

DNx-AI-256 Synchro/Resolver/LVDT/RVDT Interface

User Manual

2-Channel Synchro/Resolver I/O Interface and LVDT/RVDT I/O Interface Board for the PowerDNA Cube and RACK Series Chassis

USPTO Patent: 7,957,942

May 2022

PN Man-DNx-AI-256

© Copyright 1998-2022 United Electronic Industries, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means, electronic, mechanical, by photocopying, recording, or otherwise without prior written permission.

Information furnished in this manual is believed to be accurate and reliable. However, no responsibility is assumed for its use, or for any infringement of patents or other rights of third parties that may result from its use.

(F

All product names listed are trademarks or trade names of their respective companies.

See the UEI website for complete terms and conditions of sale: http://www.ueidaq.com/cms/terms-and-conditions/

Contacting United Electronic Industries

Mailing Address:

249 Vanderbilt Avenue Norwood, MA 02062 U.S.A.

For a list of our distributors and partners in the US and around the world, please contact a member of our support team:

Support:

Telephone:	(508) 921-4600
Fax:	(508) 668-2350

Also see the FAQs and online "Live Help" feature on our web site.

Internet Support:

Support:	support@ueidaq.com
Website:	<u>www.ueidaq.com</u>
FTP Site:	<pre>ftp://ftp.ueidaq.com</pre>

Product Disclaimer:

WARNING!

DO NOT USE PRODUCTS SOLD BY UNITED ELECTRONIC INDUSTRIES, INC. AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

Products sold by United Electronic Industries, Inc. are not authorized for use as critical components in life support devices or systems. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Any attempt to purchase any United Electronic Industries, Inc. product for that purpose is null and void and United Electronic Industries Inc. accepts no liability whatsoever in contract, tort, or otherwise whether or not resulting from our or our employees' negligence or failure to detect an improper purchase.

Specifications in this document are subject to change without notice. Check with UEI for current status.

Table of Contents

Chapter 1 Introduction					
1.1	Organization of this Manual 1				
1.2 1.2.1 1.2.2 1.2.3	AI-256 Board Overview. 3 Compatibility 3 Environmental Conditions 3 Software Support. 3				
1.3	Features				
1.4	Indicators 4				
1.5	Device Architecture				
Chapter	2 AI-256 Synchro / Resolver Mode				
2.1 2.1.1 2.1.2 2.1.3 2.1.4	Synchro & Resolver Overview6Description of Synchros6Example Synchro Waveforms10Description of Resolvers11Example Resolver Waveforms13				
2.2	AI-256 Synchro / Resolver Specification				
2.3 2.3.1 2.3.2	AI-256 Operational Modes18Synchro Modes18Resolver Modes19				
2.4	AI-256 Synchro / Resolver Pinout				
2.5 2.5.1 2.5.2 2.5.3 2.5.4 2.5.5	Connecting Synchro / Resolver Hardware21Synchro Wiring21Resolver Wiring22Synchro Line-to-Line Voltage23Z-grounded Mode25Troubleshooting26				
Chapter	Chapter 3 AI-256 LVDT / RVDT Mode				
3.1	LVDT / RVDT Overview				
3.2	AI-256 LVDT / RVDT Specification				
3.3	AI-256 LVDT / RVDT Pinout				
3.4 3.4.1 3.4.2 3.4.3	AI-256 LVDT / RVDT Operating Modes 30 LVDT / RVDT Analog Input Mode 30 Simulator Output Mode 33 Simulator Output to LVDT/RVDT Input Mode 37				
3.5	Setting Operating Parameters				
Chapter	4 Programming with the High-level API				
4.1	About the High-level Framework				
4.2	Creating a Session				
4.3	Configuring the Resource String				
4.4	Configuring for Synchro / Resolver Input				

4.5	Configuring for Simulated Synchro/Resolver Output 40
4.6	Configuring for LVDT /RVDT Input
4.7	Configuring for Simulated LVDT / RVDT Output
4.8	Configuring the Timing
4.9	Reading Data
4.10	Writing Data
4.11	Cleaning-up the Session
Chapter	5 Programming with the Low-level API 44
5.1	About the Low-level API
5.2 5.2.1	Low-level Programming Techniques. 45 Data Collection Modes. 45
5.3	DNx-AI-256 Modes of Operation
5.4 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 5.4.6	Programming AI-256 for Synchro/Resolver Devices 46 Synchro / Resolver Low-level Function 46 Configuring Synchro/Resolver Excitation 47 Configuring Synchro/Resolver Operational Modes 49 Enabling Synchro/Resolver Channels 50 Reading Synchro or Resolver Inputs (Immediate Mode) 50 Writing Synchro or Resolver Simulated Outputs 51
5.5 5.5.1 5.5.2	Programming AI-256 for LVDT / RVDT Devices
5.6	Programming Power Monitor on Al–256 54
Append	ix A
A.1	Accessories
Append	ix B
A.1	Synchro Input Mode with Internal Excitation 57
A.2	Synchro Input Mode with External Excitation
A.3	Synchro Simulator Output Mode with Internal Excitation
A.4	Synchro Simulator Output Mode with External Excitation
A.5	Synchro Simulator Output Mode with External Excitation & Z-grounding 65
A.6	Resolver Input Mode with Internal Excitation
A.7	Resolver Input Mode with External Excitation
A.8	Resolver Simulator Output Mode with Internal Excitation
A.9	Resolver Simulator Output Mode with External Excitation

List of Figures

Chapte	r 1 Introduction	. 1
1-1	Photo of DNR-AI-256 Board	4
1-2	Block Diagram of DNx-AI-256 I/O Board	5
Chapte	r 2 Al-256 Synchro / Resolver Mode	. 6
2-1	Internal Structure of Star Synchro (left) vs. Delta Synchro (right)	6
2-2	Synchro Transmitter and Receiver System	8
2-3	Synchro Transmitter and Control Transformer System	9
2-4	Synchro Waveforms at -30° Rotor Angle	10
2-5	Brushless Resolver Control Transformer	11
2-6	Magnitudes of SIN and COS Output RMS Voltages vs. Rotor Angle θ	12
2-7	SIN and COS Output Voltages vs. Rotor Angle	13
2-8	AI-256 Resolver Waveforms at 30° Rotor Angle	14
2-9	AI-256 Resolver Waveforms at 45° Rotor Angle	14
2-10	AI-256 Resolver Waveforms at 135° Rotor Angle	15
2-11	Pinout Diagram for DNx-AI-256	20
2-12	Peak-to-peak Voltage Measurement of Synchro	23
2-13	Connecting Star Synchro in Z-grounded Mode	25
Chapter	r 3 AI-256 LVDT / RVDT Mode	27
3-1	DNx-AI-256 LVDT/RVDT Pinout	28
3-2	6-wire LVDT Device with AI-256 in Analog Input Mode. Internal Excitation	31
3-3	6-wire LVDT Device with AI-256 in Analog Input Mode, External Excitation	32
3-4	6-wire LVDT Device with AI-256 in Simulator Output Mode. External Excitation	33
3-5	4-wire I VDT Device with AI-256 in Simulator Mode External Excitation	34
3-6	6-wire LVDT Device with AI-256 in Simulator Output Mode. External Excitation	35
3-7	4-wire LVDT Device with AI-256 in Simulator Mode	36
3-8	Ch1 Simulated Output Connected to Ch0 Analog Input (6-wire)	37
Chapter	r 4 Programming with the High-level API	38
Chapte	r 5 Programming with the Low-level API	44
Append	lix A	55
A-1	Pinout and photo of DNA-STP-62 screw terminal panel	55
Append	lix B	56
B-1	Star Synchro: Input Mode. Internal Excitation	57
B-2	Delta Synchro: Input Mode, Internal Excitation	58
B-3	Star Synchro: Input Mode, External Excitation	59
B-4	Delta Synchro: Input Mode, External Excitation	60
B-5	Star Synchro: Simulator Mode, Internal Excitation	61
B-6	Delta Synchro Simulator Mode, Internal Excitation	62
B-7	Star Synchro: Simulator Mode, External Excitation	63
B-8	Delta Synchro: Simulator Mode, External Excitation	64
B-9	Star Synchro: Simulator Mode, External Excitation 7-grounding	65
B-10	Resolver: Input Mode. Internal Excitation.	66
B-11	Resolver: Input Mode, External Excitation	67
B-12	Resolver: Simulator Mode, Internal Excitation	68
B-13	Resolver: Simulator Mode, External Excitation	69

List of Tables

Chapter 1-1	r 1 Introduction	••••••••••••••••••••••••••••••••••••••
Chapter	2 Al-256 Synchro / Resolver Mode	6
2-1	DNx-AI-256 Technical Specifications (Synchro/Resolver Mode)	16
2-2	AI-256 Synchro Operational Modes	18
2-3	AI-256 Resolver Operational Modes	19
2-4	Synchro Connections for Operational Modes	21
2-5	Resolver Connections for Operational Modes	22
2-6	Z-grounded modes of operation from powerdna.h	25
Chapter	r 3 AI-256 LVDT / RVDT Mode	27
3-1	DNx-AI-256 (LVDT/RVDT Mode) Specifications	27
3-2	AI-256 Modes of Operation	
Chapter	r 4 Programming with the High-level API	38
Chapter	r 5 Programming with the Low-level API	44
5-1 ·	Summary of Low-level Synchro / Resolver API Functions for DNx-AI-256	
5-2	AI-256 Modes of Operation	49
5-3	AI-256 LVDT/RVDT Modes of Operation	
5-4	Return Values for Power Monitor	54
	Appendix A	55
	Appendix B	56

Chapter 1 Introduction

This document outlines the feature set and use of the DNx-AI-256 synchro/ resolver/LVDT/RVDT interface board.

The following sections are provided in this chapter:

- Organization of this Manual (Section 1.1)
- AI-256 Board Overview (Section 1.2)
- Features (Section 1.3)
- Indicators (Section 1.4)
- Device Architecture (Section 1.5)
- **NOTE:** UEI provides a fan unit (DNR-FAN-925) with each DNR-AI-256 RACK-version board. Due to the high power output of the AI-256, the fan unit should be placed in the slot adjacent to the DNR-AI-256 board in the RACKtangle chassis.
- **Organization** The DNx-AI-256 User Manual is organized as follows:
 - Introduction

Chapter 1 provides an overview of DNx-AI-256 features, device architecture, connectivity, and logic.

- Al-256 Synchro / Resolver Functional Description Chapter 2 provides an overview of the how synchros and resolvers work, example waveforms, synchro/resolver modes of operations, and the Al-256 synchro/resolver pinouts.
- AI-256 LVDT / RVDT Functional Description Chapter 3 provides an descriptions of the AI-256 LVDT/RVDT modes of operations and the AI-256 LVDT/RVDT pinout, along with pinouts for connecting to LVDT/RVDT devices.
- **Programming with the High-Level API** Chapter 4 provides an overview of the how to create a session, configure the session, and interpret results with the Framework API.
- **Programming with the Low-Level API** Chapter 5 is an overview of low-level API commands for configuring and using the AI-256 series board.
- Appendix A Accessories This appendix provides a list of accessories available for use with the DNx-AI-256 interface board.
- **Appendix B Connection Diagrams** This appendix contains connection diagrams for various operating and synchro/resolver excitation modes of the DNx-AI-256 interface board.
- Index
 This is an alphabetical listing of the topics covered in this manual.
- **NOTE:** A glossary of terms used with the PowerDNA Cube/RACK and I/O boards can be viewed or downloaded from www.ueidaq.com.

