

The High-Performance Alternative

DNA/DNR-AI-225 Analog Input Layer

User Manual

Simultaneous Sampling, 24-bit, 25-channel Analog Input Layer for the PowerDNA Cube and RACKtangle chassis

> August 2009 Edition Version 3.6 PN Man-DNx-AI-225-0809

© Copyright 1998-2007 United Electronic Industries, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means, electronic, mechanical, by photocopying, recording, or otherwise without prior written permission.

Information furnished in this manual is believed to be accurate and reliable. However, no responsibility is assumed for its use, or for any infringements of patents or other rights of third parties that may result from its use.

All product names listed are trademarks or trade names of their respective companies.

See UEI's website for complete terms and conditions of sale:

http://www.ueidaq.com/company/terms.aspx

Contacting United Electronic Industries

Mailing Address:

27 Renmar Avenue Walpole, MA 02081 U.S.A.

For a list of our distributors and partners in the US and around the world, please see

http://www.ueidaq.com/partners/

Support:

Telephone:	(508) 9214600
Fax:	(508) 668-2350

Also see the FAQs and online "Live Help" feature on our web site.

Internet Support:

Support	support@ueidaq.com
Web-Site	www.ueidaq.com
FTP Site	ftp://ftp.ueidaq.com

Product Disclaimer:

WARNING!

DO NOT USE PRODUCTS SOLD BY UNITED ELECTRONIC INDUSTRIES, INC. AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

Products sold by United Electronic Industries, Inc. are not authorized for use as critical components in life support devices or systems. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Any attempt to purchase any United Electronic Industries, Inc. product for that purpose is null and void and United Electronic Industries Inc. accepts no liability whatsoever in contract, tort, or otherwise whether or not resulting from our or our employees' negligence or failure to detect an improper purchase.

Table of Contents

Chapter	1 Introduction			
1.1	Organization of this Manual 1			
1.2	AI-225 Layer Features			
1.3	Device Architecture			
1.4 1.4.1	Layer Connectors and Wiring 4 Analog Input Ground Connections 5			
1.5 1.5.1	Layer Capabilities 7 Thermocouple Measurement 7			
1.6 1.6.1	Data Representation 8 Software Calibration of this Layer 9			
Chapter	2 Programming with the High-Level API			
2.1	Creating a Session			
2.2 2.2.1 2.2.2 2.2.3	Configuring the Channels10Voltage Measurement10Thermocouple Measurement10RTD Measurement11			
2.3	Configuring the Timing			
2.4	Reading Data			
2.5	Cleaning-up the Session			
Chapter	3 Programming with the Low-Level API			
3.1	Configuration Settings			
3.2	Channel List Settings 14			
3.3	Layer-specific Commands and Parameters 14			
3.4	Using the Layer in ACB Mode			
3.5	Using Layer in DMap Mode 17			
Appendices				
A - Accessories				
B – Prote	B – Protection Circuits			
Index				

Table of Figures

Chapte	r 1 Introduction	1
1-1	Block Diagram of the DNx-AI-225 Layer	. 3
1-2	Photos of DNR- and DNA-AI-225 Analog Input Layer Boards	. 3
1-3	Pinout Diagram of the AI-225 Layer	. 4
1-4	Recommended Ground Connections for Analog Inputs	. 5
1-5	Analog Input Configuration — RTD and Bridge Wiring	6

Chapter 1 Introduction

This document outlines the feature-set and describes the operation of the DNx-AI-225-Analog Input boards. The DNA- version is designed for use with a PowerDNA Cube data acquisition system. The DNR- version is designed for use with a DNR-12 RACKtangle or a DNR-6 HalfRACK system. Both versions are functionally identical.

1.1 Organization This PowerDNx AI-225 User Manual is organized as follows: of this

Manual

• Introduction

This chapter provides an overview of PowerDNA Analog Input Series board features, the various models available and what you need to get started.

• The AI-225 layer

This chapter provides an overview of the device architecture, connectivity, and logic of the AI-225 layer.

• Programming with the High-Level API

This chapter provides an overview of the how to create a session, configure the session for analog input, and interpret results on the AI-225 series layer.

Programming with the Low-Level API

This chapter describes low-level API commands for configuring and using the AI-225 series layer.

Appendices

This appendix provides a list of accessories available for AI-225 layer(s) and a description of protection circiuts.

