

DNx-429-516
—

User Manual

16 ARINC-429 channels, configured as Receivers or Transmitters,
plus 8 dedicated ARINC-429 Receiver-only channels

-
Interface board with Guardian functionality

for the PowerDNA Cube and RACK series chassis

February 2019

PN Man-DNx-429-516

© Copyright 2019 United Electronic Industries, Inc. All rights reserved.

Information furnished in this manual is believed to be accurate and reliable. However, no responsibility
is assumed for its use or for any infringement of patents or other rights of third parties that may result
from its use.

All product names listed are trademarks or trade names of their respective companies.

See the UEI website for complete terms and conditions of sale:

http://www.ueidaq.com/cms/terms-and-conditions/

Contacting United Electronic Industries

Mailing Address:

27 Renmar Avenue
Walpole, MA 02081
U.S.A.

For a list of our distributors and partners in the US and around the world, please contact a member of our
support team:

Support:

Telephone: (508) 921-4600
Fax: (508) 668-2350

Also see the FAQs and online “Live Help” feature on our web site.

Internet Support:

Support: support@ueidaq.com
Website: www.ueidaq.com
FTP Site: ftp://ftp.ueidaq.com

Product Disclaimer:

WARNING!

DO NOT USE PRODUCTS SOLD BY UNITED ELECTRONIC INDUSTRIES, INC. AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

Products sold by United Electronic Industries, Inc. are not authorized for use as critical components in
life support devices or systems. A critical component is any component of a life support device or
system whose failure to perform can be reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness. Any attempt to purchase any United Electronic
Industries, Inc. product for that purpose is null and void and United Electronic Industries Inc. accepts
no liability whatsoever in contract, tort, or otherwise whether or not resulting from our or our
employees' negligence or failure to detect an improper purchase.

Specifications in this document are subject to change without notice. Check with UEI for
current status.

http://www.ueidaq.com

DNx-429-516 ARINC 429 Board i
Table of Contents
Table of Contents
Chapter 1 Introduction . 1

1.1 Organization of This Manual . 1

1.2 DNx-429-516 Board Overview . 3
1.2.1 Data Rate. 3
1.2.2 Guardian Diagnostic Support. 3
1.2.3 ARINC Transmitters. 3
1.2.4 ARINC Receivers. 3
1.2.5 Software Support . 3

1.3 Features . 4

1.4 Indicators . 4

1.5 Specification . 5

1.6 Device Architecture. 6

1.7 ARINC-429 Word Format . 8
1.7.1 Parity . 9
1.7.2 DNx-429-516 Word Format . 10

1.8 Receiver Block . 11
1.8.1 Receiver Block Components . 11
1.8.2 RX FIFO. 12
1.8.3 RX Filters . 12
1.8.4 TX to RX Loopback Features. 13

1.9 Transmitter Block . 14
1.9.1 Hardware Sources for Transmit Data . 15
1.9.2 Scheduler. 16
1.9.3 TX FIFO . 25

1.10 Wiring & Connections (pinout) . 26
1.10.1 ARINC-429 Bus in Multi-drop Network . 27

Chapter 2 Programming with the High-Level API . 28

2.1 About the High-level Framework. 28

2.2 Creating a Session . 28

2.3 Configuring the Resource String. 29

2.4 Configuring the Timing . 30

2.5 Reading Data . 31

2.6 Writing Data . 31

2.7 Programming the Output Scheduler . 32

2.8 Scheduling Outputs Using Major/Minor Frames . 33
2.8.1 Set MJ/MN Mode . 33
2.8.2 Configure MJ/MN Frame Clock Rates . 34
2.8.3 Add Scheduler Entries . 35
2.8.4 Update Scheduler Table . 36
2.8.5 Update Scheduler Using TX Pages . 36

2.9 Programming the Label Filter . 37
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board ii
Table of Contents
2.10 Cleaning-up the Session. 38

Chapter 3 Programming with the Low-Level API . 39

3.1 About the Low-level API . 39

3.2 Low-level Functions . 40

3.3 Low-level Programming Techniques. 41
3.3.1 Data Transfer Modes . 41

3.4 Configuring Board & Channels . 42
3.4.1 Board Configuration . 42
3.4.2 Channel Configuration . 42

3.5 Setting Modes of Operation . 44

3.6 Setting the Baud Rate. 46

3.7 Reading RX Data . 47

3.8 Writing TX Data Using the FIFO . 48
3.8.1 Configuring for FIFO Transmission . 48
3.8.2 Configuring for FIFO Transmission with Delays . 50

3.9 Writing TX Data Using the Scheduler . 52
3.9.1 Initializing the Scheduler Table . 52
3.9.2 Programming Scheduler Timebase Values . 52
3.9.3 Writing Scheduler Transmit Data . 53

3.10 Programming RX Filters . 61
3.10.1 Filtering Messages Based on Labels . 61
3.10.2 Filtering Messages Based on Parity . 62
3.10.3 Filtering Messages Based on SDI . 62

Appendix. 63

A.1 Accessories . 63
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board iii
List of Figures

February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

List of Figures
Chapter 1 Introduction . 1

1-1 The DNR-429-516 ARINC-429 Board ...4
1-2 DNA/DNR-429-516 Logic Block Diagram..6
1-3 ARINC-429 Waveform Characteristics ..7
1-4 General ARINC Word Format..8
1-5 Receiver Diagram..11
1-6 Transmitter Block Diagram ..14
1-7 Example of Programming the Scheduler in Default Operation....................................18
1-8 Example of Programming the Scheduler in Frame Clock Mode..................................20
1-9 Example Scheduler Table in Major/Minor Frame Mode ..23
1-10 Example of Transmit Sequence for TX FIFO in Delayed Mode...................................25
1-11 DNx-429-516 Pinout Diagram ...26
1-12 Wiring for an ARINC-429 Network...27

Chapter 2 Programming with the High-Level API . 28

Chapter 3 Programming with the Low-Level API . 39

3-1 Example of Transmit from TX FIFO in Delayed Mode...51
3-2 Example of Programming the Scheduler in Default Operation....................................54
3-3 Example of Programming the Scheduler in Frame Clock Mode..................................57

Appendix . 63

A-1 Pinout and Photo of DNA-STP-62 Screw Terminal Panel ...63

Index . 64

DNx-429-516 ARINC 429 Board
Chapter 1 1

Introduction
Chapter 1 Introduction

This document outlines the feature set and use of the DNx-429-516
ARINC-429 boards.

The DNx-429-516 is an ARINC-429 interface that provides 24 ARINC channels:
16 channels that can be individually configured as ARINC-429 transmitters or
receivers plus an additional 8 dedicated ARINC-429 receiver channels.

NOTE: Note that the information in this manual is also applicable for the
preliminary revision (p/n DNx-429-516-024).

This chapter contains the following sections:

• Organization of This Manual (Section 1.1)

• DNx-429-516 Board Overview (Section 1.2)

• Features (Section 1.3)

• Indicators (Section 1.4)

• Specification (Section 1.5)

• Device Architecture (Section 1.6)

• ARINC-429 Word Format (Section 1.7)

• Receiver Block (Section 1.8)

• Transmitter Block (Section 1.9)

• Wiring & Connections (pinout) (Section 1.10)

1.1 Organization
of This
Manual

This DNx-429-516 User Manual is organized as follows:

• Introduction
Chapter 1 provides an overview of the DNx-429-516 ARINC interface
board features, device architecture, and connectivity.

• Programming with the High-Level API
This chapter provides an overview of the how to create a session,
configure the session, and format relevant data with the Framework API.

• Programming with the Low-Level API
Chapter 3 describes low-level API commands for configuring and using
the DNx-429-516 series board for serial operating modes.

• Appendix A - Accessories
This appendix provides a list of accessories available for use with the
DNx-429-516 serial-line communication interface board.

• Index
This is an alphabetical listing of the topics covered in this manual.

NOTE: A glossary of terms used with the PowerDNA Cube/RACK and I/O
boards can be viewed or downloaded from www.ueidaq.com.
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 2

Introduction
Manual Conventions
To help you get the most out of this manual and our products, please note that
we use the following conventions:

Tips are designed to highlight quick ways to get the job done or to reveal
good ideas you might not discover on your own.

NOTE: Notes alert you to important information.

CAUTION! Caution advises you of precautions to take to avoid injury, data loss,
and damage to your boards or a system crash.

Text formatted in bold typeface generally represents text that should be entered
verbatim. For instance, it can represent a command, as in the following
example: “You can instruct users how to run setup using a command such as
setup.exe.”

Bold typeface will also represent field or button names, as in “Click Scan
Network.”

Text formatted in fixed typeface generally represents source code or other text
that should be entered verbatim into the source code, initialization, or other file.

Before you begin:

Before plugging any I/O connector into the Cube or RACK chassis,
be sure to remove power from all field wiring. Failure to do so may
cause severe damage to the equipment.

No HOT SWAP

Always turn POWER OFF before performing maintenance on a UEI system.
Failure to observe this warning may result in damage to the equipment and
possible injury to personnel.

Usage of Terms

Throughout this manual, the term “Cube” refers to either a PowerDNA Cube
product or to a PowerDNR RACKtanglerack mounted system, whichever is
applicable. The term DNR is a specific reference to the RACKtangle, DNA to the
PowerDNA I/O Cube, and DNx to refer to both.
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 3

Introduction
1.2 DNx-429-516
Board
Overview

The DNx-429-516 board is an ARINC 429 communications interface for UEI’s
Cube and RACK chassis. The DNx-429-516 offers 16 channels that are
individually configurable as transmitters or receivers and additionally 8
dedicated receiver channels.

The TX drivers on the TX/RX channels can be disabled on a channel-by-channel
basis. To use a TX/RX channel as RX you do not enable the TX driver on that
channel; enabling TX drivers is controlled via UEI API.

1.2.1 Data Rate The boards comply with the ARINC-429 specification and run at either a high
speed (100 kHz) or low speed (12.5 kHz) baud rate. Additionally, the channel
speed can be set to frequencies other than 100 kHz and 12.5 kHz to support
legacy devices. The speed is software-selectable on a per channel basis. To
ensure data integrity, 256-word FIFOs are provided on every TX and RX
channel.

1.2.2 Guardian
Diagnostic
Support

DNx-429-516 boards are part of UEI’s Guardian series, which equips the boards
with additional test and diagnostic capabilities. Each transmit channel connects
to an on-board ARINC-429 receiver, allowing data being transmitted on the 429
bus to be monitored using the on-board receivers.

1.2.3 ARINC
Transmitters

Channels may be set to transmit asynchronously or based on a hardware
controlled scheduler. Each channel supports a transmission table that allows up
to 256 unique schedules. Transmission schedule resolution is 100 µs.

Asynchronous (non-scheduled) data may be sent with three priorities. High
priority data is sent immediately upon completion of the current transmission,
regardless of scheduled messages. Data sent with standard priority is
transmitted during times when no scheduled data is being sent. Finally, the
lowest priority is data streamed from a 256 word FIFO which is sent when no
scheduled, high or standard priority data is being transmitted.

1.2.4 ARINC
Receivers

The DNx-429-516 series provides a variety of filtering capabilities. The board
can be configured to only return data from specific labels. Data from up to 255
labels may be selectively read or the board can be set to read data from all
labels.

A “new data only” filter can be enabled, which compares the received label data
to the most recent previous reading and only returns data if something has
changed.

Data may also be filtered based on the SDI bits and parity errors.

1.2.5 Software
Support

Software support for the DNx-429-516 is included with the board. Factory written
and supported drivers are included for Linux and are available for other popular
real-time operating systems including QNX and VxWorks.

Users can develop applications using “low-level” C-based libraries or using the
UEIDAQ Framework, which provides a comprehensive, easy to use API
supporting all popular Windows programming languages. The UEIDAQ
Framework supplies complete support for those creating applications in all
popular data acquisition and control packages, including LabVIEW, MATLAB, as
well as any application which supports ActiveX or OPC servers.
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 4

Introduction
1.3 Features DNx-429-516 features are listed below:

• 16 ARINC-429 individually configurable as TX or RX plus 8 dedicated
RX channels (allowing for up to 24 RX channels)

• High Speed (100 kHz) or Low Speed (12.5 kHz) standard baud rate,
selectable per channel; programmable custom rates from 10 kbaud to
200 kbaud

• Hardware Label filtering

• Hardware Transmit Scheduler (100 µS timing resolution)

• Automatic timestamping of data, software enabled/disabled

• Guardian Series Diagnostics, on-board 429 RXs allow read-back on
each TX channel

• 350 Vrms isolation between blocks of three channels and between
chassis and channels

• Tested to withstand 5g Vibration, 50g Shock, -40 to +85°C Temperature,
and Altitude up to 70,000 ft or 21,000 meters

• Weight of 104 g or 3.7 oz for DNA-429-516

1.4 Indicators The DNx-429-516 indicators are described in Table 1-1 and illustrated in Figure
1-1.

Figure 1-1 The DNR-429-516 ARINC-429 Board

Table 1-1 429-516 Indicators

LED Name Description

RDY Indicates board is powered up and operational

STS Indicates which mode the board is running in:

• OFF: Configuration mode, (e.g., configuring channels,
running in point-by-point mode)

• ON: Operation mode, (e.g., running in VMap mode)

DB-62 (female)
62-pin I/O connector

RDY LED
 STS LED

DNR bus
connector
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 5

Introduction
1.5 Specification The technical specification for the DNx-429-516 is provided in the table below:

Table 1-2 . DNx-429-516 Technical Specifications

NOTE: A DNx-429-516 transmitter can connect to 1 to 20 receiver(s) on one
twisted pair, per ARINC-429 hardware specifications.
However, note that due to power restrictions, the DNx-429-516 board
can only drive a maximum of 128 receivers per board.

p
Channel Configurations

Number of channels 16 TX or RX and 8 dedicated RX channels

ARINC Compliance Fully compliant with ARINC 429

Total RX loads 20 per channel, 128 maximum per board

Transmit Specifications

Standard Data rate 100 kHz or 12.5 kHz selectable per channel

Custom data rates 10 kHz to 200 kHz for special applications

FIFO size (TX or RX) 256 words

Transmit modes Scheduled or asynchronous. TX outputs may be
disabled allowing a channel to be used as a Input.

TX Scheduler specifications

 timing resolution 100 microseconds

 table size Schedule up to 256 labels per channel

 Minor/Major Frames 16 Minor frames with double buffering of data array

Asynchronous TX modes

 High priority transmit immediately upon completion of current
transmission regardless of schedule

 Standard priority transmit when no scheduled data

 FIFO based transmit when no scheduled, standard or high priority
data is being sent

Receive Specifications

Standard Data rate 100 kHz or 12.5 kHz selectable per port

Custom data rates 10 kHz to 200 kHz for special applications

FIFO size up to 256 32-bit words, user selectable

Receive filter size 1 to 255 Labels or disabled

SDI filter enabled or disabled

New data only filter enabled or disabled by label or globally

Parity checking enabled or disabled

Date/Time stamping enabled or disabled by label or globally

General Specifications

Isolation 350 Vrms. Isolation provided in channel pairs.
Channels 0-1, 2-3,...14-15 share a common ground

Operating temperature tested -40 °C to +85 °C

Vibration IEC 60068-2-6
 IEC 60068-2-64

5 g, 10-500 Hz, sinusoidal
5 g (rms), 10-500 Hz, broad-band random

Shock IEC 60068-2-27 50 g, 3 ms half sine, 18 shocks @ 6 orientations
30 g, 11 ms half sine, 18 shocks @ 6 orientations

Humidity 0 to 95%, non-condensing

MTBF 470,000

Power consumption 7 Watt, maximum
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 6

Introduction

R
R

TX
TX

*B
TX
off
can
as
1.6 Device
Architecture

The DNx-429-516 board incorporates 24 parallel ARINC channels. Refer to
Figure 1-2 for block diagram.