1.1

of this Manual

Manual Conventions

To help you get the most out of this manual and our products, please note that we use the following conventions:

Tips are designed to highlight quick ways to get the job done or to reveal good ideas you might not discover on your own.

NOTE: Notes alert you to important information.

CAUTION! Caution advises you of precautions to take to avoid injury, data loss, and damage to your boards or a system crash.

Text formatted in **bold** typeface generally represents text that should be entered verbatim. For instance, it can represent a command, as in the following example: "You can instruct users how to run setup using a command such as **setup.exe**."

Bold typeface will also represent field or button names, as in "Click **Scan Network**."

Text formatted in fixed typeface generally represents source code or other text that should be entered verbatim into the source code, initialization, or other file.

Examples of Manual Conventions

Before plugging any I/O connector into the Cube or RACKtangle, be sure to remove power from all field wiring. Failure to do so may cause severe damage to the equipment.

Usage of Terms

Throughout this manual, the term "Cube" refers to either a PowerDNA Cube product or to a PowerDNR RACKtangle[™] rack mounted system, whichever is applicable. The term DNR is a specific reference to the RACKtangle, DNA to the PowerDNA I/O Cube, and DNx to all chassis types.

1.2	AI-256 Board Overview	The DNx-AI-256 is a high performance, 2-channel synchro, resolver, or linear/ rotational variable differential transformer (LVDT/RVDT) input or simulator output interface. The DNx-AI-256 is physically a two board module with a base board plus an AI-256-specific daughter board. It is suited for a wide variety of industrial, military, and simulator applications.	
		The DNA-AI-256, DNR-AI-256, and DNF-AI-256 boards are compatible with the UEI Cube, RACKtangle, and FLATRACK chassis respectively. These board versions are electronically identical and differ only in mounting hardware. The DNA version is designed to stack in a Cube chassis. The DNR/F versions are designed to plug into the backplane of a RACK chassis.	
1.2.1	Compatibility	Functionally, the AI-256 is an extension of the AI-255 with higher current output and lower voltage, and also provides LVDT/RVDT functions of the AI-254 with much higher voltage and current capabilities.	
1.2.2	Environmental Conditions	As with all UEI PowerDNA boards, the DNx-AI-256 can be operated in harsh environments and has been tested at 5 <i>g</i> vibration, 50 <i>g</i> shock, -40 to +85°C temperature, and altitudes up to 70,000 feet. Each board provides 350 V _{rms} isolation between channels and also between the board and its enclosure or any other installed boards as well as electro-shock-discharge (ESD) isolation.	
1.2.3	Software Support	Software included with the DNx-AI-256 provides a comprehensive yet easy to use API that supports all popular operating systems including Windows, Linux, real-time operating systems such as QNX, RTX, VxWorks and more. The UEIDAQ framework comes with bindings for various programming languages such as C, C++, C#, VB.NET and scientific software packages such as LabVIEW and Matlab, as well as supporting OPC servers.	

1.3 Features The features of the DNx-AI-256 include:

- Two Synchro, Resolver, LVDT, or RVDT input or output channels in any combination
- 16-bit resolution
- 3- / 4-wire (plus excitation) Synchro and 4-wire (plus excitation) Resolver inputs
- Signal input voltage up to 28 $\mathrm{V}_{\mathrm{rms}}$
- Signal output voltage up to 19.8V_{rms}
- Reference (excitation) voltage up to 19.8V_{rms} at 3.0VA in 0.6mV_{rms} increments (16-bit output resolution)
- User-programmable excitation frequency (50Hz-10kHz)
- Automatic shutdown on overload in Synchro/Resolver mode
- Isolation up to 350 $V_{\rm rms}$ between channel and between I/Os and GND
- Tested to withstand 5g Vibration, 50g Shock, -40 to +85°C Temperature, and Altitude up to 70,000 ft or 21,000 meters.
- Weight of 136 g or 4.79 oz for DNA-AI-256; 817 g or 28.8 oz with PPC5.

1.4 Indicators The AI-256 indicators are described in **Table 1-1** and illustrated in **Figure 1-1**.

LED Name	Description	
RDY	Indicates board is powered up and operational	
STS	Indicates which mode the board is running in:	
	 OFF: Configuration mode, (e.g., configuring channels, running in point-by-point mode) ON: Operation mode 	

Table 1-1. AI-256 Indicators

1.5 Device A block diagram of a DNx-AI-256 board is shown in **Figure 1-2**. Architecture

are repeated for Channel 1.

Each channel is an independent system that is physically isolated from the other.

Figure 1-2 Block Diagram of DNx-Al-256 I/O Board

Board logic is divided into isolated and non-isolated sections. The isolated side handles all functions associated with the sensor input and output circuits, and the non-isolated side handles all Cube or chassis-related operations.

Each AI-256 channel is designed with differential inputs and single-ended outputs. The + side of the outputs (OutA+ through OutD+) are each driven by a high-voltage, high-current operational amplifier.The - side of the outputs (OutA-through OutD-) are connected to channel ground.

Chapter 2 AI-256 Synchro / Resolver Mode

The DNx-AI-256 can act as a 2-channel Synchro or Resolver input interface or simulated output interface for UEI data acquisition systems.

This chapter provides the following information:

- Synchro & Resolver Overview (Section 2.1)
- AI-256 Synchro / Resolver Specification (Section 2.2)
- AI-256 Operational Modes (Section 2.3)
- AI-256 Synchro / Resolver Pinout (Section 2.4)
- Connecting Synchro / Resolver Hardware (Section 2.5)
- 2.1 Synchro & Synchros and resolvers are electromechanical transducers that are used either to detect and measure a rotary shaft position or to position a shaft at a desired angle. The devices can be further classified as transmitters, receivers, differentials, or control transformers.
- 2.1.1 Description of Synchros A synchro consists of a single-phase rotor surrounded by a 3-phase stator. The three stator coils are spatially arranged 120° apart but may be wired in either a star or delta configuration, as illustrated in Figure 2-1.

Figure 2-1 Internal Structure of Star Synchro (left) vs. Delta Synchro (right)

NOTE: Synchro stator terminals are commonly labeled X, Y, Z in practice, but this manual will use the standard S₁, S₂, S₃ notation moving forward.

Although synchros may appear similar in construction to synchronous motors/ generators, the main difference between them is that the rotor of a synchro is excited with an AC voltage rather than a DC voltage. Since the magnetic field created by the synchro's rotor changes with time, voltage is induced in the stator even when the rotor is stationary. This allows a synchro transmitter to monitor the rotor's angular position, unlike a generator where rotor motion is required to produce an output.

Transmitter

A synchro transmitter applies AC voltage to the rotor winding and induces AC voltages in the three stator windings. The induced voltage is maximized when the rotor and stator coil share an axis and minimized when the axes are perpendicular. In general, the amplitudes are given by:

$$V_{\alpha} = kV_{R}\sin(\theta + 30^{\circ})$$
$$V_{\beta} = kV_{R}\sin(\theta + 150^{\circ})$$
$$V_{\gamma} = kV_{R}\sin(\theta + 270^{\circ})$$

where

- θ is the rotor angle measured clockwise from the reference position shown in Figure 2-1.
- V_{α} is the (time-varying) voltage across stator coil α .
 - Star Synchro: $V_{\alpha} = V_{S1} V_C$
 - Delta Synchro: $V_{\alpha} = V_{S2} V_{S1}$
- V_R is the (time-varying) excitation voltage across the rotor.

 $\mathbf{V}_{\mathbf{R}} = \mathbf{V}_{\mathbf{R}1} - \mathbf{V}_{\mathbf{R}2}$

- k is a constant which represents the maximum coupling transformation ratio $\mathsf{V}_{\text{out}}/\mathsf{V}_{\text{in}}.$

Thus, the transmitter outputs a unique set of three voltages for each position of the rotor throughout a 360° rotation. If the sine evaluates to a positive number, the induced voltage is in time-phase with the excitation voltage. If the sine is negative, the induced voltage is inverted (180° out of time-phase). Example waveforms are shown in **Figure 2-4**.

NOTE: If the device uses a different reference shaft position from what's shown in **Figure 2-1**, θ will be offset by a constant.

Receiver

A synchro receiver has the same physical construction as a synchro transmitter. However, instead of functioning as an output device, the receiver moves its rotor in response to input signals present on its stator windings.

In a typical application, a synchro transmitter and receiver are wired together so that the angular position of the transmitter's rotor is automatically reproduced in the receiver's rotor. As shown in **Figure 2-2**, the receiver's rotor is excited in parallel with the transmitter. When the transmitter and receiver rotors are in alignment, stator voltages are equal and no current flows. If the transmitter rotor is turned (relative to the receiver rotor), a force appears in the receiver, causing the rotor to track the transmitter rotor. The torque produced is proportional to the angle difference between the two rotors. Typical accuracy of such a system is 30 arc-minutes.

A single transmitter may be parallel-connected to multiple receivers, at the cost of reducing accuracy and increasing power drain from the source.

Figure 2-2 Synchro Transmitter and Receiver System

Control Transformer

A control transformer is another type of synchro that can be wired to a transmitter. Unlike a receiver, the control transformer is not designed to directly position a load. Instead, its rotor terminals are normally wired to a servo control system that can drive higher torque loads.

Figure 2-3 Synchro Transmitter and Control Transformer System

When the transmitter rotor is turned, the transmitter outputs a new set of stator voltages to the control transformer. This changes the magnetic field seen by the control transformer rotor and induces a voltage if the two rotors are not aligned. The voltage induced in the control transformer rotor is proportional to the sine of the angle difference between the two rotors. (The control transformer rotor is cylindrically shaped to keep the magnitude of its stator field constant, allowing the induced voltage to depend only on the field direction.) Therefore, the control transformer provides information about the transmitter rotor's angular position.

In a typical application, the small but sensitive output signal from the control transformer is amplified and sent to a motor. As the motor positions the load, it mechanically turns the control transformer shaft in a negative feedback loop; when the control transformer reaches the same angle as the transmitter, the input to the motor decreases back to 0.

When a synchro is used, the excitation and output voltages appear as shown in

Figure 2-4 Synchro Waveforms at -30° Rotor Angle

The S1 coil output voltage (green line) is zero because the rotor is positioned plus or minus 90° relative to the S1 stator winding and therefore produces nothing. The S3 coil (blue line) shows a voltage in phase with excitation and with the same polarity as the excitation voltage. The S2 coil (cyan line) shows a voltage of polarity opposite to that of the excitation (or 180° out of phase).