Index

This is an alphabetical listing of the topics covered in this manual.

Conventions

To help you get the most out of this manual and our products, we use the following conventions:

Tips are designed to highlight quick ways to get the job done, or to reveal good ideas you might not discover on your own.

CAUTION! Caution advises you of precautions to take to avoid injury, data loss, and damage to your boards or a system crash.

Text formatted in **bold** typeface generally represents text that should be entered verbatim. For instance, it can represent a command, as in the following example: "You can instruct users how to run setup using a command such as **setup.exe**."

© Copyright 2009	Tel: 508-921-4600	www.ueidaq.com	Vers: 3.6
United Electronic Industries, Inc.	Date:August 2009	File:	AI225Chapter1.fm

1.2 AI-225 Layer Features

The AI-225 layer has the following features:

- 25 A/D simultaneously sampling converters with differential inputs
- 24-bit resolution, ±1.25V input range
 - Bipolar range ±1.25V, Aln– and Aln+ within –0.25V–5.0V
 - Unipolar range –0.25V..1.25V, AIn– connected to AGND directly or via up to 10KOhm resistor
 - Input underrange/overrange over the ±1.25V range is detected by the software and reported
- 5 S/s to 1000 S/s per channel sampling rates
- >120dB rejection of AC component of 50/60Hz for sampling rates below 10Hz
- >120dB Power Supply rejection ratio
- Typical 120dB of common mode rejection
- 120Hz –3dB analog front-end bandwidth
- ±15V overvoltage and 2kV ESD protection at every input
- One channel may be used for Cold Junction Compensation (CJC)
- · Entire analog front end isolated from digital circuitry
- Direct Inputs for thermocouples
- May be used with RTDs, may be used with external excitation source (voltage excitation is available on the STP-AI-U)
- Strain gauge (bridge completion resistors required)
- Input Impedance 100 Mohm
- Input bias current ±15nA
- Non-linearity 3ppm (0.0003%)
- System noise 0.5µV RMS at 5Hz acquisition rate
- Effective number of bits: 23.5 @ 5Hz down to 19 @ 1kHz
- Input ground to system ground isolation: 350V_{rms}
- Power consumption 3.9W max
- SYNC interface option (allows external triggering)

1.3 Device Architecture

Figure 1-1 is a block diagram of the architecture of the AI-225 layer.

Figure 1-1 Block Diagram of the DNx-AI-225 Layer

As shown in **Figure 1-1**, the AI-225 layer has an independent converter for each of the 25 channels. A differential input signal goes first to an auto-zero buffer/ amplifier with 125Hz –3dB bandwidth and then to an A/D converter. The A/D converter accepts signals within a –0.25 to 5V range and measures up to a \pm 1.25V difference between AIN+ and AIn–. This mode is called **referenced bipolar differential** because both AIn+ and AIn- are referenced to system ground.

The AI-225 uses sigma-delta A/Ds that sample analog signals at 1.8MHz with a high over-sampling ratio and pass this data into decimating FIR filters. The over-sampling ratio varies from 64 to 32768 for various sampling rates. This interworking of A/D converters allows the AI-225 to deliver true 24-bit resolution at a 5Hz data output rate down to 19-bit resolution at a 1 kHz rate.

Figure 1-2. Photos of DNR- and DNA-AI-225 Analog Input Layer Boards

1.4 Layer Connectors and Wiring

The DNA-AI-225 layer supports referenced differential inputs only. Both signal and return line of the differential signal pair must have a potential within the range –0.25V to 5V, relative to isolated ground (AGND) level. **Figure 1-3** illustrates the pinout of the AI-225.

Figure 1-3. Pinout Diagram of the AI-225 Layer

© Copyright 2009	Tel: 508-921-4600	www.ueidaq.com	Vers: 3.6
United Electronic Industries, Inc.	Date:August 2009	File:	AI225Chapter1.fm

1.4.1 Analog Input
 To avoid errors caused by common mode voltages on analog inputs, follow the recommended grounding guidelines in Figure 1-4 below.

 Connections
 Connections

Because all analog input channels in AI-201/202/207/208/225 layers are isolated as a group, you can connect layer AGND to the ground of the signal source and eliminate the resistors shown in **Figure 1-4** for floating differential input signals.

