeiMIL1553BCSchedFrame(UeiMIL1553BCFrameMajor);
CUeiMIL1553BCSchedFrame* minor = new
CUeiMIL1553BCSchedFrame(UeiMIL1553BCFrameMinor);
CUeiMIL1553BCCBDataFrame** fdata = new CUeiMIL1553BCCBDataFrame*[2];
CUeiMIL1553BCCBStatusFrame** fstatus = new CUeiMIL1553BCCBStatusFrame*[2];

The type of scheduler frame is assigned at the moment of creation by using a
constructor with initialization. Let’s assume that we are going to have one minor
frame with two entries in it and then construct BCCBs for both data and status:

fdata[0] = new CUeiMIL1553BCCBDataFrame(0, 0, 0); // first and
fdata[1] = new CUeiMIL1553BCCBDataFrame(0, 1, 0); // second minor frame
entries
fstatus[0] = new CUeiMIL1553BCCBStatusFrame(0, 0, 0); // ditto status
fstatus[1] = new CUeiMIL1553BCCBStatusFrame(0, 1, 0);

We will also need a BC control frame to start/stop and perform debug operations
with the bus controller:

tUeiMIL1553BCControlFrame* bcControl = new tUeiMIL1553BCControlFrame;

The next step is to program a major frame entry:

major->AddMajorEntry(0, UeiMIL1553MjEnable);
writer->Write(1, major, &numFramesWritten);
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 28

Programming with the High Level API
In this case, we enable the first entry in the major frame. We assign minor frame
zero to it and rely on the automatic allocation of BCCBs. In case a user wants to
take BCCB allocation into its own hands, another member function can be
called: AddMajorEntry(minorId, entryMJ, BCCBSegment), where
minorId is a minor frame assigned, entryMJ are flags, but BCCBSegment is
an upper 4 bits of a 12-bit BCCB index.

Now we need to program minor frame entries (two of them in our case):

minor->AddMinorEntry(UeiMIL1553MnEnable);
minor->AddMinorEntry(UeiMIL1553MnEnable);
writer->Write(1, minor, &numFramesWritten);

And BCCBs that correspond to that entry:

fdata[0]->SetCommand(UeiMIL1553CmdBCRT, Rt, Sa, WordCount);
fdata[0]->SetCommandBus(UeiMIL1553OpModeBusBoth);
fdata[0]->SetCommandDelay(100);
fdata[0]->SetRetryOptions(3, RetryType);
fdata[0]->CopyRxData(WordCount, data16);
writer->Write(1, fdata[0], &numFramesWritten);

fdata[1]->SetCommand(UeiMIL1553CmdRTBC, Rt, Sa, WordCount);
fdata[1]->SetCommandBus(UeiMIL1553OpModeBusBoth);
fdata[1]->SetCommandDelay(100); // Delay in us
fdata[1]->SetRetryOptions(3, RetryType);
writer->Write(1, fdata[1], &numFramesWritten);

When you program a BCCB, you can select various retry options (see
Reference Manual for further details)

tUeiMIL1553BCRetryType RetryType = (tUeiMIL1553BCRetryType)
(UeiMIL1553BCR_RNR|UeiMIL1553BCR_ESR|UeiMIL1553BCR_RE);

At this time, the BC controller is fully programmed and ready for operation. To
switch the bus controller into operating mode, we need to use
UeiMIL1553BCControlFrame:

bcControl->SetEnableContinous(MajorClock, MinorClock);

The Major clock should be selected in such a way as to allow all minor frames to
be performed within a single major clock.

MajorClock = 1.0;
MinorClock = 10.0;

writers[0]->Write(1, bcControl, &numFramesWritten);

You need to make sure that all commands programmed in the major and minor
frames can be executed before the next major or minor clock. If a command is
not completely executed at the time of the next clock, it is cancelled and either a
major or the next minor frame is executed.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 29

Programming with the High Level API
There are several ways a bus controller can be clocked. The normal way is to
clock it continuously with major and minor clocks selected. Note that the minor
frame clock is reset every time a major frame clock occurs. Thus, the first minor
clock happens simultaneously with the major clock and the first major frame
entry is executed.