Figure 1-2 DNA/DNR-429-516 Logic Block Diagram

Each of the 16 TX/RX channels contains one ARINC transmitter and one
receiver (channel 0..15). On power up, TX drivers are off, and the channel can
be used as an ARINC receiver after enabled. If TX is enabled, the channel is set
up to transmit messages and the receiver side of the channel can be used to
loopback transmitted data for diagnostic purposes.

Additionally, the 429-516 provides 8 dedicated RX-only channels (RX16..RX23)
that contain an ARINC receiver each.

Channels are grouped into 8 isolated blocks of 3 channels each: (TX0/RX0, TX1/RX1, RX16), (TX2/RX2, TX3/RX3, RX17), etc.

(RX16..RX23 use the same architecture as RX16 shown above)RX23

RX16 Channel data
status

control

Filters

Filter bypassAR
IN

C-
42

9
RX

16
 R

ec
eiv

er

data
status 256 x 32

RX FIFO

X-16-A
X-16-B

AR
IN

C-
42

9
Pr

ot
oc

ol
Co

nt
ro

lle
r FIFO

Timebase

...

RX16

32
-b

it 6
6-

MH
z b

us

Speed selector, error reporting, etc.

AR
IN

C-
42

9
TX

O
Tr

an
sm

itte
r*

data
status

data
status

control

TX0/RX0

TX
 P

or
t

Ac
ce

ss
 C

on
tro

lle
r

FIFO
Timebase

Low-priority bypass data

TX0/RX0 Channel FPGA/DSP

AR
IN

C-
42

9
Pr

ot
oc

ol
Co

nt
ro

lle
r

RX0 Channel & Loopback

Speed selector, error reporting, etc.

data
status

control

Filters

Filter bypass

AR
IN

C-
42

9
RX

0 R
ec

eiv
er

data
status

/RX-0-A
/RX-0-B

256 x 32
TX FIFO

High-priority bypass data

256 x 32
RX FIFO

Scheduler
Timebase

256 x 16
Entries

Scheduler
Commands

256 x 32
Entries

Scheduler
Data P0

P1

Compare on Loopback

TX1/RX1

TX15/RX15 (TX/RX0..TX/RX15 use the same architecture as TX0/RX0 shown above)

... ...

...... ...

y default
 driver is
 and port
 be used
 RX port
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 7

Introduction
The DNx-429-516 ARINC communication protocol functions are embedded into
the FPGA. TX channels are driven by associated Holt HI-8596 line drivers.
Dedicated RX channels use Holt HI-8455 receivers.

Channels are grouped into eight isolated blocks of 3 channels each:

• Block 0: TX0/RX0, TX1/RX1, RX16

• Block 1: TX2/RX2, TX3/RX3, RX17

• Block 2: TX4/RX4, TX5/RX5, RX18

• Block 3: TX6/RX6, TX7/RX7, RX19

• Block 4: TX8/RX8, TX9/RX9, RX20

• Block 5: TX10/RX10, TX11/RX11, RX21

• Block 6: TX12/RX12, TX13/RX13, RX22

• Block 7: TX14/RX14, TX15/RX15, RX23

The transmission medium for an ARINC-429 bus is 78-ohm, twisted, shielded-
pair cable, grounded at both ends and at any break in the cable shield.
Each bus has only one transmitter, which can drive up to 20 external receivers.

Waveform characteristics must conform to the specifications described in
Figure 1-3.

Figure 1-3 ARINC-429 Waveform Characteristics

C D

A First half of pulse 5 usec ± 5% B/2 ± 5%
B Full pulse cycle 10 usec ±2.5% 1/bit rate ± 5%
C Pulse Rise Time 1.5 ±0.5 usec 10 ± 5 usec
D Pulse Fall Time 1.5 ±0.5 usec 10 ± 5 usec

Received
Voltage
HI 6.5V to 13 V
NULL -2.5V to +2.5V
LOW -6.5V to -13V

Hi Speed Low Speed

HI

NULL

LOW

T
R

A
N

S
M

IT
T

E
D

 V
O

LT
A

G
E

A

B

February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 8

Introduction
1.7 ARINC-429
Word Format

Each ARINC-429 word is a 32-bit value containing 5 fields, as shown in
Figure 1-4 and described in Table 1-3.

Figure 1-4 General ARINC Word Format

NOTE: Use of SDI and SSM is not mandatory.

Bits are transmitted on the ARINC bus in the following order.

8, 7, 6, 5, 4, 3, 2, 1, 9, 10, 11, 12 . . . 32

The Label (first 8 bits) is transmitted first, MSB first. After the label is sent, all
other data fields are transmitted LSB first.

SDIDISCRETESPADDATASSMP
LSBMSB

LABEL

132 31 30 29 11 10 9 8

Table 1-3 Field Descriptions for ARINC-429 Words

Bit Values Name Description

32 PARITY PARITY is used to check the validity of the ARINC word.
Supported values are Odd, Even, and No Parity.
Refer to Section 1.7.1 for more information.

31:30 SSM Sign/Status Matrix (SSM) indicates the status of data.

Values for BCD data formats:

[11] Minus, South, West, Left, From, Below
[10] TEST indicates data comes from a test source
[01] NCD indicates data is missing because of non-hardware reason
[00] Plus, North, East, Right, To, Above

Values for BNR data formats:

[11] OP indicates data is normal
[10] TEST indicates data comes from a test source
[01] NCD indicates data is missing because of non-hardware reason
[00] FAIL indicates a hardware failure causing data to be missing

See ARINC-429 protocol documentation for additional information regarding
format details.

29:11 DATA DATA contains 19 bits of data to transmit. Supported formats include bit-field,
BCD, BNR, or mixed.

10:9 SDI Source/Destination Identifiers (SDI) indicate the intended transmitter sending
the data.

8:1 LABEL LABEL identifies the data type. The Label is encoded in octal format and
transmitted MSB first.
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 9

Introduction
1.7.1 Parity Parity can be configured as Odd, Even, or No Parity.

For transmitters:

Selecting Odd or Even enables the DNx-429-516 transmitters to calculate parity
and set the PARITY bit value in the outgoing word. When Odd or Even parity is
selected, parity cannot be “forced” by the user.

• For TX Odd parity, the DNx-429-516 parity generator counts the number
of 1s in bits 31..1 of the outgoing word. It auto-inserts bit 32 as a 1 or 0
to make the total number of ONES in the 32-bit ARINC word odd.

• For TX Even parity, the DNx-429-516 auto-inserts a 1 or 0 in bit 32 to
make the total number of ONES even.

• When TX No Parity is selected, the DNx-429-516 outputs whatever bit
32 value is supplied by the user in the ARINC data word. This can be
used for injecting parity errors by the user.

For receivers:

The DNx-429-516 receivers count the ONES in the received frame and calculate
the value of the expected parity bit, according whether RX parity is programmed
as Odd or Even.

The PARITY bit of the received message will be set as follows:

• For RX Odd parity, the 429-516 reports bit 32 (the parity bit) as

• 1 if there is a parity error (Even number of ONES in incoming word)

• 0 if the incoming word is correct (no parity error)

• For RX Even parity, the 429-516 reports bit 32 (the parity bit) as

• 1 if there is a parity error (Odd number of ONES in incoming word)

• 0 if the incoming word is correct (no parity error)

• When RX No Parity is selected, the 429-516 writes bit 32 as the actual
PARITY bit that was received, regardless of parity errors.

The actual received parity bit (bit 32) is matched against the expected value; if
the actual parity bit doesn’t match the expected, a parity error is generated.
Users have the option of programming the DNx-429-516 to ignore data from
received frames with parity errors.
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 10

Introduction

1.7.2 DNx-429-516
Word Format

The DNx-429-516 provides industry standard ARINC-429 protocol controllers to
process data.

ARINC input data will need to be preformatted in a form that is common to
protocol controllers, such as the Holt HI-3282 format (www.holtic.com).

When programming using the DNx-429-516 Framework, users provide Label,
Data, SDI, SSM, and Parity fields and the Framework handles formatting (refer
to Chapter 2). When programming using low-level API, functions are provided
to handle formatting (refer to Chapter 3).

Table 1-4 below provides a cross reference of Holt HI-3282 format,
DNx-429-516 format, and ARINC-429 standard industry format.

NOTE: The ARINC serial communication standard numbers bits from 32 (MSB)
to 1 (LSB). The UEI DNx-429-516 numbers them from 31 to 0, and the
Holt controllers use two 16-bit words with bits numbered from
15 to 0. Also note that only LABEL, PARITY, SSM, and SDI bits are
strictly defined by the ARINC-429 standard. The rest of the bits may be
used as a payload by various sub-protocols.

NOTE: Use of SDI and SSM is not mandatory.

Bits are transmitted on the ARINC bus in the following order.

8, 7, 6, 5, 4, 3, 2, 1, 9, 10, 11, 12 . . . 32

The Label (first 8 bits) is transmitted first, MSB first. After the label is sent, all
other data fields are transmitted LSB first.

Table 1-4 . Cross Reference of Bit Numbering for Various Protocols

Holt Bit No.

(compatible with

DNx-429-566/512)

DNx-429-516

Bit No.

ARINC

Standard

Bit No.

Name Description

15 Word

2

31 29 SIGN Sign bit for data

14-0 30-16 28-14 DATA 15 main data bits

15-13 Word

1

15-13 13-11 DATA 3 additional data bits

12-11 12-11 10-9 SDI Source/Destination Identifier (SDI). See

ARINC-429 protocol documentation for details

10-9 10-9 31-30 SSM Sign/Status Matrix (SSM) or data bits. See

ARINC-429 protocol documentation for details

8 8 32 PARITY Parity Bit. See Section 1.7.1 above for more

information.

7 7 1 LABEL Label. Used to identify data types and

associated parameters.

For RX ports, DNx-429 boards have a flexible

acceptance filter with an option to put only new

data into the RX FIFO or to trigger the

Scheduler when the selected label is received.

When SDI bits are enabled, the Label Filter

functions as a 10-bit identifier.

6 6 2

5 5 3

4 4 4

3 3 5

2 2 6

1 1 7

0 0 8
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 11

Introduction
1.8 Receiver
Block

The DNx-429-516 provides the following ARINC receivers:

• 16 ARINC receivers (RX0..RX15) that share I/O pins with the 16 ARINC
transmitters (TX0..TX15)

• 8 dedicated ARINC receivers (RX16..RX23)

RX0..RX15 ports can receive ARINC messages from an external source or
receive looped back messages from corresponding DNx-429-516 transmit
channels (TX0..TX15). When transmitters are enabled, transmit frames are
looped back into the corresponding ARINC receiver for storage in the RX FIFO
and/or comparison with the last transmitted frame. These receivers include
additional comparators and diagnostic circuitry to provide loopback status and
data read from transmitters.

RX16..RX23 function as 8 ARINC receive-only ports.

1.8.1 Receiver
Block
Components

Each receiver block consists of the following components:

• 256-word RX FIFO

• RX filters: Label acceptance filter, store new data only circuitry, parity
error data rejection filter, SDI filtering enable/disable

• “Last received” data memory

Figure 1-5 Receiver Diagram

A
R

IN
C

-4
29

 R
ec

ei
ve

r
H

ar
d

w
ar

e

Raw Frame

255 entry
Label Acceptance

Filter

Timestamp Source

Parity Error
Bit Checker

Data Change
Checker

RX FIFO

“Last Data”
Memory

RX Frame Counter (32-bit)

0x0 in the first entry
disables/bypasses filter.

entries skips them in
the verification/
acceptance process.

(256 x 32)

(256 x 32)

Counts one of the following: all frames accepted by the
label filter, parity error-free frames, frames placed into

verifies received
ARINC-429
frame against
“last data” value.

32-bit counter running
from sub-divider for
the 66 MHz clock,
shared across all RX
channels. Resolution

the FIFO or parity errors.
varies from 1 us to
1 second.

0x0 in subsequent
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 12

Introduction
Figure 1-5 shows a block diagram of the ARINC receiver functionality.

As illustrated, received data is stored directly in the 256-word FIFO when filters
are not enabled.

Filtering and timestamping can be enabled by choosing options when setting up
the receiver mode.

Refer to Chapter 2 for more information about programming using the high-level
Framework API. Refer to Chapter 3 for more information about using the low-
level C-based API.

1.8.2 RX FIFO The RX FIFO can store up to 256 of the last received ARINC-429 32-bit frames,
if timestamping is not selected. If timestamping is selected, the RX FIFO is
limited to 128 frames and 128 timestamps. If filters are not selected, data is
placed directly into the 256-word FIFO.

The timestamp source is a 32-bit counter running from a subdivider of the
66 MHz clock. Timestamps are shared across all channels.

1.8.3 RX Filters The DNx-429-516 has the capability of accepting or rejecting incoming ARINC
data frames on an individual port using any of the following features:

• Filtering Frames Based on Predefined Labels

• Filtering Frames with Parity Errors

• Filtering Frames Based on a Predefined SDI

1.8.3.1 Filtering
Frames Based
on Predefined
Labels

Users can filter received frames based on a set of up to 255 labels that are user-
programmed into the Label Acceptance Filter table.

As an option, the receiver can additionally be programmed to accept only
changed data. This option compares incoming ARINC frames with the last
received frame and stores only changed frames into the RX FIFO. Unchanged
data is discarded.

1.8.3.2 Filtering
Frames with
Parity Errors

429-516 hardware calculates the parity of each incoming ARINC word based on
whether the channel is configured as even or odd parity. The actual received
parity bit (bit 32) is matched against the expected value; if the actual parity bit
doesn’t match the expected, a parity error is generated.

Users have the option of rejecting incoming frames with parity errors and only
storing frames with correct parity to the RX FIFO.

1.8.3.3 Filtering
Frames Based
on a
Predefined SDI

Users additionally have the option of filtering incoming frames based on the
SDI field. When SDI filtering is enabled, users can specify a mask (SDIMASK)
of the SDI value they wish to filter for and only messages with that SDI value will
be stored in the RX FIFO.
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 13

Introduction
1.8.4 TX to RX
Loopback
Features

Hardware loopback through the DNx-429-516 RX0..RX15 receivers supports
the same filtering options as receivers in non-loopback mode, as well as
additional diagnostic features and status information.