- **NOTE:** Coils on a synchro can be labeled in two different ways. Looking at the synchro from the shaft side with S1 at the top, S2 and S3 may follow in either a counterclockwise or clockwise direction depending on the manufacturer.
- **NOTE:** When using the AI-256 as a Synchro output for simulation, you can attach a scope to the simulation outputs, ground the scope probes to AGND and read voltages between S1 and AGND, S2 and AGND, and S3 and AGND. Some synchros have the coil mid points between coils brought out, but most do not.

Additional Information

Additional information and formulas for calculating the simulated positions are provided in the PowerDNA API Reference Manual. Refer to the DqAdv255Write and DqAdv255ConvertSim API.

2.1.2 Example

Synchro

Figure 2-4.

2.1.3 Description of Resolvers A resolver is a rotary transformer in which the magnitude of the energy through the resolver varies sinusoidally with rotation of the shaft. A resolver control transmitter has one primary winding (Excitation Winding) and two secondary windings (the SIN and COS windings). The excitation winding is located on the rotor and the SIN and COS windings are on the stator, displaced spatially by 90°. If the resolver is a brushless type, current is applied through a rotary transformer, which eliminates the problems of slip rings and brushes.

The connection arrangement of a brushless resolver control transformer is illustrated below in **Figure 2-5**.

Figure 2-5 Brushless Resolver Control Transformer

The excitation winding on the rotor is typically excited by an AC voltage. The induced voltages in the SIN and COS windings obey the following equations:

$$V_{SIN} = kV_R \sin(\theta)$$
$$V_{COS} = kV_R \cos(\theta)$$

where

- θ is the rotor angle relative to the reference position shown in Figure 2-5.
- + V_{SIN} is the (time-varying) voltage across the SIN winding.

 $V_{SIN} = V_{S1} - V_{S3}$

- $V_{\rm COS}$ is the (time-varying) voltage across the COS winding.

$$V_{COS} = V_{S2} - V_{S4}$$

- $V_{\text{R}}\,$ is the (time-varying) excitation voltage applied to the rotor.

 $\mathbf{V}_{\mathbf{R}} = \mathbf{V}_{\mathbf{R}1} - \mathbf{V}_{\mathbf{R}2}$

- k is a constant which represents the maximum coupling transformation ratio ${\sf V}_{\text{out}}/{\sf V}_{\text{in}}.$

Figure 2-6 Magnitudes of SIN and COS Output RMS Voltages vs. Rotor Angle θ

The induced voltage is maximized when the primary and secondary windings share an axis and minimized when the axes are perpendicular. For example, at $\theta=0^{\circ}$ (first point on the graph), the rotor is in line with the COS winding. Since $\cos(0^{\circ})=1$, V_{COS} will have the maximum possible magnitude. Since $\sin(0^{\circ})=0$, there will be no output on V_{SIN} . If the rotor is positioned at $\theta=45^{\circ}$, the SIN and COS output waveforms will have equal magnitudes.

Note that the above graph in **Figure 2-6** does not represent an oscilloscope display. Refer to **Figure 2-8**, **Figure 2-9** and **Figure 2-10** for oscilloscope displays of the SIN (S1), COS (S2), and excitation waveforms at rotor angles 30°, 45° and 135°.

2.1.4 Example This section contains example waveforms of amplitudes, polarity, and phase vs rotor angles for Resolver circuits.

WaveformsA sine wave AC Excitation voltage V_{exc} is applied between R1 and R2. The
voltage observed between S1 and S3 is $V_{sin} = V_{exc} sin A$, where A is the rotor
angle in radians. Similarly, the voltage observed between S2 and S4 is
 $V_{cos} = V_{exc} cos A$, where A is the rotor angle in radians. The two output voltages
remain in phase with each other relative to the excitation voltage, but differ in
magnitude and/or polarity (relative to excitation) as the rotor angle changes, as
shown in Figure 2-7.

Figure 2-7 SIN and COS Output Voltages vs. Rotor Angle

The output waveforms in resolver simulation mode for the AI-256 are shown at 30°, 45°, and 135° in **Figures 2-8**, **2-10**, and **2-9** respectively.

Figure 2-9 AI-256 Resolver Waveforms at 45° Rotor Angle

Figure 2-10 AI-256 Resolver Waveforms at 135° Rotor Angle

2.2 Al-256 Synchro / Resolver

Specification

The technical specifications for the DNx-AI-256 board (synchro/resolver mode) are listed in **Table 2-1**.

Table 2-1. DNx-AI-256 Technical Specifications (Synchro/Resolver Mode)

Inputs		
Number of channels	2	
Configuration	Synchro (3-wire) or Resolver (4-wire) may be selected via software	
Resolution	16-bit	
Accuracy	± 2.6 arc-minute	
Frequency	50 Hz to 10 kHz	
Signal Inputs	Up to 28 Vrms	
Input Impedance	478 kΩ ±10 kΩ	
Acceleration	300 rps/s @ 60 Hz, 450 rps/s @ 400 Hz 1000 rps/s @ 4000 Hz	
Step response	800 mS - 179° @ 60 Hz, 150 mS - 179° @ 2500 Hz	
Update rate	Max. rate is equal to the excitation frequency.	
Reference output		
Number of channels	2 (one per input channel)	
Output voltage	up to19.8 Vrms at 3.0 VA (see table on following page for other output voltages)	
Voltage resolution	16 bits	
Reference Frequency	50 Hz to 10 kHz (±0.1%)	
Synchro / Resolver Outputs		
Number of channels	2 (total number of synchro/resolver inputs and simulated outputs is limited to 2.)	
Configuration	Synchro (3-wire) or Resolver (4-wire)	
Resolution	16-bit	
Output Voltage	up to 19.8 Vrms up to 2.4 VA. (see table)	
Output Accuracy	±4 arc-minutes	
Output readback and protection		
Output protection	Automatic shut down on overload	
Voltage output monitoring	±70 mV, monitored at 1.3 Hz	
Current output monitoring	±1.0 mA, monitored at 1.3 Hz	
General Specifications		
Operating temperature	Tested -40 °C to +70 °C	
Vibration IEC 60068-2-6	3 g, 10-500 Hz, sinusoidal	
IEC 60068-2-64	3 g (rms), 10-500 Hz, broad-band random	
Shock IEC 60068-2-27	100 g, 3 ms half sine, 18 shocks @ 6 orientations 30 g, 11 ms half sine, 18 shocks @ 6 orientations	
Humidity	5 to 95%, non-condensing	
MTBF	275,000 hours	
Power consumption	6 Watt with no load	
	12 Watt maximum	

output brive specifications (synchro/nesorver).							
	Vrms	Vpp	Idcmax	Irms	VA max	Rlmin	
	2.0	5.7	0.20	0.141	0.6	14.1	
	3.0	8.5	0.20	0.141	0.9	21.2	
	4.0	11.3	0.20	0.141	1.1	28.3	
	5.0	14.1	0.20	0.141	1.4	35.4	
	6.0	17.0	0.20	0.141	1.7	42.4	
	7.0	19.8	0.20	0.141	2.0	49.5	
	8.0	22.6	0.20	0.141	2.3	56.6	
	9.0	25.5	0.20	0.133	2.4	67.5	
	10.0	28.3	0.20	0.120	3.0	83.3	
	11.0	31.1	0.20	0.109	3.0	100.8	
	12.0	33.9	0.10	0.100	3.0	120.0	
	13.0	36.8	0.10	0.092	3.0	140.8	
	14.0	39.6	0.10	0.086	3.0	163.3	
	15.0	42.4	0.10	0.080	3.0	187.5	
	16.0	45.3	0.10	0.075	3.0	213.3	
	17.0	48.1	0.10	0.071	3.0	240.8	
	18.0	50.9	0.10	0.067	3.0	270.0	

Output Drive Specifications (Synchro/Resolver):

Specifications above are for a single output channel. Total output power for all channels combined may not exceed 5.0 VA

- 2.3 AI-256 This section describes the various operational modes available on the AI-256. **Operational** Modes For information about programming the board configuration and setting operating modes and parameters, refer to **Chapters 4** and **5**.
- 2.3.1 Synchro Modes Table 2-2 lists the four operational modes for star and delta synchros. Each synchro mode also supports a z-grounded configuration (see Section 2.5.4 for more information about z-grounding).

Input/Output	Excitation	Description
Synchro Input	Internal excitation	AI-256 reads the voltages on the stator coils as analog inputs and also supplies the excitation voltage to the rotor coil. See Section B-1 on page 41 for hardware connections
Synchro Input	External excitation	AI-256 reads the voltages on the stator coils as analog inputs. An external source supplies the excitation voltage to the rotor coil, which is readback by the AI-256 as an analog input. See Section B-3 on page 43 for hardware connections
Synchro Simulation	Internal excitation	The AI-256 outputs voltages that simulate the analog signals from stator coils of a synchro. It also outputs an analog excitation voltage generated in the AI-256. See Section B-5 on page 45 for hardware connections
Synchro Simulation	External excitation	The AI-256 outputs voltages that simulate the analog signals from stator coils of a synchro. Excitation voltage is supplied by an external source and read back by the AI-256 as an analog input. See Section B-7 on page 47 for hardware connections

Table 2-2. Al-256 Synchro Operational Modes

2.3.2 Resolver Table 2-3 lists the four operational modes for resolvers. Modes

Input/Output	Excitation	Description
Resolver Input	Internal excitation	AI-256 reads the voltages on the stator coils as analog inputs and also supplies the excitation voltage to the rotor coil(s).
		See Section B-10 on page 50 for nardware connections
Resolver Input	External excitation	AI-256 reads the voltages on the stator coils as analog inputs. An external source supplies the excitation voltage to the rotor coil(s), which is readback by the AI-256 as an analog input.
		See Section B-11 on page 51 for hardware connections
Resolver Simulation	Internal excitation	The AI-256 outputs voltages that simulate the analog signals from stator coils of a resolver. It also outputs an analog excitation voltage generated in the AI-256.
		See Section B-12 on page 52 for hardware connections
Resolver Simulation	External excitation	The AI-256 outputs voltages that simulate the analog signals from stator coils of a resolver. Excitation voltage is supplied by an external source and read back by the AI-256 as an analog input.
		See Section B-13 on page 53 for hardware connections

Table 2-3 AI-256 Resolver Operational Modes

2.4 AI-256 Synchro / Resolver Pinout

The pinout of the DNx-AI-256 62-pin DB connector is shown in Figure 2-11.