© Copyright 2009	Tel: 508-921-4600	www.ueidaq.com	Vers: 3.6
United Electronic Industries, Inc.	Date:August 2009	File:	AI225Chapter1.fm

Figure 1-5. Analog Input Configuration — RTD and Bridge Wiring

NOTE: For more detail on RTD and thermocouple measurement connections, refer to the User Manual for the STP-AI-U Screw Terminal Panel, which may be downloaded at www.ueidaq.com.

© Copyright 2009 United Electronic Industries, In	c. Tel: 508-921-4600 Date: August 2009	www.ueidaq.com File:	Vers: 3.6 Al225Chapter1.fm

1.5 Layer The AI-225 layer is capable of acquiring analog input voltages in ±1.25V range with gains of 1 at up to 24 bits of dynamic resolution (222nV RMS resolution).

The layer is capable of generating its own CL (channel list) clock and trigger, and deriving them from either local external lines from its connector or from the SYNCx bus.

Table 1-1.	Gains
------------	-------

				Resolution.
Card	Gain	Range	Noise, LSB	noise limited
AI-225	1	±V1.25	1.5'	222nV

The analog RC anti-aliasing filtering is tuned to provide roll-off at 1.5kHz (half of the maximum sampling frequency) as shown in **Table 1-2** below.

	Oversampl	Noise	ENOBs		
Frequency	ing Ratio	ADC	System	ADC	System
1000	128	3.5µV	5µV	20	18
800	256	2µV	3µV	21.3	21
400	512	1.4µV	2µV	21.8	21
200	1024	1µV	1.5µV	22.4	22
100	2048	750nV	1µV	22.9	22
50	4096	510nV	900nV	23.4	23
25	8192	375nV	700nV	24	24
10	16384	250nV	600nV	24.4	24

Table 1-2. Anti-Aliasing Filter Parameters

1.5.1 Thermocouple MeasurementThe AI-225 is capable of performing thermocouple measurements within 0.02°C at 10Hz per channel. The higher the speed of measurement, the more noise can be expected.

The following table shows test results for noise for the AI-225 when used in conjunction with the STP-AI-U terminal (10Hz/ channel acquisition speed):

Thermocouple	Temperature		100 Points
Туре	Range	P-p Noise, °C	RMS Noise, °C
В		0.50	0.16
С	Full	0.24	0.07
E		0.06	0.02
J	Range	0.07	0.02
K	of Thermocouples	0.10	0.03
Ν		0.12	0.03
R		0.32	0.1
S		0.37	0.1

© Copyright 2009	Tel: 508-921-4600	www.ueidaq.com	Vers: 3.6
United Electronic Industries, Inc.	Date: August 2009	File:	Al225Chapter1.fm
	24101 129201 2000	1.101	

Additional factors:

- Open TC detection circuitry on the DNA-STP-AI-U adds ~15µV (±2µV) constant offset on all channels. (May be compensated using the CJC temperature sensor calibration. Channel-channel difference may be adjusted using the offset calibration simod 3 command.)
- CJC sensor is calibrated to better than 0.2°C accuracy at room temperature
- Stays within 0.4°C accuracy from -20 to +75°C temperature
- **1.6** Data The AI-225 layer is equipped with 25 24-bit A/D converters. The layer can return 24-bit two's complement data in 32-bit words, combined with levels on general-purpose digital I/O lines.

By default, if acquisition is not running, the output buffer is filled with relative addresses. On reset, every entry in the output buffer is filled with its relative position number. As an initializing step, you should read the buffer and discard the data before proceeding with normal data collection.

If you start receiving consecutive data from the layer (such as 0,1,2,..) it means that either the layer is not initialized properly or it is damaged.