For the RX0..RX15 receivers, hardware that compares the last TX frame with
the looped-back RX frame provides an option to store the following data if the
comparison fails:

• Expected TX frame

• Received RX frame

• Timestamp

• Error counters

• TX frame source, (e.g., Scheduler with entry number, TX FIFO, etc.) and
error flags

The comparator may include or exclude the parity bit from the compare
algorithm. This option ignores data with a bad parity bit setting.
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 14

Introduction
1.9 Transmitter
Block

Each transmitter port (TX0..TX15) is composed of the following hardware:

• sources for the data being transmitted

• scheduler and timebase hardware

• port access control state machine

• an ARINC-429 protocol controller

Users can write to four separate prioritized hardware sources to store data for
transmission. Hardware sources for queuing transmit data include a high-priority
data register, 256-word scheduler arrays, a low-priority data register, and a
256-word TX FIFO.

Data is passed to the ARINC protocol controller and transmitter hardware for
transmission to externally designated receivers. Data can also be looped back
to internal DNx-429-516 receivers as a diagnostic capability.

NOTE: Each transmit channel can be disabled for connection to redundant
systems. Disabled transmit channels will be tristated when the board is
powered up. When the board is powered down, transmit channels are
grounded.

A block diagram of hardware sources for transmit data and timebase hardware
is shown in Figure 1-6.

Figure 1-6 Transmitter Block Diagram

Scheduler (3 256-word arrays)

High Priority Data Reg

 ARINC Port
Access Engine

Low Priority Data Reg

TX FIFO (256x32)

TX FIFO Timebase with “enable”

100 uS clock

Prescaler 0 (PSTB0)
with “enable”

Prescaler 1 (PSTB1)
with “enable”

A
R

IN
C

-4
29

H

ar
d

w
ar

e
 P

ro
to

c
o

l
C

o
n

tr
o

ll
e

r

Consists of 256-word control array
and 256-word ARINC data arrays

(Page0 & Page1 in Major/Minor mode)

Timebase selection (100 us or
prescaler sources) is specified/entry

TX
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 15

Introduction
1.9.1 Hardware
Sources for
Transmit Data

Transmitter data sources are assigned ARINC bus access according to the
following priorities:

NOTE: The Scheduler and FIFO priorities may be swapped by setting a
command bit using the DqAdv566SetMode() low-level API function.

Refer to Section 2.7 on page 32 for more information regarding programming
using the high-level Framework API, and refer to Chapter 3 for more information
about low-level programming.

Priority Transmitter Source Description

Highest High-priority Data Register The high-priority register transfers data immediately after the
current TX operation is completed.

Second Scheduler Data The Scheduler transfers data from a data array to the ARINC
bus based on the Scheduler mode configuration and also
based on the timing specified in the corresponding Scheduler
control word.

The 429-516 Scheduler supports the following operational
modes:

• Scheduler in Default operation

• Scheduler in Frame Clock mode

• Scheduler in Major/Minor Frame mode

Refer to Section 1.9.2 for more information.

Third Low-priority Data Register The low-priority register only transfers data when the data from
the Scheduler and high-priority register are not available.

Lowest TX FIFO The 256-word output TX FIFO runs at the lowest priority and
may output data in either of two modes:

• whenever the interface IC can accept data and none is
available from the Scheduler

• on a “paced” mode, based on user-defined clock
intervals

The TX FIFO is used by the Scheduler and priority data regis-
ters as temporary storage. The TX FIFO should be enabled for
all transmissions.
Additionally, the TX FIFO supports a delayed transmission
mode. Refer to Section 1.9.3 for more information.

Table 1-5 Transmitter Source Priority
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 16

Introduction
1.9.2 Scheduler Each TX channel is equipped with a hardware Scheduler that can be
programmed to send sequences of ARINC data words at a given rate without
intervention of the host and/or software.

As a general rule, the Scheduler should be pre-programmed before enabling the
ARINC transmitter; however, programming can be changed at any time during
operation.

The 429-516 Scheduler supports the following operational modes:

Scheduler Mode Description Section

Default Operation Scheduling is based on master/slave word groupings. Master
control words are configured with a user-programmable delay
from the enabling of the TX channel, which is also the delay
between periodic master transmissions. Slave words always
directly follow master words.

Section 1.9.2.2

Frame Clock Scheduling is based on master/slave word groupings. Master
control words are configured with a user-programmable delay
and frame repeat rates. Slave words can be scheduled on mul-
tiples of master word frames.

Section 1.9.2.3

Major/Minor Frame Scheduling is based on major/minor frames. A major frame
clock triggers a sequence of minor frames, which are config-
ured with user-programmable frame repeat rates and user-pro-
grammable time offsets relative to the start of a major frame.

• ARINC data is scheduled for transmission based on
which minor frame it is mapped to

• the same data can be mapped to multiple minor
frames

Section 1.9.2.4

Table 1-6 Summary of Scheduler Operational Modes
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 17

Introduction
1.9.2.1 Scheduler
Hardware

The Scheduler table consists of a control word array, which contains scheduling
information and control flags, and a corresponding 256-word data array that
contains the associated ARINC data to be transmitted.

When the Scheduler is in Major/Minor Frame mode, two data arrays are
available, which provide two 256-word pages, Page0 and Page1, and allow data
to be transmitted from one page while new data for transmit is written to the
other page.

Each control word and corresponding data location are indexed as one entity
(the control word with index 0 corresponds to the data location with the matching
index).

Each scheduler entry can be enabled and disabled separately, and control and
data arrays are read and write accessible. The control word, when read, also
incorporates status bits, some of which are “sticky.” To clear sticky status bits,
the control entry must be re-written. Refer to Table 1-7 for status bit descriptions.

Table 1-7 Scheduler Status Bit Descriptions

Status Bit Bit Name Description

ECO Execution Complete Status Flag Indicates the scheduled entry has executed and was output
by the ARINC transmitter at least once. This is a sticky bit that
can be cleared only by writing a command to the Scheduler.

ME Marked for Execution Status Flag Indicates the following conditions:

• Set by the time scheduler when an entry is marked
for execution (pending transmission)

• Cleared by the time scheduler for executed
(transmitted) entries

EO Execution Overrun Status Flag Indicates that a periodic entry was scheduled for execution
while the ME bit was still set.

NOTE: If the EO bit is set, the data may be scheduled such
that the ARINC bus does not have enough capacity to transfer
it or that too much of the unscheduled data is pumped through
the transmit FIFO. This bit is a sticky bit that may be cleared
only by writing a command to the Scheduler. The EO bit also
triggers an “execution overrun” interrupt for the given trans-
mitter.
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 18

Introduction
1.9.2.2 Scheduler in
Default
Operation

In Default operation, the scheduler array is written with a series of user-defined
master/slave control words and corresponding ARINC transmit messages
(data). The control word specifies the timing and master/slave groupings of the
word(s) to be shifted out of the transmitter.

In Default operation, the slave words directly follow the master word. Scheduling
is set by the master control word entry.

Figure 1-7 Example of Programming the Scheduler in Default
Operation

The following settings describe control parameters in Default mode:

Master/Slave Control

Each of the 256 Scheduler control words is tagged as a NULL, Master, or Slave:

• NULL indicates no operation.

• Master indicates a master entry which determines scheduling,
identifying the entry as periodic or one time and setting the transmittal
time delay.

• Slave indicates entry is a slave to the previously defined master. In
Default operation, slave entries use the same scheduling information of
the master.

Array Index Scheduler Control Word Scheduler Data Word (for TX)
...

255 NULL NULL

2 NULLNULL

1 Master=FALSE; Periodic=TRUE;
Prescaler=100us; DelayCounter=dly_cntr

Slave 1 Data Word:
SData 1

Internal 100us
Reference

Clock

...... ...

...

0 Master=TRUE; Periodic=TRUE;
Prescaler=100us; DelayCounter=dly_ctr

Master Data Word:
MData 1

MData 1 SData 1 MData 1 SData 1

32bit data words shift at 100kHz

TX0 output

TX0 enable

Programmed delay
Prescaler(100us)*DelayCounter(dly_cntr)

Programmed delay
Prescaler(100us)*DelayCounter(dly_cntr)

Scheduler Table
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 19

Introduction
Once the transmitter is enabled, the Scheduler executes the first master entry
and all following valid slave entries. Execution stops upon a new master entry or
zero entry.

Periodic Control

Enabling Periodic Control causes the entry to execute on a periodic basis and
disabling it causes the entry to execute once.

Delay Control

Delay control defines the time delay relative to enabling the transmission and
between transmission of periodic master entries.

The time delay is based on a prescaler timebase multiplied by a 16-bit delay
counter.

Timebase: Available DNx-429-516 prescalers include the following:

• DQ_AR_SCHED_PS100us – main 100us prescalers

• DQ_AR_SCHED_PSTB0 – first user-programmable timebase

• DQ_AR_SCHED_PSTB1 – second user-programmable timebase

• Set to zero to disable entry

Delay counter: The delay counter specifies the number of prescaler cycles to
wait before executing the master entry. Slave entries directly follow master
entries in the schedule and cannot be programmed with separate scheduling in
Default operation.

Refer to “Programming the Output Scheduler” on page 32 for an example of
programming the scheduler using the Framework.

Refer to “Writing Scheduler in Default Operation” on page 53 for a low-level
programming example for Figure 1-7 above.
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 20

Introduction
1.9.2.3 Scheduler in
Frame Clock
Mode

In Frame Clock mode, the scheduler array is written with a series of user-defined
master/slave control words and corresponding transmit messages (data). The
master control word specifies the frame rate for groupings of the master/slave
ARINC data word(s) to be shifted out of the transmitter.

The slave words in Frame Clock mode can be programmed to transmit on
multiples of the frame clock.

Figure 1-8 Example of Programming the Scheduler in Frame Clock
Mode

Array Index Scheduler Control Word Scheduler Data Word (for TX)

0

...

NULL NULL

3 NULLNULL

2 Master=FALSE; Periodic=TRUE;
Prescaler=PSTB1; DelayCounter=2

Slave 1 Data Word: SData 1
(Label, SDI, Data, SSM, PARITY)

1 Master=TRUE; Periodic=TRUE;
Prescaler=PSTB1; DelayCounter=dly_ctr

Master Data Word: MData 1
(Label, SDI, Data, SSM, PARITY)

Internal PSTB1
User-Programmed

Timebase

...MData 1 MData 1 SData 1TX0 output

TX0 enable

Programmed delay
Master dly_ctr=1 (transmits every PBST1)

Scheduler Table

Internal and External Timing Reference

255 NULLNULL

...

SData 1

32bit data words shift at 100kHz

MData 1

Programmed delay
Slave DelayCounter=2 (transmits every second Master cycle)

PSTB1 Frame

Programmed delay
Master dly_ctr=1 (transmits every PBST1)

PSTB1 Frame PSTB1 Frame
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 21

Introduction
The following settings describe control parameters for Frame Clock mode:

Master/Slave Control

Similar to the Default operation, Scheduler control words are tagged as follows:

• NULL indicates no operation.

• Master indicates a master entry which defines the frame rate timebase.

• Slave indicates entry is a slave to the previously defined master. Slave
entries can be transmitted at user-programmable multiples of the frame
rate.

NOTE: In Frame Clock mode, the first entry programmed in the scheduler array
must be disabled (NULL). Every PSTB1-based master entry is followed
by subsequent slave entries, and the last slave entry should be
separated from the following master by a disabled entry. All unused
scheduler entries should also be disabled.

Periodic Control

Enabling Periodic Control causes the entry to execute on a periodic basis and
disabling it causes the entry to execute once.

Delay Control

The delay control settings define the timebase/frame rate for the master entries
and sets the delay control for the slave entries.

Timebase: In Frame Clock mode, master entries must be programmed using
the PSTB1 user-programmable timebase in order to operate as frames.
Although the scheduler array can have master entries programmed with the
100 us or PSTB0 prescalers, those entries will be operating in Default operation
and not frame mode, and they may interfere with frame timing.

When programming with the low-level API, the frame rate is set based on the
PSTB1 timebase value multiplied by the 16-bit delay counter of the master.

Delay counter:

• For master entries, the delay counter is used to set the frame rate
(PSTB1 prescaler value * delay_counter).

• For slave entries, the delay counter is used to schedule which frames
the slave entry will transmit in.
For example, for TD=0 or 1, the slave entry will transmit with every
master frame; for TD=2, the slave entry will transmit every second
master frame; for TD=n, the slave entry will transmit every nth master
frame, etc.

Refer to “Writing Scheduler in Frame Clock Mode” on page 55 for a low-level
programming example for Figure 1-8 above.
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 22

Introduction
1.9.2.4 Scheduler in
Major/Minor
Frame Mode

In Major/Minor Frame mode, a major frame clock triggers a sequence of minor
frames, which are configured with user-programmable frame repeat rates and
user-programmable time offsets relative to the start of a major frame. ARINC
data is scheduled for transmission based on which minor frame the ARINC data
is mapped to.

The scheduler arrays are written with up to 256 control words and 256
corresponding ARINC transmit data words.

Scheduler Control Array

The 256-word control array provides control information (enable/disable,
periodic, and minor frame mapping) for corresponding ARINC data words. Each
control word configures the corresponding data word to be transmitted based on
the minor frames identified in the control word. There are 16 user-programmable
minor frames that data can be mapped to. Minor frame execution reinitializes on
every major frame clock boundary.

The major frame timebase is programmed via the user-programmable timebase,
prescaler PSTB1. Minor frame output rates are programmed as multiples of the
100 us prescaler.

Scheduler ARINC Data Array Page 0 and Page 1

Data array paging is only available in Major/Minor Frame mode. The data arrays
consist of a 256x32 Page0 array and a 256x32 Page1 array.

Paging allows one page to be filled with scheduled ARINC data, which will be
transmitted based on minor frame scheduling, and allows new data to be written
to the second page while the transmitter is shifting out the scheduled data from
the first.

This buffering allows the user to write data words as needed and not overwrite
data in the process of transmitting. Pages can be programmed to swap on a new
major frame boundary or immediately after the scheduler has completed writing
pending data.

Refer to Figure 1-9 on page 23 for an example of major and minor frame
scheduling. ARINC data shifts out of the transmitter based on minor frame timing
relative to major frame boundaries.
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 23

Introduction
Figure 1-9 Example Scheduler Table in Major/Minor Frame Mode

Internal
Major Frame

based on PSTB1
Timebase

Internal and External Timing Reference

Major Frame period is set by user-programmable timebase, PSTB1

Major Frame
Boundary

(all minor frame counters reset)

Internal
Minor Frame 1

Reference Minor Frame 1 is user-programmed with a frequency=MF1 and initial offset=“delay”
ARINC data words mapped to minor frame 1 start transmitting at MF1+delay from the start of the major frame

and repeat every MF1

delay minor frame 1 period (MF1)

External Transmit
TX0 Channel

Word 0, Word 1 and Word 3 transmit relative to Minor Frame 0 and
Word 2 and Word 3 transmit relative to Minor Frame 1

as programmed in the example above

 Data Word (Page 1)

Pg1 Data Word 2

Pg1 Data Word 1

Pg1 Data Word 0

NULL

2 Periodic=TRUE;
Minor Frame mapping=0x0002

Pg0 Data Word 2

1 Periodic=TRUE;
Minor Frame mapping=0x0001

Pg0 Data Word 1

0 Pg0 Data Word 0Periodic=TRUE;
Minor Frame mapping=0x0001*

Example Scheduler Table for Major/Minor Frame Mode

Array Index Scheduler Control Word Scheduler Data Word (Page 0)

NULL
4 NULL/Disable NULL

*Minor Frame mapping for Scheduler control word is set as a bitmask:
0x0001 uses Minor Frame 0; 0x0002 uses Minor Frame 1; 0x0003 uses Minor Frame 1 and 0

255 NULL/Disable NULL

...