For debugging, instead of running a bus controller continuously, a user can
debug a bus controller in a step-by-step fashion by performing major and minor
steps.

A major step is performed by writing a control frame which is set to
bcControl->SetOneMajorStep(). When this control frame is written, the
bus controller makes one major frame step and executes the first major frame
entry. To execute the next entry (i.e., execute the next minor frame) use
SetOneMajorStep(). You can always see the status of execution (i.e., bits in
the minor frame) by reading CUeiMIL1553BCSchedFrame with properly set
minor frame number, index, block, and the number of entries added to match the
number of requested entries.

You can request information about what major and minor entries are currently
executed by reading CUeiMIL1553BCStatusFrame.

Once the bus controller is up and running, you can read the BCCB status and
write BCCB data into it at any time (normally done in the cycle):

// Change and retrieve BC data each iteration
// Store data for BC "Receive" command
for (i = 0; i < WordCount; i++) data16[i] = (uInt16)(0x1000 + c + i);
fdata[0]->CopyRxData(WordCount, data16);
writer->Write(1, fdata[0], &numFramesWritten);

// Read data stored in BC "Transmit" command
reader->Read(1, fstatus[1], &numFramesRead);
std::cout << "BC= " << fstatus[1]->GetBcDataStr(WordCount) << std::endl;

This particular example updates data in a BCCB data frame in a cycle and reads
and prints out the contents of the BCCB status frame.

There are multiple helper methods associated with both BCCB data and status
classes. Please see UeiDaq Reference Manual for further details.

To stop or pause a bus controller operation, write a BC control frame set to:
bcControl->SetDisable().

Some fields in the BCCB status are bitfields. For example <errsts0> and
<errsts1> are bitfields reporting on the error status, if any, that occurred while
processing a BCCB. Look up tUeiMIL1553_BCB_ERRSTS0 and
tUeiMIL1553_BCB_ERRSTS1 in the Reference Manual for definitions of the
error reporting statuses.

A Bus Controller is equipped with a set of features that allows it to simplify
communication with RTs.

For example, for each BCCB (i.e., for each command) you can set up the
following options:
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 30

Programming with the High Level API
• fdata[0]->SetCommandDelay(100); (where 100 = delay in uS). This
option allows you to set up a delay to be performed before executing a
particular command. The maximum delay length (calculated in
microseconds) is set to 20000us (20ms). This feature is used to create a
peculiar pattern of BC commands on the bus.

• fdata[0]->SetRetryOptions(3, RetryType); (where “3” is the
number of retries.) This option allows you to set up the number and type of
retries if an RT fails to answer the BC command. Zero retries does not cause
the bus controller to repeat a failed command at all, while seven retries will
cause bus controller to retry that command forever.

The following retry types are defined:

typedef enum _tUeiMIL1553BCRetryType
{
UeiMIL1553BCR_IRT =(1L<<14), // Retry on incorrect RT# in status
UeiMIL1553BCR_RUS =(1L<<13), // Retry on unexpected status reception
UeiMIL1553BCR_RUD =(1L<<12), // Retry on unexpected data reception
UeiMIL1553BCR_RWB =(1L<<11), // Retry on wrong bus response
UeiMIL1553BCR_RIS =(1L<<10), // Retry on illegal bits set in status
UeiMIL1553BCR_RBB =(1L<<9), // Retry on busy bit in status
UeiMIL1553BCR_RTE =(1L<<8), // Retry on bus timing error (late

// reply)
UeiMIL1553BCR_RWC =(1L<<7), // Retry on word count (number of data

// words received)
UeiMIL1553BCR_RE =(1L<<6), // Re-enable command transmission on

// successful status reply
UeiMIL1553BCR_RNR =(1L<<5), // Retry on no-response
UeiMIL1553BCR_ERE =(1L<<4), // Enable re-transmit on alternative

// bus each retry
UeiMIL1553BCR_ESR =(1L<<3) // Enable periodic status request

// command when retry
} tUeiMIL1553BCRetryType;

While most retry types are self-explanatory, some of them require explanation:

• If the UeiMIL1553BCR_ESR bit is set, the bus controller will continue to retry
this command with the status request command even if all retry attempts
have expired. If at one moment the destination RT replies with the status, you
can receive this notification in a BC status frame. If, however, flag
UeiMIL1553BCR_RE is also set, the bus controller will switch back to the
normal mode, i.e., sending a command to the RT that replied with the normal
status after the hiccup.

