DNA/DNR-AI-207

16-Channel Analog Input / Data Acquisition Board with CJC

- DNA-AI-207 for use in "CUBE" chassis
- DNR-AI-207 for RACKtangle[™] I/O chassis
- 16 differential analog input channels (plus one dedicated CJC channel)
- Maximum sampling rate of 1kHz per channel
- 18-bit resolution; ±10V input range
- Gains 1,2,4,8,10,20,40,80,100,200,400,800
- Direct Inputs for thermocouples (w/ DNA-STP-AI-U or DNA-STP-AI-207TC panel)
- Embedded averaging engine

Supports **UEIDaq Framework** Data Acquisition Software Library for Windows. Linux and QNX drivers available. Visit our website for more details.

General Description:

The DNA-AI-207 and DNR-AI-207 are 16-channel A/D boards compatible with UEI's popular Cube and RACKtangle chassis respectively. The boards are electronically identical. Each board features 16 differential input channels, 18-bit resolution, and 12 software selectable input ranges. Each channel may be sampled at up to 16 kS/s, though the maximum board throughput is 16 kS/s so applications monitoring multiple channels will reduce the per channel sample rate (e.g. 1 kS/S for 16 channels, 2 kS/S for 8 channels, etc.). Additionally, the DNx-AI-207 provides a dedicated CJC channel that can be used for reading from the built-in CJC sensor on the DNA-STP-AI-U or AI-207TC terminal panels. When used with DNA-STP-AI-U or 207TC panel, the DNA-AI-207 layer also features a direct connection to RTDs or thermocouples (with open TC detection). The software included will perform all required RTD/TC linearization and CJC compensation and return data in °C or °F if desired.

Another key feature of the DNx-AI-207 is the oversampling engine, allowing the board to automatically acquire as many samples as possible for the given gain/speed and average them, thus dramatically improving the noise floor.

Block Diagram:

Technical Specifications:

10-Year Availability

Number of channels:	16 fully differential plus	
	1 single-ended dedicated CJC channel	
Programmable DIO line	1 (external trigger)	
ADC resolution	18 bits	
Sampling rate	1 S/s - 16 kS/s per channel;	
	16 kS/s max aggregate for entire board	
FIFO size	512 samples	
Input bias current	±5nA max, ±0.5nA typical	
Input impedance	10ΜΩ	
Gains	1,2,4,8,10,20,40,80,100,200,400,800	
Frontend bandwidth	48kHz @ -3dB	
Common mode rejection	100dB typical	
Oversampling ratio	2 to 8192, selected automatically	
Accuracy	$\pm 287.59 \mu$ V at $\pm 10 $ V input range. Please see	
	table on page 3 for other ranges. (Typical test	
	results also depicte on pages two and three.)	
Isolation	350 Vrms	
Overvoltage protection	-40V to +55V	
Power consumption	1.4W (stand-by); 2.2W max	
Operating temp. (tested)	-40°C to +85°C	
Operating humidity	95%, non-condencing	
Vibration IEC 60068-2-6	5 g, 10-500 Hz, sinusoidal	
IEC 60068-2-64	5 g (rms), 10-500Hz, broadband random	
Shock IEC 60068-2-27	50 g, 3 ms half sine, 18 shocks @ 6 orientations	
MTRE	637 000 bours	
	0.07,000 110013	

Connection Options:

Part #	Description	
DNA-CBL-37S	Shielded 37 conductor cable	
DNA-CBL-37	Unshielded ribbon 37 conductor cable	
DNA-STP-AI-U	Universal screw terminal panel supports Thermocouple CJC measurment and RTD excitation	
DNA-STP-AI-207TC	Dedicated thermocouple screw terminal panel	

Test Results

All tests were conducted under the following conditions: device under test was located inside the temperature-controlled chamber. All signal sources were connected outside of the test chamber at a room temperature (except for where noted otherwise).

The table below represents the *Channel-to-Channel Crosstalk* test results. Crosstalk test was conducted by applying ±8V sinewave on the first channel (gain=1) and 0V on the rest of the channels. Then channels were acquired sequentially at the different gains. Results (in microvolts) are summarized in the following table.

	Spped (Hz)	1000	500	200	100	50	20	10
Gain (voltage)	All measurements are in microvolts							
1 (+ 0) ()	peak-peak	419.625	190.725	76.300	0*	0	0	0
I (±0V)	RMS	97.527	33.047	22.443	0	0	0	0
9 (+1 25)/)	peak-peak	123.983	47.675	9.500	8.900	0	0	0
o (±1.25V)	RMS	30.383	9.012	0.459	1.458	0	0	0
90 $(\pm 125 m)/)$	peak-peak		36.950	11.200	7.150	0	0	0
60 (±1251110)	RMS		8.377	2.143	1.422	0	0	0
200(+50m)/)	peak-peak			16.025	9.525	0	0	0
200 (±50mv)	RMS			2.933	1.773	0	0	0
400 (±25mV)	peak-peak			13.725	7.650	0	0	0
	RMS			2.621	1.443	0	0	0
800 (±12.5mV)	peak-peak			10.100	6.650	0	0	0
	RMS			2.179	1.182	0	0	0

* 0 - No noticeable crosstalk observed

Unadjusted/Compensated Gain Error vs Temperature (12.005 mV applied to all channels; G=800)

Gain Error vs Gain

The diagram below represents the RMS Noise vs Gain vs Acquisition Rate test results.

Accuracy Specifications

Voltage	Measurement Accuracy	v

Input Range	Max Error (µV)	Max Error (%)
±10 V	±287.59	.0029
±5 V	±143.79	.0029
±2.5 V	±110.04	.0044
±1.25 V	±55.02	.0044
±1 V	±60.02	.0060
±0.5 V	±30.01	.0060
±0.25 V	±18.82	.0075
±0.125 V	±9.41	.0075
±0.1 V	±9.53	.0095
±0.05 V	±4.76	.0095
±0.025 V	±3.14	.0126
±0.0125 V	±2.34	.0187

Temperature accuracy with DNA-STP-AI-U or AI-207TC

Thermocouple	Max Error (CJC 25°C),	Max Error (CJC 0 to 85°C),	
Туре	°C	°C	
В	±1.6	±1.9	
C	±1.2	±1.5	
E	±0.9	±1.2	
J	±0.7	±1.0	
К	±1.2	±1.5	
N	±1.6	±1.9	
R	±2.4	±2.7	
S	±2.3	±2.6	
Т	±1.2	±1.5	
Error Includes:	Error Does Not Include:		

Error Includes:

Input measurement error

Input noise (shorted input, P-P noise)

Inherent thermocouple error

Error caused by thermal gradient on STP

Error due to linearization math

CJC measurement error