	42						
	Pin	Signal	Pin	Signal	Pin	Signal	
	1	Rsvd	22	Gnd	43	Out A-	
	2	Out B+	23	Out B-	44	Out A+	
Chan 0	3	Rsvd	24	n/c	45	Gnd	
	4	In A+	25	In A-	46	Rsvd	
	5	In B+	26	In B-	47	n/c	
	6	Gnd	27	Rsvd	48	Rsvd	
	7	Out C+	28	Out C-	49	Rsvd	
	8	Out D+	29	Out D-	50	Rsvd	
	9	In C+	30	In C-	51	Gnd	Dashed line
	10	In D+	31	In D-	52	Rsvd	represents
	11	Rsvd	32	n/c	53	Out A-	isolation barrier
	12	Out B+	33	Out B-	54	Out A+	between channels
	13	Rsvd	34	Gnd	55	Gnd	
	14	In A+	35	In A-	56	Rsvd	
Chan 1	15	In B+	36	In B-	57	n/c	
	16	Gnd	37	Rsvd	58	Rsvd	
	17	Out C+	38	Out C-	59	n/c	
	18	Out D+	39	Out D-	60	Rsvd	
	19	Rsvd	40	Gnd	61	In C-	
	20	In D+	41	In D-	62	In C+	
	21	Rsvd	42	n/c			

Figure 2-11 Pinout Diagram for DNx-AI-256

NOTE: AI-256 has differential inputs and single-ended outputs; OutA-, OutB-, OutC-, and OutD- are connected to the channel ground.

Before plugging any I/O connector into the Cube or RACK, be sure to remove power from all field wiring. Failure to do so may cause severe damage to the equipment.

- 2.5 Connecting Synchro / Resolver Hardware
- **2.5.1** Synchro Synchro terminals are labeled S1, S2, S3 for the three stator windings, R1/R2 for the rotor, and C for the star synchro center point. Exc+/Exc- refer to the excitation source terminals.

Signal			Input	Mode,	Input	Mode,	Simulat	or Mode,	Simulator Mode,		
Name	Pin	No.	Internal E	Excitation	External	Excitation	Internal I	Excitation	External	Excitation	
	Ch 0	Ch 1	Star	Delta	Star	Delta	Star	Delta	Star	Delta	
In A+	4	14	S1	S1	S1	S1	NC	NC	NC	NC	
In A-	25	35	С	S3	С	S3	NC	NC	NC	NC	
In B+	5	15	S3	S2	S3	S2	NC	NC	NC	NC	
In B-	26	36	С	S1	С	S1	NC	NC	NC	NC	
In C+	9	62	S2	S3	S2	S3	NC	NC	NC	NC	
In C-	30	61	С	S2	С	S2	NC	NC	NC	NC	
In D+	10	20	NC	NC	Exc+	Exc+	NC	NC	Exc+	Exc+	
In D-	31	41	NC	NC	Exc-	Exc-	NC	NC	Exc-	Exc-	
OutA+	44	54	NC	NC	NC	NC	S1	S1	S1	S1	
OutA-	43	53	NC	NC	NC	NC	С	S3	С	S3	
OutB+	2	12	NC	NC	NC	NC	S3	S2	S3	S2	
OutB-	23	33	NC	NC	NC	NC	С	S1	С	S1	
OutC+	7	17	NC	NC	NC	NC	S2	S3	S2	S3	
OutC-	28	38	NC	NC	NC	NC	С	S2	С	S2	
OutD+	8	18	R1	R1	NC	NC	R1	R1	NC	NC	
OutD-	29	39	R2	R2	NC	NC	R2	R2	NC	NC	
NC	24,47	32, 42, 57, 59									
GND	6, 22, 45, 51	16, 34, 40, 55									
Rsvd	1, 3, 27, 46, 48, 49, 50, 52	11, 13, 19, 21, 37, 56, 58, 60									

 Table 2-4. Synchro Connections for Operational Modes

NOTE: Coils on a synchro can be labeled in two different ways. Looking at the synchro from the shaft side with S1 at the top, S2 and S3 may follow in either a counterclockwise or clockwise direction depending on the manufacturer. Refer to "Troubleshooting" on page 26 if you have questions when connecting synchro stator lines.

2.5.2Resolver
WiringResolver terminals are S1/S3 and S2/S4 for stator windings and R1/R2 for the
rotor. Exc+ and Exc- refer to the excitation source terminals.

Signal Name	Pin No.		Input Mode, Internal Excitation	Input Mode, External Excitation	Simulator Mode, Internal Excitation	Simulator Mode, External Excitation
	Ch 0	Ch 1	Resolver	Resolver	Resolver	Resolver
In A+	4	14	S1	S1	NC	NC
In A-	25	35	S3	S3	NC	NC
In B+	5	15	S2	S2	NC	NC
In B-	26	36	S4	S4	NC	NC
In C+	9	62	NC	NC	NC	NC
In C-	30	61	NC	NC	NC	NC
In D+	10	20	NC	Exc+(R1)	NC	Exc+
In D-	31	41	NC	Exc-(R2)	NC	Exc-
OutA+	44	54	NC	NC	S1	S1
OutA-	43	53	NC	NC	S3	S3
OutB+	2	12	NC	NC	S2	S2
OutB-	23	33	NC	NC	S4	S4
OutC+	7	17	NC(R2)	NC	Opt+(R2)	NC
OutC-	28	38	NC(R4)	NC	Opt-(R4)	NC
OutD+	8	18	R1	NC	Exc+(R1)	NC
OutD-	29	39	R3	NC	Exc-(R3)	NC
NC	24,47	32, 42, 57, 59				
GND	6, 22, 45, 51	16, 34, 40, 55				
Rsvd	1, 3, 27, 46, 48, 49, 50, 52	11, 13, 19, 21, 37, 56, 58, 60				

Table 2-5. Resolver Connections for Operational Modes

2.5.3 Synchro Line to-Line Voltage The AI-256 measures and simulates the peak-to-peak voltages (V_{pp}) across stator and rotor coils. RACK/Cube logic and firmware computes the corresponding angle from V_{pp} using the equations on page 7, where $V_{pp}=2^*max(V_{\alpha})$.

Figure 2-12 Peak-to-peak Voltage Measurement of Synchro

However, synchro documentation will often refer to line-to-line voltages instead of peak-to-peak voltages. A line-to-line voltage is measured across two of the three S₁, S₂, S₃ wires or across R₁, R₂. For delta synchros, the coil voltages are measured differentially and therefore equal the line-to-line voltages. For star synchros, the line-to-line voltages can be derived from the page 7 equations by substituting in the ground-referenced V_{S1}, V_{S2}, and V_{S3} for V_α, V_β, and V_γ respectively.

The resulting line-to-line amplitudes are:

Star Synchro	Delta Synchro
$V_{S1} - V_{S2} = \sqrt{3}kV_R\sin\theta$	$V_{S2} - V_{S1} = kV_R \sin(\theta + 30^\circ)$
$V_{S2} - V_{S3} = \sqrt{3}kV_R\sin(\theta + 120^\circ)$	$V_{S3} - V_{S2} = kV_R \sin(\theta + 150^\circ)$
$V_{S3} - V_{S1} = \sqrt{3}kV_{R}(t)\sin(\theta + 240^{\circ})$	$V_{S1} - V_{S3} = kV_R \sin(\theta + 270^\circ)$

NOTE: If the device uses a different reference shaft position from what's shown in **Figure 2-1**, θ will be offset by a constant.

RMS Voltage

Synchros are most commonly rated using a root mean squared (rms) voltage. When supplying a voltage value to UEI API or interpreting debug waveforms on an oscilloscope, you may need to convert between the max line-to-line RMS voltage amplitude (V_{LL}) from the synchro specification and the max peak-to-peak voltage amplitude (V_{PP}) used by the AI-256 driver.

Coil	Star Synchro	Delta Synchro
Stator	$V_{PP} = 2\sqrt{2} \times \frac{V_{LL}}{\sqrt{3}} \approx 1.63299 V_{LL}$	$V_{PP} = 2\sqrt{2} \times V_{LL} \cong 2.82843 V_{LL}$
Rotor	$V_{\rm PP} = 2\sqrt{2} \times V_{\rm LL} \cong 2.82843 V_{\rm LL}$	$V_{\rm PP} = 2\sqrt{2} \times V_{\rm LL} \cong 2.82843 V_{\rm LL}$

To convert between V_{LL} and $V_{PP},$ you can use the following formulas:

Example:

- A star synchro with the rms excitation voltage of 23.5V will need a ground-referenced peak-to-peak voltage of 66.4 V set for the AI-256.
 66.4V ≈ 2.82843 * 23.5V
- A star synchro's rms stator voltage of 11.8V (between any two stator terminals) will have a maximum peak-to-peak voltage span of 19.26 V.
 19.26V ≈ 1.63299 * 11.8V

Exercise caution when wiring and double-check that correct voltage is set on the AI-256 to avoid overloading and permanently damaging the synchro or resolver.

Low-level Macros

Low-level API includes the following software macros for converting star synchro stator voltages:

• #define DQ_AI255_RMS_LN_LN_TO_PP(V) ((V) *1.633)

where input parameter ${\mathbb V}$ is $V_{LL},$ and the resulting output is $V_{PP}.$

• #define DQ_AI255_RMS_LN_LN_TO_RMS(V) ((V)*0.5774)

where input parameter \triangledown is the line-to-line voltage $V_{LL},$ and the result is the ground-referenced stator voltage in volts RMS (V_{RMS}). The constant 0.5774 is

 $1/(\sqrt{3}).$

2.5.4 Z-grounded It is possible to ground the Z (S3) lines of some synchros to the vehicle's common ground to save on wiring - this is called a synchro in *z-grounded mode*.

In hardware, the S3 input/output on the AI-256 is left unconnected for z-grounded synchros. See **Figure 2-13** and Section B-9 on page 49 for connection diagrams.

Figure 2-13 Connecting Star Synchro in Z-grounded Mode

Software Modes

Z-grounded delta synchros do not require any software changes since their coil voltages are already measured differentially.

Z-grounded star synchros DO require users to select a special software mode in their AI-256 program:

- When using the Framework API, the enum UeiSynchroZGroundMode is used to select z-grounded mode. Refer to **Chapter 4** for more information about programming using the UEIDAQ Framework API.
- When using low-level API, defines listed in the table below are used to set the different z-grounded modes; refer to **Chapter 5** for information on low-level software programming.

Mode of Operation	Description
DQ_AI255_MODE_SI_INTZ	Synchro input, internal excitation, Z grounded
DQ_AI255_MODE_SI_EXTZ	Synchro input, external excitation, Z grounded
DQ_AI255_MODE_SS_INTZ	Synchro output, internal excitation, Z grounded
DQ_AI255_MODE_SS_EXTZ	Synchro output, external excitation, Z grounded

rapie z - 0, $z - grounded modes of operation nom powerdia.n$

2.5.5 Troubleshooting This section describes some of the conditions observed when the synchro is not wired correctly to the board. Incorrect wiring can be as mild as inaccurate rotor position or as severe as permanently damaging the synchro.

In the mildest cases, the synchro or rotor lines may be in incorrect positions in the terminal panel. Reversing the rotor (V_{ext+} , V_{ext-}) or stator (S1, S2, S3) wires can cause the position of the rotor to be at a wrong angle, or rotate clockwise.

In the more severe cases, the rotor may move in a jerky or erratic manner, the synchro may hum and may be warm/hot to the touch, indicating a possible open connection. Warm or hot synchros may also indicate a short circuit.