• If the UeiMIL1553BCR_ERE flag is set, the BC will try the alternate bus after
encountering one or another bus error accordingly with retry types selected.

Data Validation

A MIL-1553-553 bus controller is able to perform status and data validation and
accept/reject data based on the data or status received.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 31

Programming with the High Level API
CUeiMIL1553BCCBDataFrame::EnableDataCompare (int enable)
enables or disables the comparing of data received (i.e., Tx command) with the
data programmed in the BCCB data table. In this case, you can program the
minimum and maximum (straight binary) acceptable values. The reply data
received from the RT will be compared word by word to the minimum and
maximum values programmed and will be rejected with an error bit set if it fails.

Use CUeiMIL1553BCCBDataFrame::CopyTminData(int Size,
unsigned short* data) and
CUeiMIL1553BCCBDataFrame::CopyTmaxData(int Size, unsigned
short* data) to fill the frame with the proper data words.

Bit UeiMil1553_BCB_ERRSTS0_DCF in tUeiMIL1553_BCB_ERRSTS0
(belonging to the relevant BCCB) reports about data status compare failure.

Status Validation

A MIL-1553-553 bus controller is able to perform operations on data received
from an RT status word (or both status words for an RT-RT command) and
accept or reject a reply from an RT, depending on the received status.

To enable this option, you need to call
CUeiMIL1553BCCBDataFrame::EnableStatusCompare(int number,
unsigned short and_sts, unsigned short or_sts, unsigned
short value, int enable), where “number” is either 0 for main status
or 1 for the second RT-RT command status. Regardless of which status this is,
the following logic operations will be performed on them:

((<received status> & <and_sts>)|<or_sts>) == value

If the result of this operation is TRUE, the status passed validation.

Using <and_sts>, you can mask out irrelevant status bits and using
<or_sts> you can set up bits in the received command to be able to pass
validation for, say, different replies.

See bits UeiMil1553_BCB_ERRSTS0_S1F and
UeiMil1553_BCB_ERRSTS0_S2F in tUeiMIL1553_BCB_ERRSTS0 for
information about a status compare failure.

Multi-Rate Programming

The MIL-1553 standard calls for the ability to run different frames at different
frame rates.

The MIL-1553-553 layer provides two ways to support multiple rate
programming. The first way is known as a “Link Bit” which allows execution of
two or more major frame entries upon a single minor frame clock.

Let’s assume that we have created three types of frames: one set of RTs needs
to be updated at 8Hz, another set of RTs needs to be updated at 4Hz, and the
slowest RT needs to be updated at 1Hz.

Let’s consider the following major frame (major clock set to 1Hz and minor clock
set to 8Hz) as shown in Table 2-2 on page 32:
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 32

Programming with the High Level API
Table 2-2. Multi-Rate Programming

Major frame entries 0, 1 and 2 are executed upon a major clock tick; entries 3
and 4, 5 and 6, etc. are executed upon a minor clock tick. There is no delay in
execution between pairs of entries larger than those required to execute the
corresponding minor frame.

The second way of doing the same thing is to create three minor frame types:
Type 2 contains data for update rates 8Hz, 4Hz, and 1Hz, Type 1 contains
entries for rates 8Hz and 4Hz, and Type 0 contains minor entries for 8Hz only.

Major Entry

Index

Minor Frame

Type Flags

Effective

Update Rate

Upon Clock

Tick

0 0 Enable 8Hz Major

1 1 Enable+Link 4Hz

2 2 Enable+Link 1Hz

3 0 Enable 8Hz Minor

4 0 Enable 8Hz Minor

5 1 Enable+Link 4Hz

6 0 Enable 8Hz Minor

7 0 Enable 8Hz Minor

8 1 Enable+Link 4Hz

9 0 Enable 8Hz Minor

10 0 Enable 8Hz Minor

11 1 Enable+Link 4Hz

12 0 Enable 8Hz Minor
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 33

Programming with the High Level API
For example, for –

Minor Frame Type 2:

Minor Frame Type 1:

Minor Frame Type 0:

Now, we can fill major frame as follows:

As you can see, the content of the major frame entries is different. Due to the
BCCB assignments, the data for each RT is stored/retrieved exactly into/from
the same location.

