

DNx-CSDB-509
—

User Manual

8-port CSDB or RS-232/RS-422/485 serial communications interface

 for the PowerDNA Cube or RACK series chassis

August 2017

PN Man-DNx-CSDB-509

© Copyright 1998-2017 United Electronic Industries, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
by any means, electronic, mechanical, by photocopying, recording, or otherwise without prior written
permission.

Information furnished in this manual is believed to be accurate and reliable. However, no responsibility
is assumed for its use, or for any infringement of patents or other rights of third parties that may result
from its use.

All product names listed are trademarks or trade names of their respective companies.

See the UEI website for complete terms and conditions of sale:

http://www.ueidaq.com/cms/terms-and-conditions/

Contacting United Electronic Industries

Mailing Address:

27 Renmar Avenue
Walpole, MA 02081
U.S.A.

For a list of our distributors and partners in the US and around the world, please contact our support team:

Support:

Telephone: (508) 921-4600
Fax: (508) 668-2350

Also see the FAQs and online “Live Help” feature on our web site.

Internet Support:

Support: support@ueidaq.com
Website: www.ueidaq.com
FTP Site: ftp://ftp.ueidaq.com

Product Disclaimer:

WARNING!

DO NOT USE PRODUCTS SOLD BY UNITED ELECTRONIC INDUSTRIES, INC. AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

Products sold by United Electronic Industries, Inc. are not authorized for use as critical components in
life support devices or systems. A critical component is any component of a life support device or
system whose failure to perform can be reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness. Any attempt to purchase any United Electronic
Industries, Inc. product for that purpose is null and void and United Electronic Industries Inc. accepts
no liability whatsoever in contract, tort, or otherwise whether or not resulting from our or our
employees' negligence or failure to detect an improper purchase.

Specifications in this document are subject to change without notice. Check with UEI for
current status.

http://www.ueidaq.com

DNx-CSDB-509 Serial Communication Board i
Table of Contents
Table of Contents
Chapter 1 Introduction . 1

1.1 Organization of this Manual . 1

1.2 CSDB-509 Board Overview . 3
1.2.1 Baud Rates . 3
1.2.2 Interface Modes . 3
1.2.3 Accessories . 3
1.2.4 Software Support . 3

1.3 Features . 3

1.4 Indicators . 4

1.5 Specification . 5

1.6 Overview of CSDB . 6
1.6.1 CSDB-509 CSDB Support . 6

1.7 Overview of RS-232, RS-485, & RS-422 Serial Interfaces . 7

1.8 Device Architecture. 8

1.9 Module Capabilities. 9

1.10 Wiring & Connections (pinouts) . 9
1.10.1 Preferred Configuration Using an Accessory Terminal Panel 11
1.10.2 Pinout of DNA-STP-508 Panel. 12

1.11 Jumper Settings for CSDB-509 Boards for the Cube . 13

Chapter 2 Programming with the High-level API . 14

2.1 About the High-level Framework. 14

2.2 Using High-level API to Program CSDB Ports . 14
2.2.1 Creating a CSDB Session . 14
2.2.2 Configuring the CSDB Ports . 15
2.2.3 Configuring the CSDB Timing . 15
2.2.4 Reading CSDB Data . 16
2.2.5 Writing CSDB Data . 17
2.2.6 Cleaning-up the CSDB Session. 17

2.3 Using High-level API to Program Standard Serial Ports . 18
2.3.1 Creating a Standard Serial Session. 18
2.3.2 Configuring Standard Serial Ports . 18
2.3.3 Configuring Standard Serial Timing . 19
2.3.4 Reading Standard Serial Data . 19
2.3.5 Writing Standard Serial Data . 19
2.3.6 Cleaning-up the Standard Serial Session . 19

Chapter 3 Programming with the Low-level API . 20

3.1 About the Low-level API . 20

3.2 UEI CSDB Library . 20

3.3 CSDB Low-level Functions . 21
3.3.9 PowerDNx Low-level Functions . 27

3.4 CSDB Low-level Programming Examples . 28
3.4.1 Including Library Header Files . 28
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board ii
Table of Contents
3.4.2 Opening Communication between IOM and Host PC 28
3.4.3 Initializing and Configuring Channels. 28
3.4.4 Configuring Timing and CSDB Frames . 29
3.4.5 Writing and Reading Data . 30
3.4.6 Stopping and Cleaning-up . 30

3.5 Standard Serial (non-CSDB) Programming Examples . 31
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board iii
List of Figures