The AI-256 board has overvoltage protection up to $350V_{rms}$ and thermal

protection; however, the synchro may be permanently damaged by a bad voltage setting. It is recommended to check the configured voltage with an oscilloscope (best set to measure in true RMS mode) to ensure that the output voltages are correct. Unusual waveforms on an oscilloscope may indicate that thermal limits are being reached (normally due to an overloaded synchro), and waveforms that drop to zero may indicate that the overvoltage protection was breached and the board has shut down.

Overvoltage messages appear on the serial console and print as follows:

Ch0 OC: disabling ist=<...> Ch1 OC: disabling ist=<...>

Alternatively, overvoltage conditions can be monitored in user applications written with the low-level API; the DqCmdReadStatus() API returns as STS_POST_OVERCURRENT in the POST word of the board status in the low level framework. Refer to SampleGetStatus.c for a programming example of reading the status. (See Section 5.2 for the location of sample programs.)

AI-256 LVDT / RVDT Mode Chapter 3

This document describes the feature set and use of the DNx-AI-256 interface board when used in LVDT/RVDT applications. The following information is included in this chapter:

- LVDT / RVDT Overview (Section 3.1)
- AI-256 LVDT / RVDT Specification (Section 3.2)
- AI-256 LVDT / RVDT Pinout (Section 3.3)
- AI-256 LVDT / RVDT Operating Modes (Section 3.4) •
- Setting Operating Parameters (Section 3.5)

3.1 LVDT / RVDT The DNx-AI-256 can be used as a 2-channel LVDT/RVDT input or simulated output interface for UEI's data acquisition systems. It is suited for a wide variety **Overview** of linear and rotational motion and/or position measurements in industrial and military applications.

Each channel can be configured as either a 5- or 6-wire LVDT/RVDT analog input channel that connects to an LVDT/RVDT sensor or as a 4-, 5-, or 6-wire LVDT/RVDT output/simulator, which can be used to drive simulator inputs or to test LVDT/RVDT measurement products.

Additionally, each channel can be configured to operate with excitation generated internally to the AI-256 or supplied from an external source. External excitation voltage is read as an input to the AI-256 channel and used as a reference for computation of the sensor core position.

The wiring connections for the various modes of operation are described in detail in "AI-256 LVDT / RVDT Operating Modes" on page 30.

3.2 AI-256 LVDT / RVDT **Specification**

Technical specifications for the DNx-AI-256 board (LVDT/RVDT Mode) are listed in Table 3-1 and extend the features described previously.

Table 3-1. DNx-AI-256 (LVDT/RVDT Mode) Specifications

Simulation Outputs	
Number of channels	2
Configuration	2-, 3- or 4-wire
Resolution	16-bit
Output Accuracy	0.1%
Output Voltage	19.8Vrms (max)

3.3 AI-256 LVDT / The pinout for the AI-256 in LVDT/RVDT mode is shown below: RVDT Pinout

	42						
	Pin	Signal	Pin	Signal	Pin	Signal	
	1	Rsvd	22	Gnd	43	Out A- (P1-)	
Chan 0	2	Out B+ (P2+)	23	Out B- (P2-)	44	Out A+ (P1+)	
	3	Rsvd	24	n/c	45	Gnd	
	4	In A+ (S1+)	25	In A- (S1-)	46	Rsvd	
	5	In B+ (S2+)	26	In B- (S2-)	47	n/c	
	6	Gnd	27	Rsvd	48	Rsvd	
	7	Out C+	28	Out C-	49	Rsvd	
	8	Out D+ (ExcOut+)	29	Out D- (ExcOut-)	50	Rsvd	
	9	In C+	30	In C-	51	Gnd	
	10	In D+ (Excln+)	31	In D- (ExcIn-)	52	Rsvd Dashed	Line represents the isola-
	11	Rsvd	32	n/c	53	Out A- (P1-) tion bar	rier between channels
	12	Out B+ (P2+)	33	Out B- (P2-)	54	Out A+ (P1+)	
	13	Rsvd	34	Gnd	55	Gnd	
	14	In A+ (S1+)	35	In A- (S1-)	56	Rsvd	
Chan 1	15	In B+ (S2+)	36	In B- (S2-)	57	n/c	
Chan	16	Gnd	37	Rsvd	58	Rsvd	
	17	Out C+	38	Out C-	59	n/c	
	18	Out D+ (ExcOut+)	39	Out D- (ExcOut-)	60	Ksvd	Note:
	19	KSVO	40	Gnd	61	In C-	InC+ and OutC+
	20	IN D+ (EXCIN+)	41	IN D- (EXCIN-)	62	In C+	are not used
	Z I	rsvu	42	n/c			are not used.

Figure 3-1 DNx-AI-256 LVDT/RVDT Pinout

NOTE:

- 1. Use S1+ and S1- for S1 secondary winding, analog differential input connections (input mode).
- 2. Use S2+ and S2- for S2 secondary winding analog differential input connections (input mode).
- 3. When the AI-256 is configured in simulator output mode, P1+ and P1- are used to provide one of the two simulated measurement outputs (S1 secondary winding).
- 4. When the AI-256 is configured in simulator output mode, P2+ and P2- are used to provide the second of the two simulated measurement outputs (S2 secondary winding).
- **NOTE:** AI-256 has differential inputs and single-ended outputs; OutA-, OutB-, OutC-, and OutD- are connected to the channel ground.

The following table is provided as a reference for connecting sensors to the various $\ensuremath{\mathsf{I/O}}\xspace$ pins.

Signal Name	Input/Output	Ch 0	Ch 1	
P1+	OutA+	44	54	
P1-	OutA-	43	53	
P2+	OutB+	2	12	
P2-	OutB-	23	33	
S1+	InA+	4	14	
S1-	InA-	25	35	
S2+	InB+	5	15	
S2-	InB-	26	36	
Exc In+	InD+	10	20	
Exc In-	InD-	31	41	
Exc Out+	OutD+	8	18	
Exc Out-	OutD-	29	39	
Rsvd	Rsvd	1, 3, 27, 46,	11, 13, 19, 21,	
		48, 49, 50, 52	37, 56, 58, 60	
NC	NC	24, 47	32, 42, 57, 59	
(InC/OutC±)	NC	7, 9, 28, 30	17, 38, 61, 62	
Gnd	Gnd	6, 22, 45, 51	16, 34, 40, 55	

Table 1-1. DNx-AI-256 Pin Connections by Channel Number

3.4 AI-256 LVDT / The DNx-AI-256 can be used in any of the LVDT/RVDT operating modes summarized in Table 3-2: Operating Modes

Table 3-2 AI-256 Modes of Operation

Analog Input or Simulated Output	Sensor Wire Configuration	Internal or External Excitation	Section Reference
Analog Input Mode	5- or 6-wire	Internal Excitation	Section 3.4.1.1
Analog Input Mode	5- or 6-wire	External Excitation	Section 3.4.1.2
Simulated Output	5- or 6-wire	External Excitation	Section 3.4.2.1
Simulated Output	4-wire	External Excitation	Section 3.4.2.2
Simulated Output	5- or 6-wire	Internal Excitation	Section 3.4.2.3
Simulated Output	4-wire	Internal Excitation	Section 3.4.2.4

3.4.1 LVDT / RVDT Analog Input Mode

When a channel is configured as an LVDT/RVDT analog input device, the voltages on the secondary windings of the sensor are connected as AC analog inputs to the AI-256 through S1± and S2±.

The ADC converted values are continuously integrated/divided to compute the moving averages of both inputs. These average values are called S_a and S_b , one for each secondary winding. The readings of the excitation voltage applied to the primary winding are also averaged to compute the averaged excitation value, S_e .

Either the S_a and S_b input, or the input with the highest amplitude, is monitored for a desired direction of zero crossing. When a zero crossing is detected, S_a, S_b, and S_e are latched and the values are further processed to compute the 24-bit values $(S_a-S_b)/(S_a+S_b)$ and/or $(S_a-S_b)/S_e$. Results are then adjusted as needed with a 24-bit gain and offset. These values are also used to compute the physical position of the magnetic core within the LVDT/RVDT sensor. The computed results are then passed to the averaging/decimation engine.

3.4.1.1 Analog Input, Internal
 Excitation, 5/6wire
 Configuration
 For a 5-wire device, connect S1+ and S2+ with the same configuration as the

For a 5-wire device, connect S1+ and S2+ with the same configuration as the 6-wire device, but connect S1- and S2- to the common of the sensor's secondary windings.

(Excitation generated Internal to AI-256 and output to the LVDT sensor via Exc $\mbox{Out}\pm$)

Figure 3-2 6-wire LVDT Device with AI-256 in Analog Input Mode, Internal Excitation

 3.4.1.2 Analog Input, Internal
 Excitation, 5/6wire
 configuration
 For an AI-256 configured as an analog input to a 6-wire device using external excitation, the S_a signal from S1 secondary is connected to S1+ and S1-, and the S_b signal from S2 is connected to S2+ and S2-, as shown in
 Figure 3-3.
 The external V_{ref} excitation voltage is not connected to the AI-256 channel in the Mode 2, 5-/6-wire configuration. Core position is calculated exclusively from the

> S_a and S_b values. For a 5-wire device, S1+ and S2+ are connected with the same configuration as the 6-wire device (**Figure 3-3**), but S1- and S2- are connected to the common of the sensor's secondary windings.

(Excitation generated by Avionics Equipment External to AI-256.)

- **3.4.2** Simulator Output Mode When a channel is configured as a simulator output device, the channel simulates the operation of the secondary windings of an LVDT/RVDT sensor. In this mode, the DAC generates analog voltages on P1± and/or P2± to represent the output voltages of LVDT/RVDT secondary windings.
- 3.4.2.1 Simulator Output, External Excitation, 5/6wire configuration
 When simulating a 6-wire LVDT/RVDT sensor, the AI-256 channel configured as a simulator output drives signals from P1± and P2± to simulate the secondary windings of the LVDT/RVDT, as shown in Figure 3-6. The excitation voltage is provided external to the AI-256 channel and connected to Exc In±.
 When simulating a 5-wire LVDT/RVDT sensor, P1- and P2- should be disconnected from the AI-256 and the 5-wire common node on the avionics equipment will be connected to channel ground.

(AI-256 simulates the secondary windings of an LVDT sensor. Position is software defined. Excitation generated External to AI-256.)

> Figure 3-4 6-wire LVDT Device with AI-256 in Simulator Output Mode, External Excitation

3.4.2.2SimulatorWhen simulating a 4-wire LVDT/RVDT sensor, the AI-256 channel configured as
a simulator output drives signals from P1± that simulate the secondary windings
of the LVDT/RVDT, as shown in Figure 3-5.

Excitation, 4-
wireThe excitation voltage is provided external to the AI-256 channel and connected
to Exc In±.configuration

(AI-256 simulates the secondary windings of an LVDT sensor. Position is software defined. Excitation generated External to AI-256.)