Pg1 Data Word 33 Periodic=TRUE;
Minor Frame mapping=0x0003

Pg0 Data Word 3

...

Internal
Minor Frame 0

Reference Minor Frame 0 is user-programmed with a frequency=MF0 and initial offset=0 ms
ARINC data words mapped to minor frame 0 start transmitting at MF0+0ms from the start of the major frame

and repeat every MF0

minor frame 0 period (MF0) ...

Words
 0,1 & 3

Words
2 & 3

Words
 0,1 & 3

Words
2 & 3

minor frame 0 period (MF0)

minor frame 1 period (MF1)
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 24

Introduction
The following settings describe control parameters for Major/Minor Frame mode:

Periodic Control

Enabling Periodic Control causes the entry to execute on a periodic basis and
disabling it causes the entry to execute once.

Delay Control

Timebase: In Major/Minor Frame mode, minor frame entries are always
programmed using the 100 us timebase (prescaler).

Delay counter:

• Minor frames can be programmed to start executing at a user-
programmable time offset relative to the start of a major frame clock.

• Minor frames can be programmed to repeat at a user-programmable
frequency.

Refer to “Scheduling Outputs Using Major/Minor Frames” on page 33 for an
example of programming the major/minor frames using the Framework.

Refer to “Writing Scheduler in Major/Minor Frame Mode” on page 58 for a low-
level programming example.
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 25

Introduction
1.9.3 TX FIFO Each DNx-429-516 transmit channel is built with a 256-word output FIFO.

The TX FIFO is used by the Scheduler and priority data registers as temporary
storage. The TX FIFO should be enabled for all transmissions.

1.9.3.1 TX FIFO in
Delayed
Transmission
Mode

The TX FIFO supports a delayed transmission mode where users can enable
TX FIFO delay circuitry when setting up the transmit channel modes and
configuration.

In this mode, the FIFO stores both <delay control words> and
<ARINC message output words>.

The delay control word is 32-bits:

• bit[31:24] is the number of following ARINC messages that will have the
delay applied to them

• bit[23:0] is the delay in microseconds (up to 254 ms)

Delay control is written to the FIFO first, followed by the ARINC messages. The
following is an example sequence:

Figure 1-10 Example of Transmit Sequence for TX FIFO in Delayed
Mode

FIFO Index FIFO Control/Data Word

0 <0x2 Messages><delay1>
delay1 for 2 Messages in Block1

1 ARINC message1 in Block1

2 ARINC message2 in Block1

3 <0x3 Messages><delay2>
delay2 for 3 Messages in Block2

4 ARINC message1 in Block2

5 ARINC message2 in Block2

6 ARINC message3 in Block2

7 0 to indicate an end to the sequence

Table 1-8 Writing TX FIFO in Delayed Transmission Mode

...TX output

TX enable

Programmed delay1 Programmed delay2

ARINC
Block 1

Message1

ARINC
Block 1

Message2

ARINC
Block 2

Message1

ARINC
Block 2

Message2

ARINC
Block 1

Message3
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 26

Introduction
1.10 Wiring &
Connections
(pinout)

The following signals are located at the DB-62 female connector on the
DNx-429-516 board:

• TX/RX-n-A: Transmit/Receive line on bus A on the DNx-429-516

• TX/RX-n-B: Transmit/Receive line on bus B on the DNx-429-516

• RX-n-A: Receive-only line on bus A on the DNx-429-516

• RX-n-B: Receive-only line on bus B on the DNx-429-516

• GND CH n0/n1/n2: Isolated ground for Channel n0, Channel n1, and
Channel n2.
Channels are grouped into 8 isolated blocks consisting of three
channels each, (i.e., Channels 0, 1, and 16 share an isolated block,
Channels 2, 3, and 17 share an isolated block, etc.)

• rsvd: Reserved pins, do not connect

The pinout for the DNx-429-516 is provided below:

Figure 1-11 DNx-429-516 Pinout Diagram

NOTE: *Because the 429-516 board provides isolation between three-channel
groupings, you must connect ground to each of the
GND CH n0/n1/n2 pins.
For example, GND CH0/1/16 is the only source of grounding for
TX/RX channels 0, 1 and 16 (output pins: TX/RX-0-A, TX/RX-0-B,
TX/RX-1-A, TX/RX-1-B, RX-16-A, RX-16-B).
Failure to do so will result in ungrounded ARINC channels.

Before plugging any I/O connector into the Cube, RACK, or board,
be sure to remove power from all field wiring. Failure to do so may
cause severe damage to the equipment.

Pin Signal
1 TX/RX-0-B
2 RX-16-B
3 GND CH2/3/17
4 TX/RX-2-B
5 RX-17-B
6 TX/RX-5-B
7 RX-18-B
8 TX/RX-6-B
9 TX/RX-7-B
10 TX/RX-8-B
11 TX/RX-9-B
12 RX-20-B
13 TX/RX-10-B
14 RX-21-B
15 TX/RX-12-B
16 RX-22-B
17 GND CH 14/15/23
18 TX/RX-15-B
19 RX-23-B
20 rsvd
21 rsvd

Pin Signal
22 TX/RX-0-A
23 RX-16-A
24 GND CH0/1/16
25 TX/RX-2-A
26 RX-17-A
27 TX/RX-5-A
28 RX-18-A
29 TX/RX-6-A
30 TX/RX-7-A
31 TX/RX-8-A
32 TX/RX-9-A
33 RX-20-A
34 TX/RX-10-A
35 RX-21-A
36 TX/RX-12-A
37 RX-22-
38 GND CH 12/13/22
39 TX/RX-15-A
40 RX-23-A
41 rsvd
42 rsvd

Pin Signal
43 TX/RX-1-A
44 TX/RX-1-B
45 TX/RX-3-A
46 TX/RX-3-B
47 TX/RX-4-A
48 TX/RX-4-B
49 GND CH 4/5/18
50 GND CH 6/7/19
51 RX-19-A
52 RX-19-B
53 GND CH 8/9/20
54 GND CH 10/11/21
55 TX/RX-11-A
56 TX/RX-11-B
57 TX/RX-13-A
58 TX/RX-13-B
59 TX/RX-14-A
60 TX/RX-14-B
61 rsvd
62 rsvd

Isolation boundaries
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 1 27

Introduction
1.10.1 ARINC-429
Bus in Multi-
drop Network

Figure 1-12 illustrates an example of wiring the ARINC-429 bus in a multi-drop
network configuration (which is the most common) with the DNx-429-5xx.

In the example configuration, the DNX-429-516 Channel 0 acts as the master
transmitter and all other devices are slaves (receiving only). The physical
medium between master and slave(s) is two twisted-pair wires carrying a
differential signal:

• A is the non-inverting signal (may be labeled as +)

• B is the inverting signal (may be labeled as -)

The signals from A/B lines are with reference to the ground. Even though the
configuration in Figure 1-12 is common, other configurations are also possible.

Figure 1-12 Wiring for an ARINC-429 Network

NOTE: A DNx-429-516 transmitter can connect to 20 receiver(s) on one twisted
pair, which meets the ARINC-429 hardware specification. However,
note that due to power restrictions, the DNx-429-516 board can only
drive a maximum of 128 receivers per board.

DNx-429-516 Board

Channel 0

TX-0-A
TX-0-B

GND

Rx
Tx

Slave 1

Rx
Tx

Slave 2...

 Slave n

A
B

GND

TxD

RxD
Data(A)
Data(B)

A B A B

G
N

D

G
N

D

RX
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 2 28

Programming with the High-Level API
Chapter 2 Programming with the High-Level API

This chapter provides the following information about using the UeiDaq
Framework High-level API to control the DNx-429-516:

• About the High-level Framework (Section 2.1)

• Creating a Session (Section 2.2)

• Configuring the Resource String (Section 2.3)

• Configuring the Timing (Section 2.4)

• Reading Data (Section 2.5)

• Writing Data (Section 2.6)

• Programming the Output Scheduler (Section 2.7)

• Scheduling Outputs Using Major/Minor Frames (Section 2.8)

• Programming the Label Filter (Section 2.9)

• Cleaning-up the Session (Section 2.10)

2.1 About the
High-level
Framework

UeiDaq Framework is object oriented and its objects can be manipulated in the
same manner from different development environments, such as Visual C++,
Visual Basic, or LabVIEW.

UeiDaq Framework is bundled with examples for supported programming
languages. Examples are located under the UEI programs group in:

• Start » Programs » UEI » Framework » Examples

The following sections focus on C++ API examples, but the concept is the same
no matter what programming language you use.

Please refer to the UeiDaq Framework User Manual for more information on use
of other programming languages.

2.2 Creating a
Session

The Session object controls all operations on your PowerDNx device. Therefore,
the first task is to create a session object:

// create a session object for input and output

CUeiSession session;
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 2 29

Programming with the High-Level API
2.3 Configuring
the Resource
String

UeiDaq Framework uses resource strings to select which device, subsystem
and channels to use within a session.

The resource string syntax is similar to a web URL:

 <device class>://<IP address>/<Device Id>/<Subsystem><Channel list>

For PowerDNA Cube and RACKtangle, the device class is pdna.

ARINC boards have dedicated input and output ports. Use the ATX token for the
output subsystem and the ARX token for the input subsystem.

For example, the following resource string selects ARINC input ports 0,2,3 on
device 0 at IP address 192.168.100.2:

CreateARINCInputPort parameters include the following:

• bitsPerSecond: port speed of 12.5K or 100K for a selected port.

• parity: boolean parity mode to use for controlling transmission
integrity.

• enableSDIFilter: used to filter incoming words based on their SDI
bits.

• SDIMask: if the result is other than zero, each incoming word is ANDed
with this mask and the word is passed on to the software.

To program output channels on the DNx-429-516, you configure the resource
string, baud rate, and parity:

// Configure ARINC input ports 0,2,3 on device 0

session.CreateARINCInputPort("pdna://192.168.100.2/Dev0/ARX0,2,3",
 UeiARINCBitsPerSecond12500,
 UeiARINCParityOdd,
 false, 0);

// Configure ARINC output ports 0, 2, 5 on device 0

session.CreateARINCOutputPort("pdna://192.168.100.2/Dev0/ATX0,2,5",
 UeiARINCBitsPerSecond12500,
 UeiARINCParityOdd);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 2 30

Programming with the High-Level API
2.4 Configuring
the Timing

The application must configure the DNx-429-516 to use the “messaging” timing
mode. Messages are ARINC words, represented in C++ with the structure
tUeiARINCWord.

The ARINC DNx-429-516 can be programmed to wait for a certain number of
messages to be received before notifying the session.

It is also possible to program the maximum amount of time to wait for the
specified number of messages before notifying the session.

The following sample shows how to configure the messaging I/O mode to be
notified when 10 words have been received or every second (if the ARINC port
receives less than 10 words per second it will return whatever number of words
is available every second).

typedef struct _tUeiARINCWord
{
 // The label of the word. It is used to determine the data type of the
 // Data field, and therefore, the method of data translation to use.
 uInt32 Label;

 // Sign/Status Matrix or SSM. This field contains hardware equipment
 // condition, operational mode, or validity of data content.
 uInt32 Ssm;

 // Source/Destination Identifier or SDI. This is used for multiple
 // receivers to identify the receiver for which the data is destined.
 uInt32 Sdi;

 // The parity bit.
 uInt32 Parity;

 // The payload of the word. Its format depends on the label.
 // Most common formats are BCD (binary-coded-decimal) encoding,
 // BNR (binary) encoding or discrete format where each bit represents
 // a Pass/Fail, True/False or Activated/Non-Activated condition.
 uInt32 Data;

} tUeiARINCWord;

// configure timing

session.ConfigureTimingForMessagingIO(10, 1.0);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 2 31

Programming with the High-Level API
2.5 Reading Data Reading data from the DNx-429-516 is done using a reader object.

Since there is no multiplexing of data (contrary to what’s being done with AI, DI,
or CI sessions), you need to create one reader object per input port to be able to
read from each port in the port list.

The following sample code shows how to create a reader object tied to port 1
and read up to 10 words from the ARINC bus.

2.6 Writing Data Writing data to the DNx-429-516 is done using a writer object. Since there is no
multiplexing of data (contrary to what’s being done with AO, DO, or CO
sessions), you need to create one writer object per output port to be able to write
to each port in the port list.

Users can write ARINC messages for output to the TX FIFO or schedule output
messages using the TX scheduler.

The following sample code shows how to create a writer object tied to port 2 and
write one word to the TX FIFO for transmittal to the ARINC bus.

NOTE: The following section provides a description of how to use the scheduler
for transmitting data.
For more information about the FIFO and scheduler hardware options,
refer to Section 1.9.1 on page 15.

// Create a reader and link it to the session’s stream, port 1

reader = new CUeiARINCReader(session.GetDataStream(), 1);

// read up to 10 words, numWordsRead contains the
// number of words actually read.

tUeiARINCWord words[10];
reader->Read(10, words, &numWordsRead);

// Create a writer and link it to the session’s stream, port 2

writer = new CUeiARINCWriter(session.GetDataStream(), 2);

// store the one word we want to write out

tUeiARINCWord word;
word.Label = 2; // Set the label
word.Data = 0x123; // Set the payload
word.Sdi = 0;
word.Ssm = 0;
word.Parity = 0;

// write 1 word, numWordsWritten contains number of words actually sent

writer->Write(1, &word, &numWordsWritten);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 2 32

Programming with the High-Level API
2.7 Programming
the Output
Scheduler

Each output channel is equipped with a hardware Scheduler that you can use to
send sequences of ARINC words at a given rate without intervention of the host
and/or software.

To program the output scheduler, you first add a pointer on the output channel
that you wish to program:

You can then add up to 256 Scheduler entries. Each entry is represented by the
following structure:

Add each entry one by one using the AddSchedulerEntry() method on the
port object:

As soon as the session starts, the output port starts sending the scheduled
words in sequence. You can update the scheduled words while the session is
running with CUeiARINCWriter::WriteScheduler() as follows:

// Configure ARINC output port 0

CUeiARINCOutputPort* pPort =
dynamic_cast<CUeiARINCOutputPort*>(session.GetChannel(0));

typedef struct _tUeiARINCSchedulerEntry
{
 // Specifies whether this is a master or slave entry
 Int32 Master;

 // Specifies whether this entry should be scheduled periodically
 Int32 Periodic;

 // Scheduling delay count in us
 uInt32 Delay;

 // Word to be sent when this entry is processed.
 // Refer to the previous Section 2.6 for a description of Word structure
 tUeiARINCWord Word;

} tUeiARINCSchedulerEntry;

// Add one Scheduler entry

tUeiARINCSchedulerEntry entry = {1, 1, 1000000, {0x12, 0, 0, 0, 0x300} };
pPort->AddSchedulerEntry(entry);

// Update the second word in scheduler table

tUeiARINCWord word;
word.Label = 23; // Set the label
word.Data = 0x102; // Set the payload
word.Sdi = 0;
word.Ssm = 0;
writer->WriteScheduler(2, 1, &word, &numWordsWritten);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 2 33

Programming with the High-Level API
To change the number of scheduled words and/or their frequencies, you must
first stop the session, and then add additional words in the existing sequence or
clear the Scheduler with the following call:

2.8 Scheduling
Outputs
Using Major/
Minor Frames

The hardware Scheduler on each output channel can be configured to transmit
a table of messages where the periodic start of the transmission of messages is
controlled by a major frame clock and the transmission of each individual TX
message within that major clock period is controlled using minor frame clocks.