The following definition converts raw data from the converter into a 24-bit straight binary value:

#define LT2440_GETVAL(V) (((V>>5)&0xfffff)^0x800000)

To convert data into floating point, use the following formula (V is a result from the $DQ_LT2440_GETVAL()$ macro):

Volts = $(V) * (2.5V/2^{24}) - 1.25V$

			Reset
Bit	Name	Description	State
31	EOC	Zero, if conversion is completed.	0
30	DMY	Always low.	0
29	SIG	Sign bit of the conversion. If V_{IN} is > 0, this bit is	NA
		HIGH. If V _{IN} is < 0, this bit is LOW.	
28	MSB	Most significant bit of the result. If both Bit 29 and Bit 28 are HIGH, the differential input voltage is above +FS. If both Bit 29 and Bit 28 are LOW, the differential input voltage is below –FS.	NA
27-5	LSB	Less significant bits of the result.	NA
5-3	SubLSB	Sub LSB of the result beyond 24-bit level. Can	NA
		be used in averaging.	
1	DIO2	Level of DIO1 line (output).	0
1	DIO1	Level of DIO1 line (input).	0
0	DIO0	Level of DIO0 line (input).	0

Raw 32-bit data received from converter is represented as:

© Copyright 2009	Tel: 508-921-4600	www.ueidaq.com	Vers: 3.6
United Electronic Industries, Inc.	Date:August 2009	File:	AI225Chapter1.fm

1.6.1 Software Unlike most PowerDNA layers, the AI-225 relies on software calibration on the host side.

this Layer The idea of layer calibration is to read, average, and store readings from all channels at zero volts and then at the fixed level (1V is the default level).

By subtracting actual readings at zero volts from the ideal value (0x800000, straight binary), the software calculates calibration offsets.

The firmware then subtracts the offset-adjusting value from the average value read at 1V. The result represents an offset-compensated reading at 1V. By dividing actual calibration voltage by offset-compensated reading, the software calculates the actual channel gain.

When DQE opens the IOM, it automatically downloads calibration coefficients from each AI-225 in the PowerDNA cube by issuing DQCMD_RDFIFO commands with FIFO_GET_CAL_FIFO channel.

In return, the firmware sends a CALSET_225_ structure, which contains the gain calibration level and the averaged readings at zero volts and that level.

Then, the software stores offset-adjusting values directly and calculates actual gain for every channel, as follows:

cfvolt = (cvolt/ONEVOLTINNV); for (all channels) gain[i] = cfvolt/pcval[i];

You need to perform data calibration only when you configure and use the AI-225 layer directly, without DQE running.

© Copyright 2009	Tel: 508-921-4600	www.ueidaq.com	Vers: 3.6
United Electronic Industries, Inc.	Date: August 2009	File:	Al225Chapter1.fm

Chapter 2 Programming with the High-Level API

This section describes how to program the PowerDNA AI-225 using the UEIDAQ's Framework API.

Since the UEIDAQ Framework is object oriented, its objects can be manipulated in the same manner from various development environments such as Visual C++, Visual Basic, or LabVIEW.

Although the following section focuses on the C++ API, the concept is the same no matter what programming language you use.

Please refer to the "UEIDAQ Framework User Manual" for more information on using other programming languages.

2.1 Creating a Session The Session object controls all operations on your PowerDNA device. The first task, therefore, is to create a session object, as follows:

CUeiSession session;

2.2 Configuring Framework uses resource strings to select which device, subsystem, and channels to use within a session. The resource string syntax is similar to a web URL: Channels

<device class>://<IP address>/<Device Id>/<Subsystem><Channel list>

For PowerDNA the device class is pdna.

2.2.1 Voltage To program the analog input circuitry, configure the channel list using the session's object method "CreateAIChannel".

For example, the following resource string selects analog input channels 0,2,3,4 on device 1 at IP address 192.168.100.2:

"pdna://192.168.100.2/Dev1/Ai0,2,3,4"

The session object's method "CreateAlChannel" is used to configure the channel list, gain, and signal referencing mode. The gain and input mode parameters are ignored when using an Al-225 because it doesn't have programmable gain and is differential only).

2.2.2 Thermocouple Measurement The AI-225 offers very good accuracy, thanks to its 24-bit A/D converters and its dedicated channel for measuring the Cold Junction Compensation temperature sensor. Therefore, it is well suited for measuring temperature with thermocouples.

Use the session object's method "CreateTCChannel" to configure the channels, thermocouple type, CJC sensor, and temperature scale.

You can use thermocouples of type E, J, K, R, S, T, B or N.

© Copyright 2009	Tel: 508-921-4600	www.ueidaq.com	Vers: 3.6
United Electronic Industries, Inc.	Date:August 2009	File:	AI225Chapter2.fm

DNx-AI-225 Analog Input Layer Chapter 2 11 Programming with the High-Level API

You can measure the CJC temperature either by using a sensor integrated in the terminal block or by specifying a constant.