 3.4.2.3
 Simulator
 When simulating a 6-wire LVDT/RVDT sensor, the AI-256 channel configured as a simulator output drives signals from P1± and P2± to simulate the secondary windings of the LVDT/RVDT, as shown in Figure 3-6.

 Excitation, 5/6-wire
 The excitation voltage is provided internal to the AI-256 channel and connected to Exc Out±.

 configuration
 When simulating a 5-wire LVDT/RVDT sensor, P1- and P2- should be disconnected from the Avionics Equipment.

(AI-256 simulates the secondary windings of an LVDT sensor. Position is software defined. Excitation generated internal to AI-256.)

> Figure 3-6 6-wire LVDT Device with AI-256 in Simulator Output Mode, External Excitation

3.4.2.4Simulator
Output,
InternalWhen simulating a 4-wire LVDT/RVDT sensor, the AI-256 channel configured as
a simulator output drives signals from P1± that simulate the secondary windings
of the LVDT/RVDT, as shown in Figure 3-7.Excitation, 4-The excitation voltage is provided internal to the AI-256 channel and connected

wire to ExcOut±.

AI-256 simulates 4-wire LVDT AI-256 Pin No. Ch0 Ch1 simulated S1/S2 windings P1+ 44 54 InA+ V_{out} P1 43 53 InA-**Avionics** Equipment P2+ & N/C 2 12 InB+ P2-0 N/C InB-23 33 10 20 Exc In+ ON/C Exc+ Exc In- o N/C 31 41 Exc-Exc Out+ 8 18 V_{exc} Exc Out-29 39 6, 22 16,34 **GND** ϕ 45,51 40,55

(AI-256 simulates the secondary windings of an LVDT sensor. Position is software defined. Excitation generated internal to AI-256.)

3.4.3 Simulator Output to LVDT/RVDT Input Mode

The AI-256 can be configured to use one or more channels as simulator outputs and connect them to one or more channels configured as LVDT/RVDT input interfaces on the same or different AI-256 boards, as shown in **Figure 3-8**.

Figure 3-8 Ch1 Simulated Output Connected to Ch0 Analog Input (6-wire)

As shown in the diagram, excitation voltage is provided by Channel 0 (Exc Out+ to Exc Out-) DAC.

Channel 1 outputs two simulated measurement signals (P1+ to P1-) and (P2+ to P2-) from its DACs to the secondary inputs on Channel 0.

3.5 Setting Operating Parameters For detailed instructions for configuring the AI-256 (LVDT/RVDT Mode) board and setting operating modes and parameters, refer to the Framework functions CreateSimulatedLVDTChannel() and CreateLVDTChannel() or the low level API function, DqAdv256SetModeLvdt().

Framework functions are described in the Framework API Reference Manual, with an overview in **Chapter 4**.

Low level functions are described in the PowerDNA API Reference Manual, with an overview in **Chapter 5**.

Chapter 4 Programming with the High-level API

This chapter provides the following information about using the UeiDaq highlevel Framework API to program the DNx-AI-256:

- About the High-level Framework (Section 4.1)
- Creating a Session (Section 4.2)
- Configuring the Resource String (Section 4.3)
- Configuring for Synchro / Resolver Input (Section 4.4)
- Configuring for Simulated Synchro/Resolver Output (Section 4.5)
- Configuring for LVDT /RVDT Input (Section 4.6)
- Configuring for Simulated LVDT / RVDT Output (Section 4.7)
- Configuring the Timing (Section 4.8)
- Reading Data (Section 4.9)
- Writing Data (Section 4.10)
- Cleaning-up the Session (Section 4.11)
- 4.1 About the UeiDaq Framework is object oriented and its objects can be manipulated in the same manner from different development environments, such as Visual C++, Visual Basic, or LabVIEW.

UeiDaq Framework is bundled with examples for supported programming languages. Examples are located under the UEI programs group in:

Start » Programs » UEI » Framework » Examples

The following sections focus on the C++ API, but the concept is the same no matter which programming language you use.

Please refer to the "UeiDaq Framework User Manual" for more information on use of other programming languages.

4.2 Creating a Session The Session object controls all operations on your PowerDNx device. Therefore, the first task is to create a session object:

// create a session object for input, and a session object for output

```
CUeiSession aiSession;
CUeiSession aoSession;
```


4.3 Configuring the Resource String UeiDaq Framework uses resource strings to select which device, subsystem and channels to use within a session. The resource string syntax is similar to a web URL:

<device class>://<IP address>/<Device Id>/<Subsystem><Channel list>

For PowerDNA and RACKtangle, the device class is pdna.

For example, the following resource string selects analog input lines 0,1 on device 1 at IP address 192.168.100.2: "pdna://192.168.100.2/Dev1/Ai0,1"

4.4 Configuring for Synchro / Resolver Input
 Input
 The AI-256 can be configured for a synchro or resolver input.
 Use the method CreateSynchroResolverChannel() to program the input channels and parameters associated with each channel.
 The following call configures the analog input channels of an AI-256 set as device 1:

// Configure session synchro/resolver input

aiSession.CreateSynchroResolverChannel(

"pdna://192.168.100.2/Dev1/Ai0,1", UeiSynchroMode, 3.0, 5000.0, false);

It configures the following parameters:

- Sensor Mode: the type of sensor (synchro or resolver) connected to the input channel.
- **Excitation Voltage**: the amplitude of the excitation sine wave in volts RMS.
- Excitation Frequency: the frequency of the excitation sine wave.
- **External Excitation**: specifies whether you wish to provide external excitation or use the excitation provided by the AI-256.

If you want to use different parameters for each channel, you can call **CreateSynchroResolverChannel()** multiple times with a different set of channels (0 or 1) in the resource string.

Note that the external excitation amplitude value that comes back from firmware is a peak-to-peak voltage that is converted to an RMS value by the framework on the assumption that it is a sinusoidal excitation signal. However, position transducers may use a square wave or a pulse for excitation. As a result, the amplitude for these signals will appear to be low, and only serve to verify the existence of a signal. When using the framework, the actual RMS or peak-topeak amplitude of the excitation signal should be measured using an oscilloscope to ensure correctness.

 4.5 Configuring for Simulated Synchro/ Resolver Output
 4.5 Configuring for Simulated Synchro/ Resolver Output
 4.1-256 can be configured as a synchro or resolver output. When using the Al-256 in Synchro/Resolver Mode, you can also use the Al-256 to simulate a Synchro or a Resolver output. The following call configures an analog output channel of an Al-256 set as device 1:

It configures the following parameters:

- Sensor Mode: the type of sensor (synchro or resolver) to be simulated.
- **Excitation Voltage**: the amplitude of the excitation sine wave in volts RMS.
- Excitation Frequency: the frequency of the excitation sine wave.
- **External Excitation**: specifies whether you wish to provide external excitation or use the excitation provided by the AI-256.

4.6 Configuring for LVDT / RVDT Input The method CreateLVDTChannel() is used to program the input channels and parameters associated with each channel. The following call configures an analog input channel of an AI-256 set as device 1: The following call configures an analog input channel of an AI-256 set as

// Configure session LVDT/RVDT input

aiSession.CreateLVDTChannel("pdna://192.168.100.2/Dev1/Ai0:1",			
	-10.0,	//Minimum range	
	10.0,	//Maximum range	
	1000.0,	//Sensor sensitivity	
	UeiLVDTFiveWires,	//Wiring scheme	
	6.0,	//Excitation voltage	
	400.0,	//Excitation frequency	
	false);	//External excitation	

CreateLVDTChannel() configures the following parameters:

- **Minimum range:** minimum value you expect to measure. The unit is the distance unit specified by your LVDT sensitivity. For example, if your LVDT sensitivity is given in mV/V/mm, the distance unit is mm. Similarly for RVDTs the unit is the angle unit used in the sensitivity.
- **Maximum range:** maximum value you expect to measure. The unit is the position unit specified by your LVDT sensitivity. For example if your LVDT sensitivity is given in mV/V/mm, the distance unit is mm. Similarly for RVDTs, the unit is the angle unit used in the sensitivity.
- Sensor Sensitivity: the sensor sensitivity specified in mV/V/<position unit>.
 The position unit specifies the unit of the min. and max. range as well as the unit of the data read from the input channels.
- Wiring Scheme: the wiring scheme used to connect the LVDT/RVDT to the AI-256. Note that the AI-256 can be used as an analog input for 5-/6-wire LVDT/RVDTs (UeiLVDTFiveWires).
- Excitation voltage: the amplitude in volt RMS of the excitation sine wave.
- Excitation frequency: the frequency of the excitation sine wave.
- **External excitation:** specifies whether you wish to provide external excitation or use the excitation provided by the AI-256.

If you want to use different parameters for each channel, you can call CreateLVDTChannel () multiple times with a different set of channels in the resource string each time.

 4.7 Configuring for Simulated LVDT / RVDT
 The AI-256 can be used to simulate an LVDT or RVDT output. The following call configures an analog output channel on an AI-256 set as device 1:

// Configure session for simulated LVDT/RVDT output

aoSession.CreateSimulatedLVTDChannel(

"pdna://192.168.100.2/Dev1/A00", 153.65 //Sensor sensitivity UeiLVDTFiveWires, //Wiring scheme 6.0, //Excitation voltage 400.0); //Excitation frequency

CreateSimulatedLVTDChannel() configures the following parameters:

- Sensor Sensitivity: the sensor sensitivity specified in mV/V/<position unit>. The position unit specifies the unit of the data written to the channel.
- **Wiring Scheme**: the wiring scheme used to connect the simulated LVDT/RVDT to the reading device.
- Excitation Voltage: the amplitude in volt RMS of the excitation sine wave.
- Excitation Frequency: the frequency of the excitation sine wave.

4.8 Configuring the Timing You can configure the AI-256 to run in simple mode (point by point). In simple mode, the delay between samples is determined by software on the host computer.

The following sample shows how to configure the simple mode. Please refer to the "UeiDaq Framework User's Manual" to learn how to use other timing modes.

// configure timing of input for point-by-point (simple mode) for AI
aiSession.ConfigureTimingForSimpleIO();
// configure timing of input for point-by-point (simple mode) for AO

aoSession.ConfigureTimingForSimpleIO();

4.9 Reading Data Reading data is done using *reader* object(s). The following sample code shows how to create a scaled reader object and read samples.

// create a reader and link it to the analog-input session's stream
CUeiAnalogScaledReader aiReader(aiSession.GetDataStream());
// the buffer must be big enough to contain one value per channel
double data[2];
// read one scan, where the buffer will contain one value per channel
aiReader.ReadSingleScan(data);

4.10 Writing Data Writing data is done using a *writer* object.

The following sample shows how to create a scaled writer and write samples. The AI-256 simulates angle positions entered in radians.