Users can configure to up to 16 minor clocks, which are programmed with user-
programmable time offsets and user-programmable frame repeat rates relative
to the start of a major frame. The major frame clock resets the minor clocks.

The scheduler table for each TX output can contain up to 256 TX messages.
ARINC data is scheduled for transmission based on which minor frame(s) it is
mapped to; the same data can be mapped to multiple minor frames.

2.8.1 Set MJ/MN
Mode

To program the output scheduler in Major/Minor (MJ/MN) mode, you first add a
pointer on the output channel that you wish to program:

You next enable the scheduler and program the scheduler mode to Major/Minor
mode:

// Clear the scheduler

pPort->ClearSchedulerEntries();

// Configure ARINC output port 0

CUeiARINCOutputPort* pOutPort =
dynamic_cast<CUeiARINCOutputPort*>(session.GetChannel(0));

// Enable and set MJ/MN mode

pOutPort->EnableScheduler(true);
pOutPort->SetSchedulerType(UeiARINCSchedulerTypeMajorMinorFrame);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 2 34

Programming with the High-Level API
2.8.2 Configure MJ/
MN Frame
Clock Rates

Configure the major frame clock rate, which is programmed in Hz.

This triggers the sequence of data transmissions (controlled by minor frames)
and controls the rate at which they’re periodically repeated.

Next configure minor frames, which will determine your schedule for transmitting
individual ARINC words relative to the major frame.

The following example configures 2 minor frames as multiples of the major
frame rate.

NOTE: The minor frame delay and period are programmed in 1 us increments.

// Configure major frame rate (i.e. 100.0 Hz)

double majorFrameRate = 100.0;
pOutPort->SetSchedulerRate(majorFrameRate);

// Configure minor frames

tUeiARINCMinorFrameEntry minorFrame;

//Program Frame 1: Period is programmed in divisions of major frame (10ms)
// (minor frame 1 period is 1/2 the major frame = 5000us)

minorFrame.Delay = 0; // no delay
minorFrame.Period = uInt32((1000000.0 / majorFrameRate) / 2);

pOutPort->AddMinorFrameEntry(minorFrame);

//Program Frame 2:
// (minor frame 2 period is 1/3 the major frame = 3333us)

minorFrame.Delay = 0; // no delay
minorFrame.Period = uInt32((1000000.0 / majorFrameRate) / 3);

pOutPort->AddMinorFrameEntry(minorFrame);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 2 35

Programming with the High-Level API
2.8.3 Add
Scheduler
Entries

You can then add up to 256 Scheduler entries. Each entry is represented by the
following structure:

Add each entry one by one using the AddSchedulerEntry() method on the
port object:

When you start the session, the scheduled entries will start transmitting.

typedef struct _tUeiARINCSchedulerEntry
{
 // this Master parameter is not used in MJ/MN mode
 Int32 Master;

 // Specifies whether this entry should be scheduled periodically
 Int32 Periodic;

 // this Delay parameter is not used in MJ/MN mode
 uInt32 Delay;

 // Word to be sent when this entry is processed.
 // Refer to Section 2.6 for a description of the tUeiARINCWord structure
 tUeiARINCWord Word;

 // Minor frame mapping (one bit per minor frame)
 uInt32 MinorFrameMask;

} tUeiARINCSchedulerEntry;

// Example of adding one Scheduler entry

tUeiARINCSchedulerEntry schedEntry;

// entry is periodic
schedEntry.Periodic = 1;

// Program word to be emitted by this entry
schedEntry.Word.Label = 0x05;
schedEntry.Word.Sdi = 1;
schedEntry.Word.Ssm = 1;
schedEntry.Word.Data = 0x1234;

// Add word to one of the minor frames --
// 0x1 (bit 1) maps to 1st minor frame; 0x2 (bit 2) maps to 2nd minor frame,
// 0x3 (bits 1 and 2) map to 1st and 2nd minor frames, 0x4 maps to 3rd, etc
schedEntry.MinorFrameMask = (1); // will transmit at 5 ms, etc.

pOutPort->AddSchedulerEntry(schedEntry);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 2 36

Programming with the High-Level API
2.8.4 Update
Scheduler
Table

As soon as the session starts, the output port starts sending the scheduled
words in sequence. You can update the scheduled words with
CUeiARINCWriter::WriteScheduler() as follows:

2.8.5 Update
Scheduler
Using TX
Pages

MJ/MN mode provides an alternative to updating scheduled words as they’re
transmitting. The scheduler in MJ/MN mode can have two copies of scheduler
entries, which are accessed via two different page areas (page 0 and page 1).
This allows users to update a scheduler table on one page while transmitting
from the other without affecting the data being transmitted.

The CUeiARINCWriter::SetTransmitPage() method is used to program
which page will be transmitted from and which page will be written to for all TX
channels. Channels are accessed as a bitmask (bit 0 maps to TX0, bit1 to TX1,
etc.), and pages are specified as 0 (for page 0) and 1 for page 1.

The following programs future writes to write to page 1, and TX ports will
transmit data stored in page 0 to the ARINC bus:

Now you can write the another set of scheduled words with
CUeiARINCWriter::WriteScheduler() to the page 1 set above as
follows:

// Update the second word in scheduler table

tUeiARINCWord word;
word.Label = 23; // Set the label
word.Data = 0x102; // Set the payload
word.Sdi = 0;
word.Ssm = 0;
writer->WriteScheduler(2, 1, &word, &numWordsWritten);

// Set write page to 1 and TX page to 0 (default)

writer->>SetTransmitPage(true, // true switches pages immediately
 0xffff, // writes to TX ch15..0 will write page 1
 0x0000); // transmitted data for ch15..0 will come
 // from page 0

// Write location 0 in scheduler table of page 1 while TX is still
// transmitting from page 0

tUeiARINCWord word;
word.Label = 5; // Set the label
word.Data = 0xABAB; // Set the payload
word.Sdi = 2;
word.Ssm = 2;
writer->WriteScheduler(0, 1, &word, &numWordsWritten);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 2 37

Programming with the High-Level API
Once you are finished updating a new scheduler table on page 1, you can swap
pages to transmit the data from the new scheduler table out TX ports to the
ARINC bus.

At this point your new data will transmit, and you have the ability to write the
original page with updated data:

To change the number of scheduled words and/or their frequencies, you must
first stop the session, and then add additional words in the existing sequence or
clear the Scheduler with the following call:

2.9 Programming
the Label
Filter

Each input channel is equipped with a label filter that lets you filter received input
words and only keep words that are tagged with a specified label.

To use this feature, you first need to get a pointer on the ARINC input channel
you wish to program:

You can then add up to 255 filter entries. Each entry is represented by the
following structure:

// Set write page to 0 and TX page to 1

writer->>SetTransmitPage(false, // swap at start of next major frame
 0x0000, // configures ch15..0 writes to page 0
 0xffff); // configures ch15..0 transmit from page 1

// Clear the scheduler

pOutPort->ClearSchedulerEntries();

// Get pointer to the input channel 1

CUeiARINCInputPort* pPort =
dynamic_cast<CUeiARINCInputPort*>(session.GetChannel(1));

typedef struct _tUeiARINCFilterEntry
{
 // Label to accept
 uInt32 Label;

 // Accept word only if it carries different data from a
 // previously received word with the same label.
 Int32 NewData;

 // Trigger the scheduler entry with the same index as this
 // filter entry in the scheduler table of the output port
 // that has the same index as this input port.
 Int32 TriggerSchedulerEntry;

} tUeiARINCFilterEntry;
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 2 38

Programming with the High-Level API
Add each entry one by one using the AddFilterEntry() method on the port
object:

As soon as the session starts, the input port starts filtering words that match the
specified label(s).

To reprogram the filter, you must stop the session first. You can then add
additional filters or clear the existing filters with the following call:

2.10 Cleaning-up
the Session

The session object will clean itself up when it goes out of scope or when it is
destroyed. To reuse the object with a different set of channels or parameters,
you can manually clean up the session as follows:

// Add an entry to filter

tUeiARINCFilterEntry entry = {12, 1, 1};
pPort->AddFilterEntry(entry);

// Clear the filter

pPort->ClearFilterEntries();

// clean up the sessions

session.CleanUp();
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 39

Programming with the Low-Level API
Chapter 3 Programming with the Low-Level API

This chapter provides the following information about programming the
DNx-429-516 using the low-level API:

• About the Low-level API (Section 3.1)

• Low-level Functions (Section 3.2)

• Low-level Programming Techniques (Section 3.3)

• Configuring Board & Channels (Section 3.4)

• Setting Modes of Operation (Section 3.5)

• Setting the Baud Rate (Section 3.6)

• Reading RX Data (Section 3.7)

• Writing TX Data Using the FIFO (Section 3.8)

• Configuring for FIFO Transmission (Section 3.8.1)

• Configuring for FIFO Transmission with Delays (Section 3.8.2)

• Writing TX Data Using the Scheduler (Section 3.9)

• Initializing the Scheduler Table (Section 3.9.1)

• Programming Scheduler Timebase Values (Section 3.9.2)

• Writing Scheduler Transmit Data (Section 3.9.3)

• Programming RX Filters (Section 3.10)

• Filtering Messages Based on Labels (Section 3.10.1)

• Filtering Messages Based on Parity (Section 3.10.2)

• Filtering Messages Based on SDI (Section 3.10.3)

3.1 About the
Low-level API

The low-level API provides direct access to the DAQBIOS protocol structure and
registers in C. The low-level API is intended for speed-optimization, when
programming unconventional functionality, or when programming under Linux or
real-time operating systems.

When programming in Windows OS, however, we recommend that you use the
UeiDaq Framework High-Level API (see Chapter 2). The Framework extends
the low-level API with additional functionality that makes programming easier
and faster.

For additional information regarding low-level programming, refer to the
PowerDNA API Reference Manual located in:

• On Linux systems:
<PowerDNA-x.y.z>/docs

• On Windows systems:
Start » All Programs » UEI » PowerDNA » Documentation
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 40

Programming with the Low-Level API
3.2 Low-level
Functions

Low-level functions are described in detail in the PowerDNA API Reference
Manual. Table 3-1 provides a summary of 429-516-specific functions.

NOTE: The DNx-429-516 uses many of the same API functions as UEI’s other
I/O boards that support the ARINC protocol, (i.e., DNx-429-512/566).
Functions unique to the DNx-429-516 series begin with DqAdv516.

Table 3-1 Summary of Low-level API Functions for DNx-429-516

Function Description

DqAdv566BuildPacket Assembles an ARINC message out of individual fields for

transmission

DqAdv566ParsePacket Splits a received packet into individual fields (Rx)

DqAdv566BuildFilterEntry Assembles filter entries from the separate fields (Rx)

DqAdv566BuildSchedEntry Assembles the control message for a scheduler entry from

the separate fields (Tx)

DqAdv516BuildFrameEntry Assembles the control message for a frame entry from the

separate fields. Used when the Scheduler is in Major/Minor

Frame mode (Tx)

DqAdv566SetConfig Configures basic board-level ARINC device parameters

DqAdv566SetMode Configures the mode of operation for each channel

DqAdv566SetFilter Writes to or reads from the label filter (Rx)

DqAdv566SetScheduler Writes to or reads from scheduler table (control message

array and data message array) (Tx)

DqAdv566SetSchedTimebase Sets one of two programmable scheduler timebases (Tx)

DqAdv516MajorFrameDelay Sets the delay and clock divider for minor frames. Used

when the Scheduler is in Major/Minor Frame mode (Tx)

DqAdv566SetFifoRate Sets up a timebase for writing output packets to the Tx FIFO

DqAdv566SetChannelCfg Sets operating configurations for each channel, (e.g.,

enables Tx channel or Rx loopback, enables Scheduler

modes, enables FIFOs, etc.)

DqAdv516SetTxPage Sets which page the host will write new data messages to

and which page is actively used for transmitting data. Used

when the Scheduler is in Major/Minor Frame mode (Tx)

DqAdv516EnableTransmitters Enables all transmit operations on the board (Tx)

DqAdv516ChangeBaudRate Allows programmable baud rate per channel
(10 kbaud..200 kbaud)

DqAdv566Enable Enables and disables all operations on the board
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 41

Programming with the Low-Level API
3.3 Low-level
Programming
Techniques

Application developers are encouraged to explore the existing source code
examples when first programming the 429-516. Sample code provided with the
installation is self-documented and serves as a good starting point.

Code examples are located in the following directories:

• For Linux: <PowerDNA-x.y.z>/src/DAQLib_Samples

• For Windows: Start » All Programs » UEI » PowerDNA » Examples

Sample code for data acquisition modes have the name of the mode and the
name of the I/O board(s) being programmed embedded in the sample name.
For example, SampleVMap516 contains sample code for running a
429-516 using VMAP data acquisition mode. Note that immediate mode
samples are named Sample<I/O board name>, (i.e., Sample516).

3.3.1 Data Transfer
Modes

The 429-516 supports the following acquisition modes:

• Immediate (point-to-point): Designed to provide easy access to a single I/O
board at a non-deterministic pace. Reads or writes one ARINC message per
channel. Runs at a maximum of 100 Hz.

• RTVMAP: Designed for messaging applications or closed-loop (control)
applications. Users set up a “map” of I/O boards and channels from which to
read or write incoming or outgoing messages. A single API call (refresh)
paced by the user application causes messages to be transferred directly
between I/O board FIFOs and the user application.

API that describe how to implement data acquisition modes and additional mode
descriptions are provided in the PowerDNA API Reference Manual.

DqAdv566SendPacket Sends a packet of data to a priority register of the specified

channel (Tx)

DqAdv566SendFifo Puts packets of data into the Tx FIFO

DqAdv566RecvPacket Receives a packet of data from the Rx interface

DqAdv566RecvFifo Retrieves messages (packets of data) from the Rx FIFO

DqAdv566ReadWriteFifo Writes and receives packets from a specified channel FIFO

DqAdv566ReadWriteAll Writes and receives packets from specified channel FIFOs

DqAdv566GetStatus Requests the error and status of the interface

Table 3-1 Summary of Low-level API Functions for DNx-429-516 (Cont.)

Function Description
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 42

Programming with the Low-Level API
3.4 Configuring
Board &
Channels

The 429-516 uses two low-level APIs for board and channel configuration:

• DqAdv566SetConfig()configures the 429-516 at the board level

• DqAdv566SetChannelCfg()configures at the channel level

3.4.1 Board
Configuration

Use DqAdv566SetConfig() to configure the 429-516 at the board level:

NOTE: For transmit ports (ss=DQ_SS0OUT), the timeout_us parameter
applies to all 16 ARINC transmit channels, and for receive ports
(ss=DQ_SS0IN), timeout_us applies to all 24 ARINC receivers.