You can measure temperature in degrees Celsius, Fahrenheit, Kelvin, or Rankine.

```
// Configure the session to acquire temperatures in degrees
  // Celsius from channels 0 and 1 using K thermocouples.
  // Use the built-in CJC sensor
  session.CreateTCChannel("pdna://192.168.100.2/Dev0/Ai0,1",
                               -100.0, 100.0,
                               UeiThermocoupleTypeK,
                               UeiTemperatureScaleCelsius,
                               UeiCJCTypeBuiltIn,
                               0.0, "",
                               UeiAIChannelInputModeDifferential);
2.2.3 RTD
                      RTD measurements are configured using the Session object method
                      "CreateRTDChannel".
       Measurement
                      RTD sensors are resistive sensors whose resistance varies with temperature.
                      Knowing the resistance of an RTD, we can calculate the temperature using the
                      "Callendar Van-Dusen" equations.
                      RTD sensors are specified using the "alpha" (a) constant. It is also known as the
                      temperature coefficient of resistance, which defines the resistance change
                      factor per degree of temperature change. The RTD type is used to select the
                      proper coefficients A, B and C for the Callendar Van-Dusen equation, which is
                      used to convert resistance measurements to temperature.
                      To measure the RTD resistance, we need to know the amount of current flowing
                      through it. We can then calculate the resistance by dividing the measured
                      voltage by the known excitation current.
                      To measure the excitation current, we measure the voltage from a high precision
                      reference resistor whose resistance is known.
                      The reference resistor is built-into the terminal block if you are using a
                      DNA-STP-AI-U, but you can provide your own external reference resistor, if you
                      prefer.
                      In addition, you must configure the RTD type and its nominal resistance at
                      0° Celsius, as shown in the following example.
  // Add 4 channels (0 to 3) to the channel list and configure
  // them to measure a temperature between 0.0 and 200.0 deg. C.
  // The RTD sensor is connected to the DAQ device using
  // two wires, the excitation voltage is 5V, and the reference
  // resistor is the 20kOhms resistor built-into the DNA-STP-AI-U.
  // The RTD alpha coefficient is 0.00385, the nominal resistance at 0°
  C is
  // 100 Ohms, and the measured temperature will be returned in degrees
  // Celsius.
  MySession.CreateRTDChannel("pdna://192.168.100.2/dev0/Ai0:3",
```

0, 1000.0, UeiTwoWires,

© Copyright 2009	Tel: 508-921-4600	www.ueidaq.com	Vers: 3.6
United Electronic Industries, Inc.	Date: August 2009	File:	Al225Chapter2.fm
	···· · • • • • • • • • • • • • • • • •		

```
5.0,
UeiRefResistorBuiltIn,
20000.0,
UeiRTDType3850,
100.0,
UeiTemperatureScaleCelsius,
UeiAIChannelInputModeDifferential);
```

2.3 Configuring You can configure the AI-225 to run in simple mode (point by point) or buffered mode (ACB mode).

In simple mode, the delay between samples is determined by software on the host computer.

In buffered mode, the delay between samples is determined by the AI-225 onboard clock.

The following sample shows how to configure the simple mode. Please refer to the "UEIDAQ Framework User Manual" to learn how to use the other timing modes.

session.ConfigureTimingForSimpleIO();

2.4 Reading Data Reading data from the AI-225 is done using a reader object. There is a reader object to read raw data coming straight from the A/D converter. There is also a reader object to read data already scaled to volts or temperatures.

The following sample code shows how to create a scaled reader object and read samples.

// Create a reader and link it to the session's stream
CueiAnalogScaledReader reader(session.GetDataStream());

```
// read one scan, the buffer must be big enough to contain
// one value per channel
double data[2];
reader.ReadSingleScan(data);
```

2.5 Cleaning-up the Session The session object cleans itself up when it goes out of scope or when it is destroyed. However, to reuse the object with a different set of channels or parameters, you can also clean up the session manually.

session.CleanUp();

© Copyright 2009	Tel: 508-921-4600	www.ueidaq.com	Vers: 3.6
United Electronic Industries, Inc.	Date:August 2009	File:	Al225Chapter2.fm

Chapter 3 Programming with the Low-Level API

This section describes how to program the PowerDNA cube using the low-level API. The low-level API offers direct access to PowerDNA DAQBios protocol and also allows you to directly access device registers.