// create a writer and link it to the session's analog-output stream CUeiAnalogScaledWriter aoWriter(aoSession.GetDataStream()); // to write a value, the buffer must contain one value per channel double data[2] = { 1.0, 2.0 }; // write one scan, where the buffer contains one value per channel aoWriter.WriteSingleScan(data);

4.11 Cleaning-up the Session The session object will clean itself up when it goes out of scope or when it is destroyed. To reuse the object with a different set of channels or parameters, you can manually clean up the session as follows:

// clean up the sessions

aiSession.CleanUp(); aoSession.CleanUp();

Chapter 5 Programming with the Low-level API

This chapter provides the following information about programming the AI-256 using the low-level API:

- About the Low-level API (Section 5.1)
- Low-level Programming Techniques (Section 5.2)
- DNx-AI-256 Modes of Operation (Section 5.3)
- Programming AI-256 for Synchro/Resolver Devices (Section 5.4)
- Programming Power Monitor on AI-256 (Section 5.6)

NOTE: This chapter contains descriptions of the low-level functions that may be used in programming the AI-256. Note that AI-255 functions can be used to program the Synchro / Resolver functionality of the AI-256.

5.1 About the Low-level API provides direct access to the DAQBIOS protocol structure and registers in C. The low-level API is intended for speed-optimization, when programming unconventional functionality, or when programming under Linux or real-time operating systems.

When programming in Windows OS, however, we recommend that you use the UeiDaq high-level Framework API (see **Chapter 4**). The Framework extends the low-level API with additional functionality that makes programming easier and faster, and additionally the Framework supports a variety of programming languages and the use of scientific software packages such as LabVIEW and Matlab.

For additional information regarding low-level programming, refer to the "PowerDNA API Reference Manual" located in the following directories:

- On Linux systems: <PowerDNA-x.y.z>/docs
- On Windows systems: Start » All Programs » UEI » PowerDNA » Documentation

5.2	Low-level Programming Techniques	Application developers are encouraged to explore existing source code examples when first programming the AI-256. Sample code provided with the installation is self-documented and serves as a good starting point.		
·		Code examples are located in the following directories:		
		 On Linux systems: <powerdna-x.y.z>/src/DAQLib_Samples</powerdna-x.y.z> 		
		On Windows: Start » All Programs » UEI » PowerDNA » Examples		
		Sample code has the name of the I/O boards being programmed embedded in the sample name. For example, Sample256ReadLVDT contains sample code for running the an AI-256 in LVDT mode.		
		NOTE: The AI-256 provides similar capabilities as the AI-255 (Synchro/ Resolver) and AI-254 (LVDT/RVDT). Please refer to sample code for these products as additional examples, (i.e., Sample255).		
5.2.1	Data	The AI-256 supports the following acquisition modes:		
Collection Modes		 Immediate (point-to-point): Designed to provide easy access to a single I/O board at a non-deterministic pace. Acquires a single data point per channel. Runs at a maximum of 100 Hz. 		
		 RtDMAP: Designed for closed-loop (control) applications. Users set up a "map" of I/O boards and channels from which to acquire data. Input data is stored on the I/O board at a rate paced by its hardware clock; a single API call (refresh) paced by the user application causes data to be collected directly from the I/O board and packed for delivery to the user application. RtDMAP collects 1 data sample per channel 		
		API that implement data acquisition modes and additional mode descriptions are provided in the <i>PowerDNA API Reference Manual</i> .		
5.3	DNx-Al-256	The modes of operation supported by an DNx-AI-256 channel are:		
	Modes of	Synchro Input LVDT Input (5/6-wire)		
	Operation	Resolver Input RVDT Input (5/6-wire)		
		Synchro Output/Simulator LVDT Simulator Output (4/5/6-wire)		
		Resolver Output/Simulator RVDT Simulator Output (4/5/6-wire)		
		NOTE: Synchro and Resolver modes of operation are described in Section 2.3 on page 18.		

LVDT / RVDT modes of operation are described in Section 3.4 on page 30.

- 5.4 Programming AI-256 for Synchro/ Resolver Devices AI-256 for Synchro/ Resolver Devices AI-256 for Synchro/ Resolver Devices AI-256 for Synchro/ Resolver Devices
- 5.4.1 Synchro / Table 5-1 provides a summary of AI-256-specific functions. All low-level functions are described in detail in the PowerDNA API Reference Manual. level Function

Table 5-1.	Summar	v of Low-level S	vnchro / Resolver	API Functions	for DNx-Al-256
			,		

Function	Description
DqAdv255SetMode	Sets synchro or resolver operating modes per channel
DqAdv255SetExt	Set up extra (additional) parameters
DqAdv255SetExcitation	Sets excitation frequency and amplitude in internal exitation mode
DqAdv255GetWFMeasurements	Returns the measured parameters of waveform on selected input(s)
DqAdv255MeasureWF	Simple form of DqAdv255GetWFMeasurements
DqAdv255Enable	Enables/disables operation on specified channels
DqAdv255Read	Reads the calculated angle or special data for selected channels (point-to-point mode)
DqAdv255Write	Writes a simulated position of a synchro or resolver or special data (point-to-point mode)
DqAdv255ConvertSim	Converts angle to raw data representation for gain and phase control
DqAdv255WriteBin	Writes an angle or special data for selected channels

The following AI-256 superset of functions extend the abilities of the AI-255:

Function	Description
DqAdv256SetModeSynchroResolver	Identical to DqAdv255SetMode()
DqAdv256Enable	Enable/disable operations for channels specified in channel list (can also use DqAdv255Enable)
DqAdv256WriteSynchroResolver	Identical to DqAdv255Write()
DqAdv256ReadPADC	Returns the power monitor ADC readings from an AI-256
DqAdv256SetAll	Sets up most of the AI-256 configuration parameters.
DqAdv256GetWFMeasurements	Returns the measured parameters of waveform on the input line(s) (same as DqAdv255GetWFMeasurements for synchro/resolver modes)

- 5.4.2 Configuring Synchro/ Resolver Excitation
 5.4.2 Configuring The DNx-AI-256 can be configured to use internal or external excitation. For internally generated excitation, configure the excitation frequency and level before configuring the mode of a channel. For external excitation, API are provided for measuring the excitation frequency and level. These parameters are needed when setting the mode.
- 5.4.2.1ReadingWhen using external excitation, use the DqAdv255GetWFMeasurements API
to measure the external excitation. It returns a structure that holds the acquired
waveform data.

The following is an example of setting up the DqAdv255GetWFMeasurements API for external excitation measurement:

NOTE: Many of the defines and structure types for the AI-255 are also used for the AI-256 in synchro/resolver mode. For example, the waveform return structure in this example is of type WFPRM_255, and the waveform measurement setup structure is WFMEASURE 255.

```
// CHANNELS is 2 for the AI-256
// WFMEASURE 255 & WFPRM 255 are structures for waveform setup & data
for(i=0; i<CHANNELS; i++) {</pre>
   WFMEASURE 255 param;
   WFPRM 255 chan m[DQ AI255 ADCS]; //A/D per channel
   // Configure channel list
   // Set gain = gain of 1
   cl[i] = i | DQ LNCL GAIN(DQ AI255 GAIN 1); //UEI macro & #define
   //program gain for excitation measurement
   param.changain = cl[i];
   // get waveform frequency and amplitude used to power the sensor
   DqAdv255GetWFMeasurements (
               hd,
                           // handle for the IOM, set in DqOpenIOM()
               DEVN,
                            // AI-256 board position in the chassis
                Ο,
                            // Reserved, set to 0
                            // structure of type pWFMEASURE 255
                &param,
                            11
                                 used to store waveform parameters,
                            11
                                 specifically the changain parameter
                            11
                                 must be set to the channel list, cl
                            // pointer to structure of type pWFPRM 255,
                chan m);
                            11
                                 used to store external excitation
                            11
                                 measurements
                            11
                                 chan m.freq: the measured exc frequency
                            11
                                 chan m.ampl: the measured Vpp level
```

}

Macro, structure and #define descriptions

For more information, refer to the PowerDNAAPI Reference Manual or refer to the powerdna.h header file.

5.4.2.2Setting
Internal
ExcitationTo set up internal excitation, use the DqAdv255SetExcitation API.Internal
ExcitationThe following is an example of setting up the DqAdv255SetExcitation API
for generating internal excitation:

```
for(i=0; i<CHANNELS; i++) {</pre>
   // Configure channel list
   // Set gain = gain of 1
   cl[i] = i | DQ LNCL GAIN(DQ AI255 GAIN 1); //UEI macro & #define
   // For internal excitation modes, configure the
   // amplitude and frequency of the sine waveform
   // used to power the sensor
   // convert RMS voltage to peak-to-peak voltage
                                  // From 50 Hz to 10 kHz
   exc rates[i] = INT EXC RATE;
   exc rms amplitudes[i] = RMS AMPL; // Up to 19.8 Vrms
   exc peakpeak amplitudes[i] = exc rms amplitudes[i]*(2*DQ AI254 AMP2RMS);
   DqAdv255SetExcitation(
                           // handle for the IOM, set in DqOpenIOM()
         hd,
         DEVN,
                           // AI-256 board position in the chassis
         DQ LNCL GETCHAN(cl[i]), // get channel # programmed in cl
         DQ AI255 ENABLE EXC D, // set which output to use for
                                      excitation, D must be used
                                 11
                                 11
                                      for simulation devices
         exc rates[i],
         exc peakpeak amplitudes[i]; //peak-to-peak excitation voltage
```

```
}
```


5.4.3Configuring
Synchro/
ResolverThe DqAdv255SetMode() API configures a DNx-AI-256 channel as a
Synchro or Resolver, as an input or output, or to use internal or external
excitation, etc.Operational
ModesSince the DqAdv255SetMode API is passed an expected excitation frequency
(exc_freq) and an excitation voltage level (se_level), before calling
DqAdv255SetMode(), call an API to get or set excitation waveform
parameters. See Section 5.4.2 for more information about programming
excitation.

The DqAdv255SetMode API can then be called to set the mode:

DqAdv255SetMode(hd,	// handle for the IOM
DEVN,	// AI-256 board position in the chassis
channel,	<pre>// channel to apply mode setting to</pre>
mode,	// listed below in Table 5-2
Ο,	// Reserved, set to 0
exc_freq,	<pre>// expected excitation frequency</pre>
<pre>se_level);</pre>	// Excitation level (Vpp)

The AI-256 can be programmed as synchro or resolver modes with internal or external excitation.

Synchro modes can additionally be configured as z-grounded, allowing the S3 stator to be grounded.

To set the mode of a channel, pass one of the following as the mode parameter:

Mode	Description
DQ_AI255_MODE_SI_INT	Synchro input, internal excitation
DQ_AI255_MODE_RI_INT	Resolver input, internal excitation
DQ_AI255_MODE_SI_EXT	Synchro input, external excitation
DQ_AI255_MODE_RI_EXT	Resolver input, external excitation
DQ_AI255_MODE_SS_INT	Synchro simulation (output), internal excitation
DQ_AI255_MODE_RS_INT	Resolver simulation (output), internal excitation
DQ_AI255_MODE_SS_EXT	Synchro simulation (output), external excitation
DQ_AI255_MODE_RS_EXT	Resolver simulation (output), external excitation
DQ_AI255_MODE_SI_INTZ	Synchro input, internal excitation, Z-grounded
DQ_AI255_MODE_SI_EXTZ	Synchro input, external excitation, Z-grounded
DQ_AI255_MODE_SS_INTZ	Synchro simulation (output), internal excitation, Z-grounded
DQ_AI255_MODE_SS_EXTZ	Synchro simulation (output), external excitation, Z-grounded

Pinouts and connection diagrams

Pinouts for wiring each of the modes of operation are provided in Table 2-5 on page 22. Refer to Appendix B for connection diagrams.