August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

Table of Figures
Chapter 1 Introduction . 1
1-1 Photo of the DNR-CSDB-509 Board ...4
1-2 CSDB Message Protocol ...6
1-3 RS-485 Topologies..7
1-4 UART Data Frames for RS-232 and RS-485...8
1-5 Logic Block Diagram: DNx-CSDB-509 Overview ..8
1-6 DNx-CSDB-509 Pinout Diagram..10
1-7 DNA-STP-508 Screw Terminal Panel Connections...11
1-8 Diagram of DNA-CSDB-509 Layer Position Jumper Settings13
1-9 Physical Layout of DNA-CSDB-509 Base Board (60x)..13
3-1 Frame Configuration Parameters ..23
A-1 Pinout and Photo of DNA-STP-62 Screw Terminal Panel ...32

DNx-CSDB-509 Serial Communication Board
Chapter 1 1

Introduction
Chapter 1 Introduction

This document outlines the feature set and use of the DNx-CSDB-509 serial
communication boards.

CSDB-509 boards are 8-port serial communication interfaces for the Cube and
RACK chassis. The CSDB-509 provides fully isolated software-configurable
Commercial Standard Digital Bus (CSDB), RS-232, or RS-485 interfaces.

This chapter contains the following sections:

• Organization of this Manual (Section 1.1)

• CSDB-509 Board Overview (Section 1.2)

• Features (Section 1.3)

• Indicators (Section 1.4)

• Specification (Section 1.5)

• Overview of CSDB (Section 1.6)

• Overview of RS-232, RS-485, & RS-422 Serial Interfaces (Section 1.7)

• Device Architecture (Section 1.8)

• Module Capabilities (Section 1.9)

• Wiring & Connections (pinouts) (Section 1.10)

• Jumper Settings for CSDB-509 Boards for the Cube (Section 1.11)

1.1 Organization
of this Manual

This DNx-CSDB-509 User Manual is organized as follows:

• Introduction
Chapter 1 provides an overview of the DNx-CSDB-509 serial
communication features, various models available, device architecture,
connectivity and logic.

• Programming with the High-Level API
Chapter 2 provides an overview of the how to create a session,
configure the session, and format relevant data with the Framework API.

• Programming with the Low-Level API
Chapter 3 describes low-level API commands for configuring and using
the DNx-CSDB-509 series boards.

• Appendix A - Accessories
Appendix A provides a list of accessories available for DNx-CSDB-509
board(s) including the DNA-STP-508 accessory screw terminal panel,
which serves as a convenient connection interface between the 62-pin
DB connector on the module and the individual cables for each of the
eight serial lines.

• Index
This is an alphabetical listing of the topics covered in this manual.

NOTE: A glossary of terms used with the PowerDNA Cube/RACK and I/O
boards can be viewed or downloaded from www.ueidaq.com.
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 1 2

Introduction
Manual Conventions
To help you get the most out of this manual and our products, please note that
we use the following conventions:

Tips are designed to highlight quick ways to get the job done or to reveal
good ideas you might not discover on your own.

NOTE: Notes alert you to important information.

CAUTION! Caution advises you of precautions to take to avoid injury, data loss,
and damage to your boards or a system crash.

Text formatted in bold typeface generally represents text that should be entered
verbatim. For instance, it can represent a command, as in the following
example: “You can instruct users how to run setup using a command such as
setup.exe.”

Bold typeface will also represent field or button names, as in “Click Scan
Network.”

Text formatted in fixed typeface generally represents source code or other text
that should be entered verbatim into the source code, initialization, or other file.

Examples of Manual Conventions

Before plugging any I/O connector into the Cube or RACKtangle, be
sure to remove power from all field wiring. Failure to do so may
cause severe damage to the equipment.

Usage of Terms

Throughout this manual, the term “Cube” refers to either a PowerDNA Cube
product or to a PowerDNR RACKtanglerack mounted system, whichever is
applicable. The term DNR is a specific reference to the RACKtangle, DNA to
the PowerDNA I/O Cube, and DNx to refer to both.
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 1 3

Introduction
1.2 CSDB-509
Board
Overview

The DNx-CSDB-509 boards are 8-port serial communications interfaces for
Cube and RACK I/O chassis. The boards offer fully isolated software-
configurable Commercial Standard Digital Bus (CSDB), RS-232 or RS-485
interfaces. The board is an ideal interface to serial based avionics as well as
general purpose serial I/O.