3.4.2 Channel
Configuration

Channels 0 through 15 can be used as ARINC transmit or receive ports.
On power-up, transmitters are disabled, defaulting to channels configured as
receivers. Channels 16 through 24 are ARINC receiver ports only.

Use DqAdv566SetChannelCfg() to configure the 429-516 individual
channels for transmitter and/or receiver functionality as summarized in
Table 3-2. Each 429-516 channel can be configured independently.

The DqAdv566SetChannelCfg() function includes actions for enabling the
transmitter and receiver. As a general rule, if using the Scheduler, timebases
and the scheduler table should be pre-programmed before enabling the ARINC
transmitter. Programming can be changed at any time during operation.

DqAdv566SetConfig(
 int hd, // Handle to IOM received from DqOpenIOM()
 int devn, // Board device # inside the IOM chassis
 int ss, // Subsystem (see NOTE below)
 int timeout_us, // Time to wait in case TX is not ready or
 // RX loopback message is not available
 uint32 config // Program as NULL (DIO are not supported)
);

DqAdv566SetChannelCfg(
 int hd, // Handle to IOM received from DqOpenIOM()
 int devn, // Board device # inside the IOM chassis
 int ss, // Subsystem (TX=DQ_SS0In, RX=DQ_SS0OUT)
 int chan, // Channel number (ARINC port number)
 uint32 actions // See actions listed in Table 3-2
); // actions are ORed together to configure

Table 3-2 Channel Configuration Actions

Configuration Action Description

DQ_AR_ENABLE_Tx Enable transmit operations (Tx)

DQ_AR_ENABLE_Rx Enable receive operations (Rx)
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 43

Programming with the Low-Level API
DQ_AR_ENABLE_TxFIFO Enable transmit FIFO (Tx)

NOTE: The TX FIFO is used for temporary storage during Scheduler
operations and should be enabled when using the Scheduler.

DQ_AR_ENABLE_RxFIFO Enable receive FIFO (Rx)

DQ_AR_ENABLE_SCHEDULER Enable scheduler (Tx)

The Scheduler can operate in one of three modes:
• Default Operation:

 Refer to “Scheduler in Default Operation” on page 18
• Frame Clock mode (DQ_AR_SCHED_FRAMECLK):

 Refer to “Scheduler in Frame Clock Mode” on page 20
• Major/Minor Frame mode (DQ_AR_SCHED_MJMN):

Refer to “Scheduler in Major/Minor Frame Mode” on page 22

DQ_AR_SCHED_FRAMECLK Set scheduler to Frame Clock mode (Tx)

NOTE: DQ_AR_SCHED_FRAMECLK and DQ_AR_SCHED_MJMN
are mutually exclusive parameters.

DQ_AR_SCHED_SLAVETD Allow scheduling slave entries using the delay_counter field when
in Frame Clock mode (Tx)

DQ_AR_SCHED_MJMN Set scheduler to Major/Minor Frame mode (Tx)

NOTE: DQ_AR_SCHED_FRAMECLK and DQ_AR_SCHED_MJMN
are mutually exclusive parameters.

DQ_AR_ENABLE_LOOPBACK Enable loopback validation of transmitted packets (Tx/Rx)
When this bit is set, the TX word is compared with RX data received on
the corresponding receiver, which results in 5 words in the RX FIFO:

1. Expected TX frame
2. Received RX frame (0xFFFFFFFF if the frame is missing)
3. 32-bit timestamp
4. 32-bit flags
 [31-16] missing frame counter;
 [15:0] mismatched frame counter
5. TX source (Scheduler, FIFO, Low Priority Register, or
 High Priority Register)
 [10] = 1 if missing frame/mismatched error was detected
 [9..8] = source of TX transmission (0=Scheduler; 1=TX FIFO;
 2=High priority register; 3=Low priority register)
 [7..0] = Scheduler entry number if [9..8]=0

DQ_AR_ENABLE_FILTER Enable receive filter operations (Rx)
Configures Label Acceptance Filter, including ignore bad data feature.
This bit does not need to be set for SDI or parity filtering.

DQ_AR_LOGIC_LOOPBACK <Reserved> Enable internal logic tests (internal to HI-3282); not used
on DNx-429-516

Table 3-2 Channel Configuration Actions (Cont.)

Configuration Action Description
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 44

Programming with the Low-Level API
3.5 Setting
Modes of
Operation

The 429-516 supported modes of operation are summarized in Table 3-3.

To set the mode of a channel, use the low-level function,
DqAdv566SetMode():

NOTE: The cmd parameter is created by logically combining the #define
parameters wanted for each mode of operation (see Table 3-3 for
parameters).
For example, to set the transmit baud rate as 100 kHz and set odd
parity, cmd is set as follows:
cmd = DQ_AR_RATEHIGH | DQ_AR_PARITYODD;

DqAdv566SetMode(
 int hd, // Handle to IOM received from DqOpenIOM()
 int devn, // Board device # inside the IOM chassis
 int ss, // Subsystem (TX=DQ_SS0In, RX=DQ_SS0OUT)
 int chnl, // Channel number (0-23)
 uint32 cmd);// See NOTE below

Table 3-3 DNx-429-516 Modes of Operation

Mode of Operation Description and #define Parameters

Rate control* (Tx) Sets baud rate of transmitter.
• DQ_AR_RATEHIGH – set I/O rate to 100 kbaud
• DQ_AR_RATELOW – set I/O rate to 12.5 kbaud

Note that you can alternatively program baud rates between 10 kbaud and
200 kbaud by using the DqAdv516ChangeBaudRate API

Parity control (Rx/Tx) Sets parity control.
• DQ_AR_PARITYODD – odd parity
• DQ_AR_PARITYEVEN – even parity
• DQ_AR_PARITYOFF – no parity check/generation in hardware/parity

error injection

Tx Slow slew rate enable*
(Tx only)

Enables slow slew rate option
• DQ_AR_SLOWSLEW_ENABLED – enable slow slew rate
• DQ_AR_SLOWSLEW_DISABLED – disable slow slew rate

Control zero label and
FIFO priority behavior (Tx only)

Enables special case options. By default, zero labels are disabled and the
Scheduler priority is higher than the FIFO (refer to Table 1-5 in Chapter 1)

• DQ_AR_ALLOW_ZERO_LBL – allow scheduler to output zero labels
• DQ_AR_ALLOW_FIFO_HIGH – set FIFO priority higher than scheduler

*Note: 100 kbaud transmission rates require that slow slew rate is disabled, DQ_AR_SLOWSLEW_DISABLED.
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 45

Programming with the Low-Level API
Rx Timestamp enabled (Rx only) Enables timestamp.
• DQ_AR_TIMESTAMP_ENABLED – write data packet into the receive

FIFO along with the timestamp
• DQ_AR_TIMESTAMP_DISABLED – no timestamp

When timestamp is enabled, each received message generates two entries in
the FIFO – one is the actual message, and the second is a timestamp count.
The timestamp count is cleared when the board is enabled for operation. The
timestamp count increments every 10us by default; however
DqCmdResetTimestamp() provides an option to set a different timestamp
increment period.

SDI filtering (Rx only) Enables filtering on the SDI field of the received loopback message.
• DQ_AR_SDI_ENABLED – SDI filtering is enabled
• DQ_AR_SDI_DISABLED – SDI filtering is disabled

Note when SDI filtering is enabled, DQ_AR_SDIMASK0 and
DQ_AR_SDIMASK1 bits below determine the SDI value you are filtering for.
For example, if you want to accept all ARINC messages with an SDI value of 1,
you would OR the following into the cmd:
cmd |= DQ_AR_SDI_ENABLED | DQ_AR_SDIMASK0;

Enable SDI mask (Rx only) Sets masking of the SDI field of the received message.
• DQ_AR_SDIMASK0 – bit 0
• DQ_AR_SDIMASK1 – bit 1

Note only used when mode is DQ_AR_SDI_ENABLED.

Rx FIFO control (Rx only) Enables RX FIFO control options of the received message.
• DQ_AR_IGNORE_BAD_DATA - if received ARINC word has a parity

error, rejects it and does not write it into the RX FIFO
• DQ_AR_LB_CHECK_PARITY - include parity check into loopback com-

parison
• DQ_AR_ADD_TIMESTAMP - add timestamp into FIFO data frame

counter mode (Rx only)
• DQ_FRCNT_COUNT_ALL - count all frames
• DQ_FRCNT_COUNT_GOOD - only correctly received frames
• DQ_FRCNT_COUNT_FIFO - only placed into the FIFO
• DQ_FRCNT_COUNT_TRIGGER - count frames that triggered scheduler
• DQ_FRCNT_COUNT_PAR_ERR - count frames with parity error

Tx FIFO delay (Tx only) Enables TX FIFO delay control option.
• DQ_AR_TXFIFO_DELAY

Allows a control word containing a delay setting to be programmed as the
leading word in the FIFO and subsequent ARINC TX messages will be delayed
by the programmed amount. See example in Section 3.8.2.

Table 3-3 DNx-429-516 Modes of Operation

Mode of Operation Description and #define Parameters
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 46

Programming with the Low-Level API
3.6 Setting the
Baud Rate

Users can set the baud rate on a per-channel basis.

The 429-516 supports the high speed (100 kHz) and low speed (12.5 kHz)
specification of the ARINC 429 protocol.

These baud rates can be programmed by ORing the DQ_AR_RATEHIGH or
DQ_AR_RATELOW flags using the DqAdv566SetMode() API when
configuring the mode for each channel. Refer to Section 3.5 for more information
about programming channel modes.

The 429-516 can alternatively be programmed to baud rates other than the 12.5
kHz and 100 kHz ARINC standard using the DqAdv516ChangeBaudRate()
API.

The following example updates the baud rate on TX port 0 and RX port 0 to
NEW_BAUDRATE:

where

• chmask is a bitwise mask indicating which RX and/or TX channels will
use the new baudrate.
OR DQ_AR_CHANGE_TX into chmask to change rate on transmitter
OR DQ_AR_CHANGE_RX into chmask to change rate on receiver

• NEW_BAUDRATE is the baud rate from 10 kHz to 200 kHz

uint32 chmask =0;
chmask = 0x1 | DQ_AR_CHANGE_TX | DQ_AR_CHANGE_RX;

DqAdv516ChangeBaudRate(hd, DEVN, chmask, NEW_BAUDRATE);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 47

Programming with the Low-Level API
3.7 Reading RX
Data

To program the 429-516 to receive ARINC words via an RX port and store them
in a RX input FIFO, you will need to do the following:

• Configure the board (see Section 3.4.1)

• Configure the mode (per ARINC RX port)

• Configure the port (per ARINC RX port)

• Enable the board

• Read received message

NOTE: If transmitters (TX ports) are enabled and transmitting, you can also use
the following steps to read looped back TX messages on the
corresponding RX ports. This diagnostic feature can be helpful when
debugging your application.

Configure the mode:

The following API configures RX port 0 to run at a 100 kbaud rate,
disables SDI filtering, configures RX logic to expect odd parity, and configures
receivers to not expect a slow slew rate. Note that mode_rx is defined as
uint32.

Refer to Section 3.5 for additional mode options.

Configure the port:

The following configures RX port 0 to be enabled. chcfg_rx is uint32.

Refer to Section 3.4 for additional configuration options.

Enable the configured channels:.

NOTE: On power-up, channel 0..15 transmit drivers are off; RX configured
channels can be used as receivers and receive RX messages from
external drivers. To use channel 0..15 as transmitters, you must enable
the transmitters (DQ_AR_ENABLE_Tx).
Refer to Section 3.8 or Section 3.9 for more information about
configuring a port as an ARINC transmitter.

mode_rx = DQ_AR_RATEHIGH |
 DQ_AR_SDI_DISABLED |
 DQ_AR_PARITYODD |
 DQ_AR_SLOWSLEW_DISABLED;

DqAdv566SetMode(hd, DEVN, DQ_SS0IN, 0, mode_rx);

chcfg_rx = DQ_AR_ENABLE_Rx | DQ_AR_ENABLE_RxFIFO;

DqAdv566SetChannelCfg(hd, DEVN, DQ_SS0OUT, 0, chcfg_tx);

DqAdv566Enable(hd, DEVN, TRUE);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 48

Programming with the Low-Level API
Read received message:

The DqAdv566RecvFifo() reads the ARINC RX messages that have been
stored in the RX FIFO.

3.8 Writing TX
Data Using
the FIFO

Users can store outgoing ARINC messages for transmittal by writing them to the
port’s TX FIFO or by using the output Scheduler.

Section 3.8.1 describes configuring writes using the TX FIFO, and Section 3.8.2
describes configuring writes with programmable delays using the TX FIFO.

See Section 3.9 for information about programming the Scheduler.

3.8.1 Configuring
for FIFO
Transmission

To program the 429-516 to store ARINC words in an output FIFO and transmit
them from the TX ports, you will need to do the following:

• Configure the board (see Section 3.4.1)

• Configure the mode (per ARINC TX port)

• Set the TX FIFO timebase (per ARINC TX port)

• Configure the port (per ARINC TX port)

• Enable the configured channels

• Write TX message to the FIFO (for transmittal)

Configure the mode:

The following configures TX port 0 to run at a 100 kbaud rate,
disable SDI filtering, use odd parity, and not use a slow slew rate.
mode_tx is uint32.

Refer to Section 3.5 for additional mode options.

// The following API requests 100 words from the RX port 0 FIFO
// the API reports the number of retrieved (copied) words
// and how many received words remain in the FIFO

DqAdv566RecvFifo(hd, DEVN, 0, 100, datarx, &copied, &remains);

// The following API parses the received ARINC word (datarx[0]) and
// returns payload data, label, sdi, ssm, and parity values for datarx[0]

DqAdv566ParsePacket(datarx[0],&data, &label, &sdi, &ssm, &parity);

mode_tx = DQ_AR_RATEHIGH|
 DQ_AR_SDI_DISABLED|
 DQ_AR_PARITYODD|
 DQ_AR_SLOWSLEW_DISABLED;

DqAdv566SetMode(hd, DEVN, DQ_SS0OUT, 0, mode_tx);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 49

Programming with the Low-Level API
Set the TX FIFO timebase:

The following configures FIFO transmissions from channel 0 to be paced by the
TX ready signal (when TX is done outputting one message, the next is pulled
from the FIFO for transmittal):

Note that the rate_us (set to 1000) is not used when configured as
DQ_AR_FIFO_PSTB0 (paced by TX ready).

Configure the port:

The following enables TX port 0 and enables its TX FIFO. chcfg_tx is uint32.

Refer to Section 3.4 for additional configuration options.

Enable the configured channels:.

Write TX message to the FIFO:

The DqAdv566BuildPacket() builds an ARINC word (where d is a uint32
data value, 0x4 is the label, 0 is the SDI, and 0 is the SSM.) When a TX port is
configured as Even or Odd, calculated parity is auto-inserted by the channel
logic.