2.6.4 Programming
and Working
with Remote
Terminals

A MIL-1553-553 board can support up to 32 remote terminals with 32
subaddresses each. Not all remote terminal or subaddress can be used. RT31
is reserved as a ”broadcast” terminal which sends and receives broadcast
commands (i.e., in the MIL-1553 standard, all terminals should receive a
command if the source of the command is RT31). In our implementation, a
broadcast command is always received by RT31 due to the fact that all RTs are
under programmer control. SA0 and SA31 are also reserved for use with the
special types of commands – mode commands, which are designed to provide
control operations rather than simply to exchange data.

Entry Data for BCCB Index Effective BCCB

0 RT1 (8Hz) Segment 0 + Index 0 0

1 RT2 (4Hz) Segment 0 + Index 1 1

2 RT3 (1Hz) Segment 0 + Index 2 2

Entry Data for BCCB Index Effective BCCB

0 RT1 (8Hz) Segment 0 + Index 0 0

1 RT2 (4Hz) Segment 0 + Index 1 1

Entry Data for BCCB Index Effective BCCB

0 RT1 (8Hz) Segment 0 + Index 0 0

Major Entry

Index

Minor Frame

Type Flags

Effective

Update

Upon Clock

Tick

0 2 Enable RTs 1,2,3 Major

1 0 Enable RTs 1 Minor

2 1 Enable RTs 1,2 Minor

3 0 RTs 1 Minor

4 1 RTs 1,2 Minor

5 0 RTs 1 Minor

6 1 RTs 1,2 Minor

7 0 RTs 1 Minor
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 34

Programming with the High Level API
Programming an RT starts from creating a port:

CUeiMIL1553Port* pPort0 = session.CreateMIL1553Port(
"pdna://192.168.100.2/dev0/milb0",
UeiMIL1553CouplingTransformer,
UeiMIL1553OpModeRemoteTerminal
);

Next, create a reader and a writer:

CUeiMIL1553Reader* reader = new CUeiMIL1553Reader(session.GetDataStream(),
session.GetChannel(0)->GetIndex());
CUeiMIL1553Writer* writer = new CUeiMIL1553Writer(session.GetDataStream(),
session.GetChannel(0)->GetIndex());

By calling constructors with initialization, reader and writer objects are now
connected to the proper data stream and MIL-1553-553 channel.

Now, you need to create frames that are going to be used to read and write RT
data:

Input data frame (i.e., data from an Rx command):

CUeiMIL1553RTFrame* inFrm;
inFrm = new CUeiMIL1553RTFrame(Rt, Sa, Block, messageSize);

Output data frame (i.e., data for a Tx command):

CUeiMIL1553RTFrame* outFrm;
outFrm = new CUeiMIL1553RTFrame(Rt, Sa, Block, messageSize);

In this particular example, Rt and Sa are an RT and SA of interest, Block is the
part of the RT data which is data that is going to be written to and messageSize
should be equal to Word Count of the expected bus controller command for
this RT.

The next (optional) step is to create status request and control frames as well as
a filter entry.

CUeiMIL1553RTStatusFrame* rqFrm = new CUeiMIL1553RTStatusFrame(Rt);
where Rt is a

A status frame allows you to read (reader->Read(numFrames,
statusFrame, &numFramesRead);) status of the particular RT. Let’s look at
the structure of the status frame (tUeiMIL1553RTStatusFrame).

A few members contain important information about the current status of RT:

<DataReady> has bits set for SAs that received data.

<DataSent> has bits set for SAs that transmit data (of course, upon
appropriate BC command).