We recommend that you use the UEIDAQ Framework (see Chapter 2), because it is easier to use.

You should only need to use the low-level API if you are using an operating system other than Windows.

3.1 Configuration Configuration setting are passed in DqCmdSetCfg() and Settings DqAcbInitOps() functions.

Note that not all configuration bits apply to AI-225 layer.

The following bits make sense:

#define	DQ_FIFO_MODEFIFO	(2L << 16)	<pre>// continuous acquisition with // FIFO</pre>
#define	DQ_LN_MAPPED	(1L<<15)	// For WRRD (DMAP) devices
#define	DQ_LN_STREAMING	(1L<<14)	<pre>// For RDFIFO devices - stream the // FIFO data automatically // For WRFIFO - do NOT send reply // to WRFIFO unless needed</pre>
#define	DQ_LN_IRQEN	(1L<<10)	// enable layer irqs
#define	DQ_LN_PTRIGEDGE1	(1L<<9)	// stop trigger edge MSB
#define	DQ_LN_PTRIGEDGE0	(1L<<8)	<pre>// stop trigger edge: // 00 - software, // 01 - rising, 02 - falling</pre>
#define	DQ_LN_STRIGEDGE1	(1L<<7)	// start trigger edge MSB
#define	DQ_LN_STRIGEDGE0	(1L<<6)	<pre>// start trigger edge: // 00 -software, 01 - rising, // 02 - falling</pre>
#define	DQ_LN_CVCKSRC1	(1L<<5)	// CV clock source MSB
#define	DQ_LN_CVCKSRC0	(1L<<4)	// CV clock source 01 - SW, 10 -
HW, 11 -	-EXT		
#define	DQ_LN_CLCKSRC1	(1L<<3)	// CL clock source MSB
#define	DQ_LN_CLCKSRC0	(1L<<2)	// CL clock source 01 - SW, 10 - // HW, 11 -EXT
#define	DQ_LN_ACTIVE	(1L<<1)	// "STS" LED status
#define	DQ_LN_ENABLED	(1L<<0)	<pre>// enable operations</pre>

For streaming operations with hardware clocking, select the following flags:

DQ_LN_ENABLE | DQ_LN_CVCKSRC0 | DQ_LN_STREAMING | DQ_LN_IRQEN | DQ_LN_ACTIVE DQ_LN_ENABLE enables all operations with the layer. DQ_LN_CVCKSRC0 selects the internal channel list clock (CL) source as a timebase. The AI-225 supports CV clock. DQ_LN_ACTIVE is needed to switch on the "STS" LED on the CPU layer.

© Copyright 2009	Tel: 508-921-4600	www.ueidaq.com	Vers: 3.6
United Electronic Industries, Inc.	Date:August 2009	File:	AI225Chapter3.fm

You can select either the CL or CV clock as a timebase. Because of the parallel architecture of AI-225 layer, either clock triggers all converters.

Aggregate rate = Per-channel rate * Number of channels

Acquisition rate cannot be selected on per-channel basis. To select a different resulting rate for a different channel, program the proper decimators in the FIR unit.

3.2 Channel List The AI-225 layer has a very simple channel list structure, as shown in the table below.:

Bit	Name	Purpose
31	DQ_LNCL_NEXT	Tells firmware there is a "next" entry in the channel list.
20	DQ_LNCL_TSRQ	Request timestamp as a next data point
70		Channel number

3.3 Layerspecific Commands and Parameters

Layer-specific functions are described in the DaqLibHL.h file.

DqAdv225Read()

This function works using underlying DqReadAIChannel(), but converts the data using internal knowledge of the input range and calibrates every channel. It uses DQCMD_IOCTL with DQIOCTL_CVTCHNL under the hood.

When this function is called for the first time, the firmware stops any ongoing operation on the device specified and reprograms it according to the channel list supplied. This function uses the preprogrammed CL update frequency — 13.75Hz. You can reprogram the update frequency by calling DqCmdSetClk() after the first call to DqAdv225Read().

Therefore, you cannot perform this function call when the layer is involved in any streaming or data mapping operations.

If you specify a short timeout delay, this function can time out when called for the first time because it is executed as a pending command and layer programming takes up to 10ms.