The DqAdv566SendFifo() writes to the port 0 FIFO: 1 ARINC data word built
with DqAdv566BuildPacket(). The API returns the number of accepted
words and how much space is still available in the FIFO.

NOTE: datatx is a uint32 array; accepted and available are also
uint32s.

DqAdv566SetFifoRate(hd,DEVN, DQ_SS0OUT, 0, DQ_AR_FIFO_PSTB0,1000);

chcfg_tx = DQ_AR_ENABLE_Tx | DQ_AR_ENABLE_TxFIFO;

DqAdv566SetChannelCfg(hd, DEVN, DQ_SS0OUT, 0, chcfg_tx);

DqAdv566Enable(hd, DEVN, TRUE);

datatx[0] = DqAdv566BuildPacket(d, 0x4, 0, 0, 0);

DqAdv566SendFifo(hd, DEVN, 0, 1, datatx, &accepted, &available);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 50

Programming with the Low-Level API
3.8.2 Configuring
for FIFO
Transmission
with Delays

To program the 429-516 to transmit ARINC words with delays from the output
FIFO, you will need to configure the transmit channel in the TX-FIFO-delay
mode and additionally write delay information to the FIFO (along with the ARINC
TX messages).

• Configure the board (see Section 3.4.1)

• Configure the mode (per ARINC TX port)

• Set the TX FIFO timebase (per ARINC TX port) (see Section 3.8.1)

• Configure the port (per ARINC TX port) (see Section 3.8.1)

• Enable the configured channels (see Section 3.8.1)

• Write TX message to the FIFO (for transmittal)

Configure the mode:

FIFO delay mode is configured by ORing in DQ_AR_TXFIFO_DELAY. The rest of
the mode configuration is the same as Section 3.8.1.

Refer to Section 3.5 for additional mode options.

Write TX messages with programmed delay to the FIFO:

Writing TX messages with a programmed delay consists of first writing a control
word that provides the delay and number of ARINC output words that will use
that delay and then writing the ARINC output messages.

The delay control word is in the following format:

• bit[31:24] is number of ARINC words that will use the delay

• bit[23:0] is the delay (in 1 µs counts up to 254 ms)

The following example writes to the FIFO on TX port 0 and configures port 0 to
output 2 ARINC TX messages using a delay of 5 ms:

mode_tx = DQ_AR_RATEHIGH | DQ_AR_SDI_DISABLED |
 DQ_AR_PARITYODD |
 DQ_AR_SLOWSLEW_DISABLED | DQ_AR_TXFIFO_DELAY;

DqAdv566SetMode(hd, DEVN, DQ_SS0OUT, 0, mode_tx);

// configure to send 2 ARINC words with a 5 ms delay until the next set

datatx[0] = (2<<24)|(1000*5);

// ARINC message #1: data is 0xD1, label is 4, SDI is 0, SSM is 0

datatx[1] = DqAdv566BuildPacket(0xD1, 0x4, 0, 0, 0);

// ARINC message #2: data is 0xD2, label is 4, SDI is 0, SSM is 0

datatx[2] = DqAdv566BuildPacket(0xD2, 0x4, 0, 0, 0);

DqAdv566SendFifo(hd, DEVN, 0, 3, datatx, &accepted, &available);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 51

Programming with the Low-Level API
Then write then next set of messages in the FIFO on TX port 0 and configure
port 0 to output 3 ARINC TX using a delay of 8 ms:

The DqAdv566SendFifo() writes the 7 datatx words to the port 0 FIFO.
The API returns the number of accepted words and how much space is still
available in the FIFO.

The following is example of the transmission on port 0:

Figure 3-1 Example of Transmit from TX FIFO in Delayed Mode

NOTE: The next delay entry in the FIFO is processed when a previous delay
expires. If the next delay is less than the time it takes to output the
current data word(s), the next sequence of transmission word(s) will
start immediately. An ARINC word transmitted at 100 kbaud takes
360 µs and at 12.5 kbaud takes 2.88 ms takes to output.

// configure to send 3 more ARINC words with an 8 ms delay until the next

datatx[3] = (3<<24)|(1000*8);

// ARINC message #3: data is 0xD3, label is 4, SDI is 0, SSM is 0

datatx[4] = DqAdv566BuildPacket(0xD3, 0x4, 0, 0, 0);

// ARINC message #4 & #5

datatx[5] = DqAdv566BuildPacket(0xD4, 0x4, 0, 0, 0);
datatx[6] = DqAdv566BuildPacket(0xD5, 0x4, 0, 0, 0);

DqAdv566SendFifo(hd, DEVN, 0, 4, datatx, &accepted, &available);

...TX output

TX enable

Programmed delay1 (5 ms) Programmed delay2 (8 ms)

ARINC
Message 1
(datatx[1])

ARINC
Message 2
(datatx[2])

ARINC
Message 3
(datatx[4])

ARINC
Message 4
(datatx[5])

ARINC
Message 5
(datatx[6])
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 52

Programming with the Low-Level API
3.9 Writing TX
Data Using
the Scheduler

When using the Scheduler, Scheduler timing and control should be configured,
and the Scheduler data array should be initialized and written with transmit
messages before enabling the channel.

3.9.1 Initializing the
Scheduler
Table

After setting up channel configurations, the scheduler table (the 256-word
control array and 256-word ARINC data array) should be initialized with NULL
data.

DqAdv566SetScheduler() controls writing to and reading from the
Scheduler arrays. The following example initializes both arrays on channel 0 to
NULL:

3.9.2 Programming
Scheduler
Timebase
Values

The Scheduler provides two user-programmable timebases (prescalers) and a
100 µs fixed timebase, which allow for the creation of schedules driven from
independent clocks:

DqAdv566SetSchedTimebase() controls the programming of PSTB0 or
PSTB1 timebases. The following example sets timebase 0 (PSTB0) to 1 ms for
channel 0:

// create an array of 1 location, 0 value

uint32 null_array[1] = {0};

// initialize scheduler table from 0 to 255 with 0s

DqAdv566SetScheduler(hd0, DEVN, 0, DQ_AR_SETSCHED_FILL_TABLE, 0, 255,
null_array, null_array);

#define Constant Description

DQ_AR_SCHED_PSTB0 Uses timebase 0 (programmed in us)

DQ_AR_SCHED_PSTB1 Uses timebase 1 (programmed in us)

DQ_AR_SCHED_PS100us Uses a 100 us timebase

// set channel 0: prescaler-timebase PSTB0 and set to 1000 us

DqAdv566SetSchedTimebase(hd0, DEVN, 0, DQ_AR_SCHED_PSTB0, 1000);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 53

Programming with the Low-Level API
3.9.3 Writing
Scheduler
Transmit Data

The Scheduler supports three modes of operation:

• Default Operation

• Frame Clock

• Major/Minor Frame

Each mode provides a different method of transmit word scheduling and
requires mode-specific programming.

3.9.3.1 Writing
Scheduler in
Default
Operation

The scheduler table is composed of two 256-word arrays: one array contains
timing and control information and the other array contains the corresponding
transmit messages to be output.

Refer to “Scheduler in Default Operation” on page 18 for more information.

The following example writes index 0 and 1 of the scheduler table. Refer to
Figure 3-2 for reference timing.

Build Scheduler table:

Build scheduler entries:

NOTE: In Default Operation, slaves always directly follow masters.

// software array to hold control words

uint32 sched_cmd[256] = {0};

// software array to hold control words

uint32 sched_data[256] = {0};

// DelayCounter=50; Delay will be 5 ms (50ticks * 100us)

int j=0;
int dly_cntr = 50;

// Build a Master Entry (control word and data)
// control word: master=TRUE, periodic=TRUE, timebase is fixed 100us
// prescaler, programmable delay is dly_cntr (50ms)

sched_cmd[j] =
 DqAdv566BuildSchedEntry(TRUE, TRUE, DQ_AR_SCHED_PS100us, dly_cntr);

// message: ARINC data=0x1234, Label=5, SSM=1, SDI=1

sched_data[j++] =
 DqAdv566BuildPacket(0x1234, 5, 1, 1, 0);

// Build a Slave Entry to previous master (control word and data)
// control word: master=FALSE, periodic=TRUE (must be same as master),
// timebase is fixed 100us (must be same as master),
// programmable delay (must be same as master)

sched_cmd[j] =
 DqAdv566BuildSchedEntry(FALSE, TRUE, DQ_AR_SCHED_PS100us, dly_cntr);

// message: ARINC data=0xFFFF, Label=5, SSM=1, SDI=1

sched_data[j++] =
 DqAdv566BuildPacket(0xFFFF, 5, 1, 1, 0);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 54

Programming with the Low-Level API
Write scheduler table to hardware:

Configure the port for Scheduler default operation:

The following configures TX port 0 with an output baud rate of 100 kHz, even
parity, and slow slew rate and enables the default scheduler.

Figure 3-2 Example of Programming the Scheduler in Default Operation

// Write the Master and Slave entry to the hardware Scheduler Table
// writes (puts) index 0 through j into scheduler table in hardware
// with sched_cmd and sched_data arrays built above

DqAdv566SetScheduler(hd0, DEVN, 0, DQ_AR_SETSCHED_PUT,
 0, j, sched_cmd, sched_data);

chcfg_tx = DQ_AR_RATEHIGH | DQ_AR_PARITYEVEN |
 DQ_AR_SLOWSLEW_ENABLED | DQ_AR_ENABLE_SCHEDULER ;

DqAdv566SetChannelCfg(hd, DEVN, DQ_SS0OUT, 0, chcfg_tx);

Array Index Scheduler Control Word Scheduler Data Word (for TX)

...

255 NULL NULL

2 NULLNULL

1 Master=FALSE; Periodic=TRUE;
Prescaler=100us; DelayCounter=dly_cntr

Slave 1 Data Word:
SData 1

Internal 100us
Reference

Clock

...... ...

...

0 Master=TRUE; Periodic=TRUE;
Prescaler=100us; DelayCounter=dly_ctr

Master Data Word:
MData 1

MData 1 SData 1 MData 1 SData 1

32bit data words shift at 100kHz

TX0 output

TX0 enable

Programmed delay
Prescaler(100us)*DelayCounter(dly_cntr)

Programmed delay
Prescaler(100us)*DelayCounter(dly_cntr)

Scheduler Table
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 55

Programming with the Low-Level API
3.9.3.2 Writing
Scheduler in
Frame Clock
Mode

The following example sets up the scheduler in Frame Clock mode.

It configures user-programmable timebase 1 (PSTB1) and then configures and
writes the Scheduler Table. Refer to Figure 3-3 for timing references.

Note that scheduler timing in Frame Clock mode requires using user-
programmable prescaler 1 (PSTB1) as the timebase.

Refer to “Scheduler in Frame Clock Mode” on page 20 for more information.

Initialize arrays for writing Scheduler table:

Set timebase for Frame mode:

Build required null entry in first index:

// software array to hold control words

uint32 sched_cmd[256] = {0};

// software array to hold control words

uint32 sched_data[256] = {0};

// DelayCounter=1; Delay will be 10 ms (1 frame * 10ms) for PSTB1

int j=0;
int dly_cntr = 1;

// For channel 0: Program Prescaler 1 timebase
// to repeat every 10 ms (10000 us)

DqAdv566SetSchedTimebase(hd0, DEVN, 0, DQ_AR_SCHED_PSTB1, 10000);

// Build the first entry as NULL - required in Frame Clock mode
// Build a NULL Control Word (DQ_AR_SCHED_PSDISABLED)

sched_cmd[j] =
 DqAdv566BuildSchedEntry(FALSE, TRUE, DQ_AR_SCHED_PSDISABLED, 0);

// Build a NULL Data Word

sched_data[j++] =
 DqAdv566BuildPacket(0x0, 0, 0, 0, 0);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 56

Programming with the Low-Level API
Build master and slave entries:

Build required null entry in before next master entry:

Write scheduler table to hardware:

// Build a Master Entry (control word and data)
// control word: master=TRUE (Master word defines timing),
/ periodic=TRUE,
// Frame clock timebase is PSTB1 prescaler,
// delay is 1 PSTB1 frame (transmits every 10 ms)

sched_cmd[j] =
 DqAdv566BuildSchedEntry(TRUE, TRUE, DQ_AR_SCHED_PSTB1, dly_cntr);

// message #1 (master): ARINC data=0x1234, Label=5, SSM=1, SDI=1

sched_data[j++] =
 DqAdv566BuildPacket(0x1234, 5, 1, 1, 0);

// Build a Slave Entry to previous master (control word and data)
// control word: master=FALSE, periodic=TRUE (must be same as master),
// timebase is PSTB1 (must be same as master),
// dly_cntr field in Frame clock mode defines
// number of master frames in which slave will transmit
// a 2 means every 2nd frame

sched_cmd[j] =
 DqAdv566BuildSchedEntry(FALSE, TRUE, DQ_AR_SCHED_PSTB1, 2);

// message #2 (slave): ARINC data=0xABCD, Label=5, SSM=1, SDI=1

sched_data[j++] =
 DqAdv566BuildPacket(0xABCD, 5, 1, 1, 0);

// Build NULL entry before masters - required in Frame Clock mode
// Build a NULL Control Word (DQ_AR_SCHED_PSDISABLED)

sched_cmd[j] =
 DqAdv566BuildSchedEntry(FALSE, TRUE, DQ_AR_SCHED_PSDISABLED, 0);

// Build a NULL Data Word

sched_data[j++] =
 DqAdv566BuildPacket(0x0, 0, 0, 0, 0);

// Write the Master and Slave entry to the hardware Scheduler Table
// writes (puts) index 0 through j into scheduler table in hardware
// with sched_cmd and sched_data arrays built above

DqAdv566SetScheduler(hd0, DEVN, 0, DQ_AR_SETSCHED_PUT,
 0, j, sched_cmd, sched_data);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 57

Programming with the Low-Level API
Configure the port for Scheduler in Frame Clock mode:

The following API configures TX port 0 with an output baud rate of 100 kHz,
even parity, slow slew rate, and enabled scheduler in Frame Clock mode.

Figure 3-3 Example of Programming the Scheduler in Frame Clock Mode

chcfg_tx = DQ_AR_RATEHIGH | DQ_AR_PARITYEVEN |
 DQ_AR_SLOWSLEW_ENABLED |
 DQ_AR_ENABLE_SCHEDULER |
 DQ_AR_SCHED_FRAMECLK | DQ_AR_SCHED_SLAVETD;

DqAdv566SetChannelCfg(hd, DEVN, DQ_SS0OUT, 0, chcfg_tx);

Array Index Scheduler Control Word Scheduler Data Word (for TX)

0

...

NULL NULL

3 NULLNULL

2 Master=FALSE; Periodic=TRUE;
Prescaler=PSTB1; DelayCounter=2

Slave 1 Data Word: SData 1
(Label, SDI, Data, SSM, PARITY)

1 Master=TRUE; Periodic=TRUE;
Prescaler=PSTB1; DelayCounter=dly_ctr

Master Data Word: MData 1
(Label, SDI, Data, SSM, PARITY)

Internal PSTB1
User-Programmed

Timebase

...MData 1 MData 1 SData 1TX0 output

TX0 enable

Programmed delay
Master dly_ctr=1 (transmits every PBST1)

Scheduler Table

Internal and External Timing Reference

255 NULLNULL

...