<ChStatus> represents the current status of the port bus. To decode this
bitfield, a user needs to use tUeiMIL1553_CH_STS structure.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 35

Programming with the High Level API
<Status0> is a combination of last command (upper 16 bits) and status (lower
16 bits) word of the last command. Note that this information is on per-RT basis
and if another SA of the same RT received or sent a command, the previous
command status information will be overwritten.

<Status1> is the last SYNC (upper 16-bit) and transmitter shutdown (lower 16-
bit) data words if those commands were received.

In a default mode, all 32 RTs and all 32 SAs are functional once you start
operations. Often, this mode is not a desirable mode of operation because only
a certain subset of RT/SA needs to be in operation, especially when the
application involves simulation of a part of an aircraft network.

To limit the scope of simulated RTs, you need to set up filtering:

CUeiMIL1553FilterEntry* filterFrm = new CUeiMIL1553FilterEntry;

Filter entries are accumulated in the Framework when the procedure of setting
RT filtering looks as follows:

pPort0->ClearFilterEntries();

for(up to 360 entries) {
 filterFrm->Set(UeiMIL1553FilterByRt, Rt, 0);
 filterFrm->EnableCommands(TRUE, TRUE, TRUE);
 pPort0->AddFilterEntry(*filterFrm);
}
pPort0->EnableFilter(TRUE);

Filtering can be accomplished by the following criteria:

UeiMIL1553FilterByRt - Filter only by RT numbers, all SAs of any length are
enabled

UeiMIL1553FilterByRtSa - Each RT/SA combination should be declared
UeiMIL1553FilterByRtSaSize - Each RT/SA combination and size of Rx/Tx Min/

Max data should be declared

You cannot mix and match criteria. The Framework takes first entry filtering
criteria and applies it to all consecutive entries programmed.

Next, you need to fill the Tx data area of the RT with data.

outFrm->CopyData(WordCount, data16);
writer->Write(1, outFrm, &numFramesWritten);

Once data is written to an RT Tx data area, the RT becomes active (if it was
explicitly selected in the filter or filter wasn’t set at all.)

To read data from an RT Rx data area, you read:

reader->Read(1, inFrm, &numFramesRead);
std::cout << "RT= " << inFrm->GetFrameStr() << " Data: " << inFrm->GetDataStr() <<
std::endl;

Please refer to the description of CUeiMIL1553RTFrame for more detailed
information and helpful member functions.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 36

Programming with the High Level API
Controlling an RT controller

CUeiMIL1553RTControlFrame allows multiple control options. You need to
use writer to write this frame to change RT behavior on the fly. The best bet is to
use helper functions that will help to fill the frame with proper values.

First, you need to create a control frame:

CUeiMIL1553RTControlFrame* ctrlFrame = new CUeiMIL1553RTControlFrame;

This frame could be used for various purposes, such as:

1. Enable/disable RTs:

crtlFrame->SetRt(Rt); // select Rt to enable/disable
ctrlFrame->SetEnable(TRUE); // or FALSE to disable this RT
writer->Write(numWrite, ctrlFrame, &numWritten);

The Framework will combine enable/disable flags from each frame in the
Write() operation and write it to the RT controller in one block

2. Enable/disable RTs by mask.

crtlFrame->SetRt(Rt); // select Rt to enable/disable
ctrlFrame->SetEnableMask(Rt_mask); // set bit to 1 for each Rt to

// enable
writer->Write(1, ctrlFrame, &numWritten);

You need to write only one frame to enable/disable each RT because all RTs are
represented as a bitmask.

3. Set block for each RT

ctrlFrame->SelectBlock(Rt, Block); // Block is 0 or 1
writer->Write(numWrite, ctrlFrame, &numWritten);

The Framework will combine enable/disable flags from each frame in the
Write() operation and write it to the RT controller in one block.