5.4.4 Enabling Synchro/ Resolver Channels After the excitation and modes of operation are set up, the DNx-AI-256 channels can be enabled with the DqAdv255Enable() API.

```
// Enable channels,
// For example, CHANNELS is set to 2 (the maximum number of
// channels on the device)
// and cl is a configuration array of length CHANNELS, (i.e. cl[0]
// holds the gain setting for channel 0, cl[1] holds the gain setting
// for channel 1)
```

DqAdv255Enable(hd,	//handle for the IOM
	DEVN,	// AI-256 board position in the chassis
	Ο,	// Reserved, set to 0
	1,	// 1 = TRUE (enabled)
	CHANNELS,	// CHANNELS = max $\#$ of channels / board
	cl);	$\ensuremath{{//}}$ channel list, encoded with gain settings

 5.4.5
 Reading
Synchro or
Resolver
Inputs
(Immediate
Mode)
 After the channels are enabled, you can measure the stator voltages on AI-256
channels configured as inputs (not simulated outputs).
The DqAdv255Read API is used to acquire stator readings in Immediate
(point-to-point) data acquisition mode.

hd,	// handle for the IOM
DEVN,	// AI-256 board position in the chassis
CHANNELS,	// CHANNELS = max # of channels / board
cl,	// channel list
NULL,	//
angles);	// converted data
	hd, DEVN, CHANNELS, cl, NULL, angles);

By default, DqAdv255Read returns the calculated rotor angle (angles).

5.4.6Writing
Synchro or
ResolverAfter the channels are enabled, you can output simulated stator voltages on
AI-256 channels configured as simulated outputs.The DqAdv255Write API can be used in Immediate data acquisition mode to
convert an angle parameter to stator output waveforms and output those
waveforms.

Note that if you review stator waveforms on a scope, you are looking at line-toground waveforms. For more information about interpreting simulated outputs and to review simulated position calculations and formulas, refer to the DqAdv255Write API description in the PowerDNAAPI Reference Manual.

- For applications that use synchros or resolvers, refer to "Programming AI-256 for LVDT / RVDT / RVDT Devices" on page 46.
- 5.5.1 LVDT/RVDT The LVDT/RVDT low-level functions for an AI-256 I/O board are listed in this section.

Function	Description
DqAdv256SetModeLvdt	Sets LVDT/RVDT operating modes:4/5/6-wire simulated output mode or 5/6-wire LVDT/RVDT input mode, internal or external excitation.
DqAdv256Enable	Enable/disable operations for channels specified in channel list.
DqAdv256ConvertSimLvdt	Converts a ±1.0 position into raw data representation for gain/ phase.
DqAdv256GetWFMeasurements	Returns the measured parameters of waveform on the input line(s).
DqAdv256ReadLvdt	Returns the LVDT/RVDT readings from AI-256 input channel.
DqAdv256SetAll	Sets up AI-256 configuration parameters to non-default variables.
DqAdv256WriteLvdt	Writes simulated position to simulate 4- and 5/6-wire LVDT/RVDTs.

The following AI-256 functions perform are used for LVDT/RVDT applications:

5.5.2 Configuring The DqAdv256SetModeLvdt() API configures a DNx-AI-256 channel as a LVDT/RVDT, as a 5/6-wire input or 4/5/6-wire output, or to use internal or LVDT/RVDT external excitation, etc. Note that excitation is also programmed in the Operational DqAdv256SetModeLvdt() API. Modes

DqAdv256SetModeLvdt(hd.

SetModeLvdt(hd,	//	handle for the IOM
DEVN,	//	AI-256 board position in the chassis
channel,	//	channel to apply mode setting to
mode,	//	listed below
Ο,	//	Reserved, set to 0
meas_pts,	//	API returns the number of points per period in
	//	sine wave
usr_offset,	//	set to 0.0
usr_gain,	//	set to 1.0
exc_freq,	//	expected excitation frequency
se level);	//	excitation level (Vpp)

To set the mode of a channel, pass one of the following as the mode parameter.:

Table 5-3 AI-256 LVDT/RVDT Modes of Operation

Mode	Analog Input or Simulated Output	Sensor Wire Configuration	Internal or External Excitation
DQ_AI254_MODE_INT_5	Analog Input Mode	5- or 6-wire	Internal Excitation
DQ_AI254_MODE_EXT_5	Analog Input Mode	5- or 6-wire	External Excitation
DQ_AI256_MODE_SIM_5_EXT	Simulated Output	5- or 6-wire	External Excitation
DQ_AI256_MODE_SIM_4_EXT	Simulated Output	4-wire	External Excitation
DQ_AI256_MODE_SIM_5_INT	Simulated Output	5- or 6-wire	Internal Excitation
DQ_AI256_MODE_SIM_4_INT	Simulated Output	4-wire	Internal Excitation

For more information, refer to the PowerDNA API Reference Manual or refer to the powerdna.h header file.

Pinouts and connection diagrams

Pinouts and connection diagrams for wiring each of the modes of operation are provided in Chapter 3.

5.6 Programming Power Monitor on AI–256 Power AI-256 Power Monitor on AI–256

DqAdv256ReadPADC(hd, // handle for the IOM DEVN, // AI-256 board position in the chassis bdata, // array of uint32 raw binary data (8 values) fdata); // array of converted double data (8 values)

where the 8 values returned are:

Table 5-4. Return Values for Power Monitor

Array Position	Define variable	Description
0	DQ_AI256_SUBCH_NEGV_0	Channel 0, negative voltage
1	DQ_AI256_SUBCH_POSV_0	Channel 0, +VCC
2	DQ_AI256_SUBCH_I_DC_0	Channel 0, DC current on common
3	DQ_AI256_SUBCH_THERM_0	Channel 0, temperature of the ADC IC in degrees C
4	DQ_AI256_SUBCH_NEGV_1	Channel 1, negative voltage
5	DQ_AI256_SUBCH_POSV_1	Channel 1, +VCC
6	DQ_AI256_SUBCH_I_DC_1	Channel 1, DC current on common
7	DQ_AI256_SUBCH_THERM_1	Channel 1, temperature of the ADC IC in degrees C

Appendix A

A.1 Accessories The following cables and STP boards are available for the AI-256 board.

DNA-CBL-62

This is a 62-conductor round shielded cable with 62-pin male D-sub connectors on both ends. It is made with round, heavy-shielded cable; 2.5 ft (75 cm) long, weight of 9.49 ounces or 269 grams; up to 10ft (305cm) and 20ft (610cm).

DNA-STP-62

The STP-62 is a Screw Terminal Panel with three 20-position terminal blocks (JT1, JT2, and JT3) plus one 3-position terminal block (J2). The dimensions of the STP-62 board are $4w \times 3.8d \times 1.2h$ inch or $10.2 \times 9.7 \times 3$ cm (with standoffs). The weight of the STP-62 board is 3.89 ounces or 110 grams.

Figure A-1 Pinout and photo of DNA-STP-62 screw terminal panel

Appendix B

Connection Diagrams for Synchro / Resolver Operating and Excitation Modes

This appendix provides connection diagrams for the following AI-256 modes:

- Synchro Input Mode with Internal Excitation (Section A.1)
- Synchro Input Mode with External Excitation (Section A.2)
- Synchro Simulator Output Mode with Internal Excitation (Section A.3)
- Synchro Simulator Output Mode with External Excitation (Section A.4)
- Synchro Simulator Output Mode with External Excitation & Z-grounding (Section A.5)
- Resolver Input Mode with Internal Excitation (Section A.6)
- Resolver Input Mode with External Excitation (Section A.7)
- Resolver Simulator Output Mode with Internal Excitation (Section A.8)
- Resolver Simulator Output Mode with External Excitation (Section A.9)

A.1Synchro Input
Mode withSet up AI-256 connections as shown in Figure B-1 (star synchro) or Figure B-2
(delta synchro) when a channel is configured for the following:

- Internal Excitation
- Each stator line of the synchro is input to AI-256

Figure B-2 Delta Synchro: Input Mode, Internal Excitation

A.2 Synchro Input Mode with Set up AI-256 connections as shown in Figure B-3 (star synchro) or Figure B-4 (delta synchro) when a channel is configured for the following:

External Excitation

- Each stator line of the synchro is input to AI-256
- AI-256 uses an externally generated excitation

Figure B-3 Star Synchro: Input Mode, External Excitation

Figure B-4 Delta Synchro: Input Mode, External Excitation

A.3Synchro
SimulatorSet up AI-256 connections as shown in Figure B-5 (star synchro) or Figure B-6
(delta synchro) when a channel is configured for the following:

Output Mode with Internal Excitation

 AI-256 simulates a synchro and internally generates stator line waveforms

NOTE: Most synchros do not require connections to OutA-, OutB-, and OutC-. Some devices, however, use electronic equivalents of synchros. In such cases, connect the channel ground to the device ground.

Figure B-6 Delta Synchro: Simulator Mode, Internal Excitation

A.4Synchro
SimulatorSet up AI-256 connections as shown in Figure B-7 (star synchro) or Figure B-8
(delta synchro) when a channel is configured for the following:

Output Mode with External Excitation

- AI-256 simulates a synchro and internally generates stator line waveforms
- AI-256 uses an externally generated excitation source

Figure B-7 Star Synchro: Simulator Mode, External Excitation

A.5 Synchro Set up Al-256 connections as shown in Figure B-9 (star synchro) when a channel is configured for the following:

Output Mode with External Excitation & Z-grounding

- AI-256 simulates a synchro and internally generates stator line waveforms**
- **AI-256 is configured for z-grounding mode and produces waveforms on S1 and S2 accordingly: OutC is open and S3 on mating device is grounded
- AI-256 uses an externally generated excitation source

A.6 Resolver Input Set up AI-256 connections as shown in Figure B-10 when a channel is configured for the following:

Internal Excitation

• Each stator line of the resolver is input to AI-256

May 2022
A.7 Resolver Input Set up AI-256 connections as shown in Figure B-11 when a channel is configured for the following:

- External Excitation
- Each stator line of the resolver is input to AI-256
- AI-256 uses an externally generated excitation source

May 2022

A.8 Resolver Set up AI-256 connections as shown in Figure B-12 when a channel is configured for the following:

Simulator Output Mode with Internal Excitation

- AI-256 simulates a resolver and internally generates stator line waveforms
- AI-256 generates excitation internally

A.9 Resolver Set up AI-256 connections as shown in Figure B-13 when a channel is configured for the following:

Output Mode with External Excitation

- AI-256 simulates a resolver and internally generates stator line waveforms
- AI-256 uses an externally generated excitation source