SData 1

32bit data words shift at 100kHz

MData 1

Programmed delay
Slave DelayCounter=2 (transmits every second Master cycle)

PSTB1 Frame

Programmed delay
Master dly_ctr=1 (transmits every PBST1)

PSTB1 Frame PSTB1 Frame
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 58

Programming with the Low-Level API
3.9.3.3 Writing
Scheduler in
Major/Minor
Frame Mode

The following example sets up the Scheduler to run in Major/Minor Frame mode.
Initializing data array pages and initializing major and minor frames are
programmed first.Then the Scheduler Table is written with control words and
transmit messages.

Note that scheduler timing in Major/Minor Frame mode requires using user-
programmable prescaler 1 (PSTB1) as the timebase for the major frame and the
fixed 100 µs prescaler as the timebase for the minor frames.

Refer to “Scheduler in Major/Minor Frame Mode” on page 22 for a description of
Major/Minor Frame Mode.

Initialize default pages for all frames:

Pages are only available in MJ/MN mode.

Set timebase for Major Frame clock in MJ/MN mode:

Program two minor frames:

Set up two minor frames: both run periodically at 2 Hz, but the second is offset
from the first by 100 ms.

// program writes to occur immediately;
// first 0 sets all channels to write to Scheduler page 0;
// second 0 sets all channels to transmit data from Scheduler page 0

DqAdv516SetTxPage(hd0, DEVN, DQ_AR_SETTXPAGE_IMMEDIATE, 0, 0, NULL);

// For channel 0: Program Prescaler 1 timebase
// to run the major frame clock at 1 s (1000000 us)

DqAdv566SetSchedTimebase(hd0, DEVN, 0, DQ_AR_SCHED_PSTB1, 1000000);

// first minor frame runs at 2 Hz (500 ms between frames) with 0 offset

frmdiv[0] = (uint32)(10000*0.500); // program in 100 us increments
frmdelay[0] = (uint32)(10000*0.000);

// second minor frame also runs at 2 Hz (500 ms between frames)
// with an offset (delay) of 100 ms to the frame boundary)

frmdiv[1] = (uint32)(10000*0.500); // program in 100 us increments
frmdelay[1] = (uint32)(10000*0.100);

// write first minor frame to hardware: set channel 0, Frame 0

DqAdv516SetMajorFrameDelay(hd0, DEVN, 0, 0, frmdelay[0], frmdiv[0]);

// write second minor frame to hardware: set channel 0, Frame 1

DqAdv516SetMajorFrameDelay(hd0, DEVN, 0, 1, frmdelay[1], frmdiv[1]);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 59

Programming with the Low-Level API
Build first entry based on minor frame 0 timing:

Build second entry based on minor frame 0 timing:

Build third entry based on minor frame 1 timing:

Write scheduler table to hardware:

// Build first entry (control word and data)
// control word: periodic=TRUE,
// bitmask (0x0001) to assign minor frame 0 timing
// alternatively use macro DQ_AR516_FRM_MASK(0) to point to mn frame 0

sched_cmd[j] =
 DqAdv566BuildFrameEntry(TRUE, 0x0001);

// message: ARINC data=0x1234, Label=5, SSM=1, SDI=1

sched_data[j++] =
 DqAdv566BuildPacket(0x1234, 5, 1, 1, 0);

// Build second entry (control word and data)
// control word: periodic=TRUE,
// bitmask (0x0001) to assign minor frame 0 timing

sched_cmd[j] =
 DqAdv566BuildFrameEntry(TRUE, 0x0001);

// message: ARINC data=0xABCD, Label=5, SSM=1, SDI=1

sched_data[j++] =
 DqAdv566BuildPacket(0xABCD, 5, 1, 1, 0);

// Build third entry (control word and data)
// control word: periodic=TRUE,
// bitmask (0x0002) to assign minor frame 1 timing

sched_cmd[j] =
 DqAdv566BuildFrameEntry(TRUE, 0x0002);

// message: ARINC data=0x6789, Label=5, SSM=1, SDI=1

sched_data[j++] =
 DqAdv566BuildPacket(0x6789, 5, 1, 1, 0);

// Write the entries to the hardware Scheduler Table
// writes (puts) index 0 through j into scheduler table in hardware
// with sched_cmd and sched_data arrays built above

DqAdv566SetScheduler(hd0, DEVN, 0, DQ_AR_SETSCHED_PUT,
 0, j, sched_cmd, sched_data);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 60

Programming with the Low-Level API
Configure paging:

Subsequent writes to the scheduler table will be written to page 1 in hardware
(pages are only available in MJ/MN mode)..

Configure the port to run in MJ/MN mode:

The following API configures TX port 0 with an output baud rate of 100 kHz,
even parity, slow slew rate, and enabled scheduler in Major/Minor Frame mode.

Refer to “Scheduler in Major/Minor Frame Mode” on page 22 for an example
timing diagram.

// program page swap to occur on the next major frame boundary;
// 1 sets channel 0 to write to page 1 (ch 1..15 still write to pg 0);
// 0 sets all channels to transmit data from page 0

DqAdv516SetTxPage(hd0, DEVN, DQ_AR_SETTXPAGE_ONMF, 1, 0, NULL);

chcfg_tx = DQ_AR_RATEHIGH | DQ_AR_PARITYEVEN |
 DQ_AR_SLOWSLEW_ENABLED |
 DQ_AR_ENABLE_SCHEDULER |
 DQ_AR_SCHED_MJMN;

DqAdv566SetChannelCfg(hd, DEVN, DQ_SS0OUT, 0, chcfg_tx);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 61

Programming with the Low-Level API
3.10 Programming
RX Filters

The DNx-429-516 has the capability of accepting or rejecting incoming ARINC
data frames on an individual port using any of the following features:

• accept ARINC RX messages based on user-defined labels and
optionally accept only new data on those labels

• accept or reject ARINC RX messages with parity errors

• accept or reject ARINC RX messages based on SDI field

3.10.1 Filtering
Messages
Based on
Labels

To use the label acceptance filter, you’ll configure the RX port as described in
“Reading RX Data” on page 47 and additionally do the following:

Initialize the filter table hardware with zeros:

Build an array of labels you wish to accept:

Use the DqAdv566BuildFilterEntry() API to build an array of labels you
wish to accept.

You can set the new_data_only flag to TRUE to store only new incoming
messages in the RX FIFO:

Write the array of labels to hardware:

Configure the mode to enable the label filter:

OR in DQ_AR_ENABLE_FILTER on channel 0 to enable.

// Initialize channel 0 filter table
// writes 255 labels starting at index 0

uint32 zero_label = 0;

DqAdv566SetFilter(hd, DEVN, 0, DQ_AR_SETFILTER_FILL_TABLE,
 0, 255, &zero_label)

// accept label 4 and 5; for label 5, only store new messages in the FIFO

lbl_filter[0] = DqAdv566BuildFilterEntry(4, FALSE, FALSE);
lbl_filter[1] = DqAdv566BuildFilterEntry(5, TRUE, FALSE);

// Update channel 0 filter table with lbl_filter array built above
// writes (puts) 2 labels starting at index 0

DqAdv566SetFilter(hd, DEVN, 0, DQ_AR_SETFILTER_PUT,
 0, 2, lbl_filter);

mode_rx = DQ_AR_RATEHIGH | DQ_AR_SDI_DISABLED |
 DQ_AR_PARITYODD |
 DQ_AR_SLOWSLEW_DISABLED |
 DQ_AR_ENABLE_FILTER;

DqAdv566SetMode(hd, DEVN, DQ_SS0IN, 0, mode_rx);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Chapter 3 62

Programming with the Low-Level API
3.10.2 Filtering
Messages
Based on
Parity

To filter based on parity errors, you’ll configure the RX port as described in
“Reading RX Data” on page 47 and additionally configure the mode with the
DQ_AR_IGNORE_BAD_DATA flag.

With this flag set, if you configure DQ_AR_PARITYODD and the received frame
has an even number of ONES, the frame will be rejected. Likewise, If you
configure DQ_AR_PARITYEVEN and the frame has an odd number of ONES, the
frame will be rejected.

Configure the mode to reject frames with parity errors:

OR in DQ_AR_IGNORE_BAD_DATA on channel 0 to configure:

If you configure DQ_AR_PARITYOFF, no frames will be rejected due to parity
errors. The parity bit in the received word that gets stored in the FIFO will be the
actual parity bit (bit 32) that was received from the ARINC bus, allowing users to
evaluate parity errors in their application.

3.10.3 Filtering
Messages
Based on SDI

To filter based on the SDI field, you’ll configure the RX port as described in
“Reading RX Data” on page 47 and additionally configure the mode with the
DQ_AR_SDI_ENABLED flag.

When DQ_AR_SDI_ENABLED flag is set, you can specify which SDI to accept by
ORing in the DQ_AR_SDIMASK0 and/or DQ_AR_SDIMASK1 flags:

• neither: accept frames with SDI=0

• DQ_AR_SDIMASK0: accept frames with SDI=1

• DQ_AR_SDIMASK1: accept frames with SDI=2

• DQ_AR_SDIMASK1|DQ_AR_SDIMASK0: accept frames with SDI=3

Configure the mode to accept frames based on SDI:

The following example enables SDI filtering on channel 0 to only accept
messages with SDI=2:

mode_rx = DQ_AR_RATEHIGH | DQ_AR_SDI_DISABLED |
 DQ_AR_PARITYODD |
 DQ_AR_SLOWSLEW_DISABLED |
 DQ_AR_IGNORE_BAD_DATA;

DqAdv566SetMode(hd, DEVN, DQ_SS0IN, 0, mode_rx);

mode_rx = DQ_AR_RATEHIGH |
 DQ_AR_SDI_ENABLED | DQ_AR_SDIMASK1 |
 DQ_AR_PARITYODD |
 DQ_AR_SLOWSLEW_DISABLED ;

DqAdv566SetMode(hd, DEVN, DQ_SS0IN, 0, mode_rx);
February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
Appendix A 63

February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

Appendix

A.1 Accessories The following cables and STP boards are available for the DNx-429-516 board.

DNA-CBL-62

This is a 62-conductor round shielded cable with 62-pin male D-sub connectors
on both ends. It is made with round, heavy-shielded cable; 2.5 ft (75 cm) long,
weight of 9.49 ounces or 269 grams; up to 10ft (305cm) and 20ft (610cm).

DNA-STP-62

The STP-62 is a Screw Terminal Panel with three 20-position terminal blocks
(JT1, JT2, and JT3) plus one 3-position terminal block (J2). The dimensions of
the STP-62 board are 4w x 3.8d x1.2h inch or 10.2 x 9.7 x 3 cm (with standoffs).
The weight of the STP-62 board is 3.89 ounces or 110 grams.

Figure A-1 Pinout and Photo of DNA-STP-62 Screw Terminal Panel

62 42 21
61 41 20
60 40 19
59 39 18
58 38 17
57 37 16
56 36 15
55 35 14
54 34 13
53 33 12
52 32 11
51 31 10
50 30 9
49 29 8
48 28 7
47 27 6
46 26 5
45 25 4
44 24 3
43 23 2

22 1

SHIELD

DB-62 (female)
62-pin connector:

to J2 to JT1 to JT2 to JT3

JT3 — 20-position
terminal block:

44

4

47

GND

JT2 — 20-position
terminal block:

7

JT1 — 20-position
terminal block:

J2 — 5-position
terminal block:

5
4
3
2
1

Tel: 508-921-4600 www.ueidaq.com Vers: 4.5
Date: 02. 01. 2019 DNx-429-516024-ManualIX.fm

© Copyright 2019
United Electronic Industries, Inc.

February 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-429-516 ARINC 429 Board
 Index 64

Index
A
ACB 41

B
Block diagram 6

C
Cable(s) 63
Cleaning-up the Session 31
Cleaning-up the session 31
Configuring the Resource String 29
Conventions 2
Creating a Session 28

H
High Level API 28

L
Label Acceptance Filter 12
Low-level API 39

O
Organization 1

R
Receiver Diagram 11

S
Scheduler 16
Screw Terminal Panels 63
Setting Operating Parameters 5
Support ii
Support email

support@ueidaq.com ii
Support FTP Site

ftp
//ftp.ueidaq.com ii

Support Web Site
www.ueidaq.com ii

T
Transmitter Block 14
Transmitter Block Diagram 14

W
Waveform Characteristics 7
Wiring 26
Word Format 8

	Table of Contents
	List of Figures
	Chapter 1 Introduction
	1.1 Organization of This Manual
	1.2 DNx-429-516 Board Overview
	1.2.1 Data Rate
	1.2.2 Guardian Diagnostic Support
	1.2.3 ARINC Transmitters
	1.2.4 ARINC Receivers
	1.2.5 Software Support

	1.3 Features
	1.4 Indicators
	1.5 Specification
	1.6 Device Architecture
	1.7 ARINC-429 Word Format
	1.7.1 Parity
	1.7.2 DNx-429-516 Word Format

	1.8 Receiver Block
	1.8.1 Receiver Block Components
	1.8.2 RX FIFO
	1.8.3 RX Filters
	1.8.4 TX to RX Loopback Features

	1.9 Transmitter Block
	1.9.1 Hardware Sources for Transmit Data
	1.9.2 Scheduler
	1.9.3 TX FIFO

	1.10 Wiring & Connections (pinout)
	1.10.1 ARINC-429 Bus in Multi- drop Network

	Chapter 2 Programming with the High-Level API
	2.1 About the High-level Framework
	2.2 Creating a Session
	2.3 Configuring the Resource String
	2.4 Configuring the Timing
	2.5 Reading Data
	2.6 Writing Data
	2.7 Programming the Output Scheduler
	2.8 Scheduling Outputs Using Major/ Minor Frames
	2.8.1 Set MJ/MN Mode
	2.8.2 Configure MJ/ MN Frame Clock Rates
	2.8.3 Add Scheduler Entries
	2.8.4 Update Scheduler Table
	2.8.5 Update Scheduler Using TX Pages

	2.9 Programming the Label Filter
	2.10 Cleaning-up the Session

	Chapter 3 Programming with the Low-Level API
	3.1 About the Low-level API
	3.2 Low-level Functions
	3.3 Low-level Programming Techniques
	3.3.1 Data Transfer Modes

	3.4 Configuring Board & Channels
	3.4.1 Board Configuration
	3.4.2 Channel Configuration

	3.5 Setting Modes of Operation
	3.6 Setting the Baud Rate
	3.7 Reading RX Data
	3.8 Writing TX Data Using the FIFO
	3.8.1 Configuring for FIFO Transmission
	3.8.2 Configuring for FIFO Transmission with Delays

	3.9 Writing TX Data Using the Scheduler
	3.9.1 Initializing the Scheduler Table
	3.9.2 Programming Scheduler Timebase Values
	3.9.3 Writing Scheduler Transmit Data

	3.10 Programming RX Filters
	3.10.1 Filtering Messages Based on Labels
	3.10.2 Filtering Messages Based on Parity
	3.10.3 Filtering Messages Based on SDI

	Appendix
	Index