4. Set validation entry directly:

ctrlFrame->SetValidEntry(Rt, Sa, validationEntry);
writer->Write(numWrite, ctrlFrame, &numWritten);

Validation entries are defined in powerdna.h as follows:

#define SL553_MEMVAL_LB_EN (1L<<30) // =1 to loopback this Rx to Tx
#define SL553_MEMVAL_ERRI (1L<<29) // =1 inject error into the

// traffic for this RT/SA. Code is in bits 0..9
#define SL553_MEMVAL_MD_TX_DW (1L<<28) // =1 when mode data word is

// expected and T/R_N bit set to 1
#define SL553_MEMVAL_MD_RX_DW (1L<<27) // =1 when mode data word is

// expected and T/R_N bit set to 0
#define SL553_MEMVAL_MD_IRQ_EN (1L<<26) // Issue IRQ when corresponding

// mode command received
#define SL553_MEMVAL_MD_TX_EN (1L<<25) // Enable corresponding mode

// command with T/R_N bit set to 1
#define SL553_MEMVAL_MD_RX_EN (1L<<24) // Enable corresponding mode

// command with T/R_N bit set to 0
#define SL553_MEMVAL_TX_IRQ_EN (1L<<23) // Enable TX IRQ on the selected

// subaddress
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 2 37

Programming with the High Level API
#define SL553_MEMVAL_RX_IRQ_EN (1L<<22) // Enable RX IRQ on the selected
// subaddress

#define SL553_MEMVAL_TX_EN (1L<<21) // Enable TX on the selected
// subaddress

#define SL553_MEMVAL_RX_EN (1L<<20) // Enable RX on the selected
// subaddress

#define SL553_MEMVAL_TX_WCMAX_MSB (1L<<19) // Maximum word count for the TX
#define SL553_MEMVAL_TX_WCMAX_LSB (1L<<15) // 0=32; 1-31=1-31
#define SL553_MEMVAL_TX_WCMIN_MSB (1L<<14) // Minimum word count for the TX
#define SL553_MEMVAL_TX_WCMIN_LSB (1L<<10) // 0=32; 1-31=1-31
#define SL553_MEMVAL_RX_WCMAX_MSB (1L<<9) // Maximum word count for the RX
#define SL553_MEMVAL_RX_WCMAX_LSB (1L<<5) // 0=32; 1-31=1-31
#define SL553_MEMVAL_RX_WCMIN_MSB (1L<<4) // Minimum word count for the RX
#define SL553_MEMVAL_RX_WCMIN_LSB (1L<<0) // 0=32; 1-31=1-31

Setting validation entries directly is an advanced operation. It is described in
more detail in the PowerDNA API Reference Manual.

2.7 Stopping the
Session

You can stop the session by calling the session object’s method “Stop”:

// Stop the session
mySession.Stop();

Note that if you don’t explicitly stop the session, it will be automatically stopped
when the session object is destroyed or when it goes out of scope.

2.8 Destroying
the Session

In C++, if you created the session object on the stack, it will automatically free its
resources when it goes out of scope. As an alternative, you can force it to free
its resources by calling the method “CleanUp”, as shown below:

// Clean-up session
mySession.CleanUp();

If you dynamically created the session object, you need to destroy it to free all
resources:

// Destroy session
delete(pMySession);

In C, you need to call “UeiDaqCloseSession” to free all resources:

UeiDaqCloseSession(mySession);

With .NET managed languages, the garbage collector will take care of freeing
resources once the session object is not referenced anymore. You can also
force the session to release its resources by calling the “Dispose” method.
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 2x.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 3 37

Programming with the Low-Level API
Chapter 3 Programming with the Low-Level API

The DqAdv functions of the low-level API, which are included in this chapter,
offer direct access to PowerDNA DaqBIOS protocol and allow you to access
device registers directly. For additional information, please refer to the API
Reference Manual document under:

 Start » Programs » UEI » PowerDNA » Documentation

for all pre-defined types, error codes, and functions you can use with this layer.

NOTE: High-level UEI Framework support for this layer is not available in the
current release of this product.

3.1 Low-Level
DqAdv
Functions

The DNx-1553-553 Interface Module (Layer) is designed to support MIL-STD-
1553A and MIL-STD-1553B interfaces. Two dual redundant independent
channels are available. The layer can support up to 32 remote terminals (RTs),
one Bus Monitor (BM), and one Bus Controller (BC).

The layer has two independent channels; each channel incorporates all that is
needed to communicate with a dual redundant 1553 bus. Bus coupling
(transformer/direct) is software-selectable.