Once this function is called, the layer continuously acquires data and every call to the function returns the latest acquired data.

If you want to cancel ongoing sampling, call the same function with 0xFFFFFFF as a channel number.

3.4 Using the Layer in ACB Mode The following is a pseudo-code example that highlights the functions needed in sequence to use ACB on the 225 layer. A complete example with error checking can be found in the directory SampleACB205.

STEP 1: Start DQE engine.

```
#ifndef _WIN32
    DqInitDAQLib();
#endif
    // Start engine
    DqStartDQEngine(1000*1, &pDqe, NULL);
    // Open communication with IOM
    hd0 = DqOpenIOM(IOM_IPADDR0, DQ_UDP_DAQ_PORT, TIMEOUT_DELAY,
    &RdCfg);
    // Receive IOM crucial identification data
    DqCmdEcho(hd0, DQRdCfg);
    // Set up channel list
    for (n = 0; n < CHANNELS; n++) {
        CL[n] = n;
    }
```

STEP 2: Create and initialize host and IOM sides.

© Copyright 2009	Tel: 508-921-4600	www.ueidaq.com	Vers: 3.6
United Electronic Industries, Inc.	Date:August 2009	File:	AI225Chapter3.fm

DNx-AI-225 Analog Input Layer Chapter 3 16 Programming with the Low-Level API

```
0, //TrigSize,
NULL, //pDQSETTRIG TrigMode,
&fCLClk,
0, //float* fCVClk
&CLSize,
CL,
0, //uint32* ScanBlock,
&acb); printf("Actual clock rate: %f\n",
```

fCVClk);

```
// Now set up events
DqeSetEvent(bcb,
DQ_eFrameDone|DQ_ePacketLost|DQ_eBufferError|DQ_ePacketOOB);
```

STEP 3: Start operation.

```
// Start operations
DqeEnable(TRUE, &bcb, 1, FALSE);
```

STEP 4: Process data.

```
// We will not use event notification at first - just retrieve scans
   while (keep looping) {
      DqeWaitForEvent(&bcb, 1, FALSE, EVENT TIMEOUT, &events);
       if (events & DQ eFrameDone) {
           minrq = acb.framesize;
           avail = minrq;
           while (TRUE) {
          DqAcbGetScansCopy(bcb, data, acb.framesize, acb.framesize,
                 &size, &avail);
               samples += size*CHANNELS;
               for (i = 0; i < size * CHANNELS; i++) {
                   fprintf(fo, "%f\t", *((float*)data + i));
                   if ((i % CHANNELS) == (CHANNELS - 1)) {
                        fprintf(fo, "\n");
                   }
               }
printf("eFD:%d scans received (%d samples) min=%d avail=%d\n", size,
                 samples, minrq, avail);
               if (avail < minrq) {</pre>
                   break;
               }
           }
```

© Copyright 2009	Tel: 508-921-4600	www.ueidaq.com	Vers: 3.6
United Electronic Industries, Inc.	Date:August 2009	File:	Al225Chapter3.fm

```
}
STEP 5: Stop operation.
DqeEnable(FALSE, &bcb, 1, FALSE);
STEP 6: Clean up
```

STEP 6: Clean up.

```
DqAcbDestroy(bcb);
DqStopDQEngine(pDqe);
DqCloseIOM(hd0);
#ifndef _WIN32
DqCleanUpDAQLib();
#endif
```

3.5 Using Layer in DMap Mode

```
#include "PDNA.h"
        STEP 1: Start DQE engine
#ifndef WIN32
    DqInitDAQLib();
#endif
    // Start engine
    DqStartDQEngine(1000*10, &pDqe, NULL);
    // open communication with IOM
    hd0 = DqOpenIOM(IOM IPADDR0, DQ UDP DAQ PORT, TIMEOUT DELAY,
&DQRdCfg);
    // Receive IOM crucial identification data
    DqCmdEcho(hd0, DQRdCfg);
    for (i = 0; i < DQ MAXDEVN; i++) {
        if (DQRdCfg->devmod[i]) {
            printf("Model: %x Option: %x\n", DQRdCfg->devmod[i],
DQRdCfg->option[i]);
} else {
            break;
}
    }
```

STEP 2: Create and initialize host and IOM sides.