Figure 3-1. DNx-1553-553 Logic Block Diagram

CHANNEL 0/1

1553
Encoder A
with FIFO
& timing

t l
1553
Encoder B
with FIFO &
timing control

In
te

gr
at

ed
 d

ua
l r

ed
un

da
nt

 1
55

3
bu

s t
ra

ns
ce

iv
er

B
us

 A
 tr

an
sf

or
m

er
s

w
ith

 p
ro

gr
am

m
ab

le

co
up

lin
g

co
nt

ro
l

B
us

 B
 tr

an
sf

or
m

er
s

w
ith

 p
ro

gr
am

m
ab

le

co
up

lin
g

co
nt

ro
l

1553
Decoder A
with timing
verification

1553
Decoder B
with timing
verification

4x1W
5V�5V
or 3.3V

Remote terminal and Bus Monitor unit

DC/DC

Transceiver
and bus
coupling
control

DC/DC
control
with
disable

Bus Controller unit

Validation memory IRQ
generatio
n BM/RX

2048x32 FIFO Broadcas
t,

R
em

ot
e

te
rm

in
al

 st
at

e
m

ac
hi

ne
 p

ro
ce

ss

al
l1

55
3

RX, TX,
Mode,
FIFO and
misc.

Per-RT
control/status
memory-based
register pool

16Mbytes
(8Mx16bit)
PSRAM
burst
memory

Direct access to
the low-priority
TX FIFO

256x9 Major
Frame
Descriptors

256x9 Major
F
D

External memory management units – controls access to
the memory from two 1553 channels (RT/BM/BC) and

Bus Controller
engine

rame
escriptors

256x9 16
Minor Frame
Descriptors
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 3.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
Chapter 3 38

Programming with the Low-Level API
As shown in Figure 3-1, each channel has dual 1553 decoders that are capable
of decoding independent streams of 1553 Manchester words and passing them
to upper-level subsystems. Decoders can detect various timing errors on the
bus and also keep track of the gap interval between messages as well as data
parity errors and type of received data words (command-status or data).

When data is stored into the 1024 32-bit word FIFO (BM mode), it is stored from
both A and B buses and each control/status word may be optionally time-
stamped. In RT mode, the 1553 protocol is parsed and processed by the RT
state machine, which inherently supports up to 32 RTs simulated by the single
channel. Each RT may be individually enabled and each sub-address may be
also individually configured for RX/TX or both, with maximum and minimum
numbers of allowable data words per subsystem. Mode commands may be
enabled and disabled as well. Also, each sub-address and each mode
command have a flag that controls interrupt generation upon receiving a
corresponding RX /TX or mode command. Switching between A and B
redundant buses takes place automatically upon receiving a command on the
bus, and the host may receive an interrupt once it happens.

The Manchester encoder allows data output on A and/or B buses. However, it
always accepts data from the same source; i.e., it is impossible to send different
data to A and B buses at the same time. The encoder has a two-256x32 word
FIFO that accepts 1553 data in a format that includes bus inactivity gap time
delay, word type, and parity information. These FIFOs are called high- and low-
priority FIFOs and are used for both RT and BC modes. Currently, a BC only has
access to the low priority FIFO. Data is outputted from the FIFOs as a complete
message and a low-priority FIFO waits until all messages from the high-priority
FIFOs are gone.

A dedicated memory controller interfaces with 16Mbytes of fast burst PSRAM. It
keeps up with data requests from both channels for the TX data and accepts RX
messages and status information as well. Once a message is received or
transmitted for the particular subsystem, special flags are set and once new data
is placed in the TX buffer or data is read from the RX buffer, those flags are
cleared. DNA may write or read data in blocks as large as 1024 16-bit data
words at a time. A read or write is executed as an atomic transaction, i.e., no
data change allowed during a read or write to/from the DNA bus.

This document describes the initial function set for BM and RT modes of
operation.

For detailed descriptions of the low-level functions you can use with DNx-1553-
553 boards, refer to the PowerDNA API Reference Manual, which is available
for download at www.ueidaq.com
Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Chapter 3.fm

© Copyright 2010
United Electronic Industries, Inc.

DNx-1553-553 Interface Module
39

Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: 1553 Appx.fm

© Copyright 2010
United Electronic Industries, Inc.