DqDmapCreate(pDqe, hd0, &pBcb, UPDATE_PERIOD, &dmapin, &dmapout);

© Copyright 2009 Tel: 508-921-4600 www.ueidaq.com	Vers: 3.6
United Electronic Industries, Inc. Date: August 2009 File:	Al225Chapter3.fm

```
STEP 3: Add channels into DMap.
```

```
for (i = 0; i < CHANNELS; i++) {
    DqDmapSetEntry(pBcb, DEVN, DQ_SSOIN, i, DQ_ACB_DATA_RAW, 1,
&ioffset[i]);
    printf("offset%d = 0x%x\n", i, (uint32)ioffset[i]);
}
DqDmapInitOps(pBcb);</pre>
```

```
DqeSetEvent(pBcb,
DQ_eDataAvailable|DQ_ePacketLost|DQ_eBufferError|DQ_ePacketOOB);
```

STEP 4: Start operation.

```
DqeEnable(TRUE, &pBcb, 1, FALSE);
```

STEP 5: Process data.

```
while (keep_looping) {
    DqeWaitForEvent(&pBcb, 1, FALSE, timeout, &eventsin);
    if (eventsin & DQ_eDataAvailable) {
        printf("\ndata ");
        for (i = 0; i < CHANNELS; i++) {
            printf("%08x ", *(uint32*)ioffset[i]);
        }
    }
    STEP 6: Stop operation.</pre>
```

DqeEnable(FALSE, &pBcb, 1, FALSE);

STEP 7: Clean up.

```
DqDmapDestroy(pBcb);
DqStopDQEngine(pDqe);
DqCloseIOM(hd0);
#ifndef _WIN32
DqCleanUpDAQLib();
#endif
```

File:

Appendices

A - Accessories	The following cables and STP boards are available for the AI-225 layer.	
	DNA-CBL-62 2.5ft, 62-way round shielded cable	
	DNA-STP-AI-U Universal PowerDNA Universal Analog Input Screw Terminal Panel	
	DNA-STP-62 62-channel screw terminal panel	
	DNA-5B-CONN 24-channel signal-conditioning mating panel	
B – Protection Circuits	At times, the signal being measured appears to clip when attempting to mea- sure what appear to be normal voltages. Clipping is a sign of tripping the pro- tection circuitry of the layer, which is designed to protect layer components from damage by high voltage. This can happen under a variety of conditions, such as a different potential for the AI-225's ground <i>vs.</i> the chassis of the instrument (this can be fixed by connecting the chassis to the AGND line on the STP-AI-U).	
	Given the variables:	
	Let V _{EE} = 0V (this is AGND)	
	Let V_{CC} = 5V (or anywhere between 4.75V to 5.25V, depending on the P.S.U.)	
	Breaking the following rules activates the protection circuitry:	
	1. $V_{CC} + 0.25V > V_{IN}(-) > V_{EE} - 0.25V$	
	V_{CC} + 0.25V > $V_{IN}(+)$ > V_{EE} – 0.25V	
	2. $V_{IN}(-) - V_{IN}(+) \le 1.25V$	

© Copyright 2009 United Electronic Industries, Inc.	Tel: 508-921-4600	www.ueidaq.com	Vers: 3.6
	Date: August 2009	File:	AI225Appx.fm

19

Index

A

A/D Converters 2 A/D Resolution 2 Accessories 19 Anti-Alias Filtering 7 Architecture 3 В Block Diagram 3 С Calibration 9 Capabilities 7 Channel List Settings 14 Channel List Structure 14 Cleaning-up the Session 12 Configuration Bits 13 Configuration Settings 13 Configuring Channels 10 Configuring Timing 12 Connectors and Wiring 4 Conventions 1 Creating a Session 10 D Data Representation 8 Ε ESD Protection 2 F Features 2 G Gains 7 Ground Connections 5

Η

High-Level API 10 I Internet Support ii L Layer Commands and Parameters 14 Low-Level API 13 M Mailing Address ii Mode ACB 15 DMap 17 O Organization 1 Overvoltage Protection 2

Ρ

Pinout 4 Product Disclaimer ii Protection Circuits 19

R

Reading Data 12 RTD Measurement 11 **S** Sampling Rate 2 Software Calibration 9 Support ii **T** Thermocouple Measurement 7