Appendix
A. Accessories DNA-CBL-COM

1-ft long, round shielded cable with 37-pin male and four 9-pin male D-sub
connectors

DNx-1553-553 Interface Module
 40

Tel: 508-921-4600 www.ueidaq.com Vers: 1.6
Date: May 2010 File: DNx-MIL-1553IX.fm

© Copyright 2010 all rights reserved
United Electronic Industries, Inc.

Index
Symbols
“SWAP” Cycle in a Major Frame 23

A
Accessories 39
Architecture 10

B
BM data structure 21
Broadcast Data Transaction 6
Bus Controller (BC) 9
Bus Controller Memory Model 25
Bus Controller Programming Example 26
Bus Monitor (MT) 9
Bus Protocol 5

C
Command Word 7
Command/Status/Data format in BM data 21
Configure Timing 16
Controlling an RT 35
Conventions 2
Create MIL-1553 Ports 15
Creating a Session 15
Creating Reader Object and Writer Objects for each
Port 17

D
Data Validation 29
Data Word 7
Destroying the Session 36
DNA-CBL-COM 39
DqAdv553SetMode 38

F
Features 3
Flag word format in BM data 21
Frequently Asked Questions 2
Functional Description 10

H
High Level API 15

J
Jumper Settings 14

L
Layer Position Jumper Settings 14
Low-Level API 37
Low-Level DqAdv Functions 37

M
MIL-STD-1553 3
Minor Frame Double-Buffering 24
Minor Frame Type 0 32
Minor Frame Type 1 32
Minor Frame Type 2 32
Mode Code 6
Monitor Terminal with RT Address (MT/RT) 9
Multi-Rate Programming 30

P
Photo 3
Physical Layer 4
Pinout Diagram 13
Programming and Working with a Bus Controller 23
Programming and Working with Remote Terminal
32
Programming BusWriter Mode 22

R
Reading Bus Monitor 20
Reading/Writing Data from/to a Device 19
Receive Data Transaction 6
Remote Terminal (RT) 9
RT to RT Transfer 6

S
Software 12
Specifications 11
Starting the Session 19
Status Validation 30
Status Word 8
Stopping the Session 36
Support ii
Support email

support@ueidaq.com ii
Support FTP Site

ftp
//ftp.ueidaq.com ii

Support Web Site
www.ueidaq.com ii

T
Terminal Connection Types 4
Timestamp “LSB part ” word format in BM data 21
Transmit Data Transaction 6

W
Word Formats 6

	DNA/DNR-1553-553 MIL-STD-1553 Communications Interface — User Manual
	Table of Contents
	Table of Figures
	Chapter 1 Introduction
	1.1 Organization of this manual
	1.2 The MIL-1553 Interface Boards
	1.3 What is MIL-STD- 1553?
	1.3.1 Physical Layer

	1.4 Bus Protocol
	1.5 Word Formats
	1.5.2 Command Word
	1.5.3 Data Word
	1.5.4 Status Word
	1.6.5 Remote Terminal (RT)
	1.6.6 Bus Controller (BC)
	1.6.7 Bus Monitor (MT)
	1.6.8 Monitor Terminal with RT Address (MT/RT)

	1.7 DNx-1553-553 Architecture
	1.7.1 Functional Description

	1.8 Specifications
	1.9 Software
	1.10 Wiring & Connectors
	1.11 Jumper Settings for Module Position

	Chapter 2 Programming with the High Level API
	2.1 Creating a Session
	2.2 Create MIL- 1553 Ports
	2.3 Configure Timing
	2.4 Creating a Reader Object and Writer Object for each Port
	2.5 Starting the Session
	2.6 Reading/ Writing Data from/to a Device
	2.6.1 Reading Bus Monitor
	2.6.2 Programming BusWriter Mode
	2.6.3 Programming and Working with a Bus Controller
	2.6.4 Programming and Working with Remote Terminals

	2.7 Stopping the Session
	2.8 Destroying the Session

	Chapter 3 Programming with the Low-Level API
	3.1 Low-Level DqAdv Functions

	Appendix
	Index