1.2.1 Baud Rates DNx-CSDB-509 boards support both 12.5 kbaud and 50 kbaud data rates in
CSDB mode as well as transfer rates up to 1 Mbaud in RS-485 mode or up to
256 kbaud in RS-232 mode. It also supports communications at 12, 12.5 and 50
kbaud with better than 0.1% data rate accuracy. Baud rates based on integer
divisors of 4.125 MHz or 1.8415 MHz are also supported.

1.2.2 Interface
Modes

Based upon an industry standard UART on each port, the board supports both
half- and full-duplex modes for RS-422/485 operation.

The DNx-CSDB-509 boards are compatible with a wide variety of legacy
avionics devices. The boards support RS-422 point to point or network
applications when used in RS-485 mode and provide 200Ω software selectable
TX and/or RX termination for RS-485 communications. In RS-232 mode, the
board provides TX/RX as well as the standard RTS and CTS hardware hand
shaking required by many external serial devices.

1.2.3 Accessories All connections to the CSDB-509 are through a 62-pin dSub connector.
However, the DNA-CBL-62 series cable and the DNA-STP-508 breakout board
can optionally be used to bring out each port to easy-to-use 9-pin dSubs.

1.2.4 Software
Support

The DNx-CSDB-509 product includes a custom UEI CSDB library that
implements API for configuring one or more CSDB-509 serial ports as CSDB
ports. The CSDB API sits on top of the PowerDNA low-level API.

The DNx-CSDB-509 is supported by all the popular operating systems and
programming languages with a powerful, yet easy to use API. Window users
may also take advantage of the UEIDAQ Framework which provides an
extremely simple and complete software interface for programmers as well as
supporting most data acquisition and control applications, (e.g. LabVIEW,
MATLAB).

1.3 Features The following is a summary of DNx-CSDB-509 features:

• Eight (8) independent ports

• Each port software-configurable as CSDB, RS-232, or RS-422/485

• Supports 12.5 kbit/s and 50 kbit/s baud rates in CSDB mode

• Configurable to a maximum speed of 256 kbit/s for RS-232
and 1 Mbit/s for RS-422/485

• Completely independent bit rate settings for every port

• 350 V isolation between ports, and between ports and circuitry; 15 kV
ESD

• Compatible with RS-422 networks when used in RS-485 mode

• Half- and full-duplex support for RS-485
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 1 4

Introduction
1.4 Indicators The DNx-CSDB-509 indicators are described in Table 1-1 and illustrated in
Figure 1-1.

Figure 1-1 Photo of the DNR-CSDB-509 Board

Table 1-1 CSDB-509 Indicators

LED Name Description

RDY Indicates board is powered up and operational

STS Indicates which mode the board is running in:

• OFF: Configuration mode, (e.g., configuring channels,
running in point-by-point mode)

• ON: Operation mode, (e.g., running in VMap mode)

DB-62 (female)
62-pin I/O connector

RDY LED
 STS LED

DNR bus
connector
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 1 5

Introduction
1.5 Specification The technical specification for the DNx-CSDB-509 is provided in the table
below:

Table 1-2 . DNx-CSDB-509 Technical Specifications
General Specifications
Number ports 8
Serial Interfaces CSDB, RS-232, RS-422/485,

per-port software-configurable
Supported baud rates:
 CSDB
 RS-232
 RS-422/485

12.5 kbaud or 50 kbaud
Standard rates up to 250 kbaud
Standard rates to 1 Mbaud

Supported Baud rates Integer divisors of 4.124 MHz or 1.8415 Mhz
RS-422/485 Modes: Half- and full- duplex
Hardware Transceiver MAX3160E (w/ fail-safe RX termination)
UART Controller 16550C FPGA emulation
UART Base Clock 66 MHz or 24 MHz
FIFO Size 1024 (input and output)
Protection 350 V chan-to-chan isolation; 15 kV ESD

protection. Does not meet CSDB 115VAC
protection specification

Power Consumption 2-5W (CSDB mode with max current drive)
Operating Temperature Tested -40 to +85 °C
Operating Humidity 95%, non-condensing
Vibration IEC 60068-2-6
 IEC 60068-2-64

5 g, 10-500 Hz, sinusoidal
5 g (rms), 10-500 Hz, broad-band random

Shock IEC 60068-2-27 50 g, 3 ms half sine, 18 shocks @ 6 orientations
30 g, 11 ms half sine, 18 shocks @ 6 orientations

MTBF 290,000 hours
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 1 6

Introduction
1.6 Overview of
CSDB

The Commercial Standard Digital Bus (CSDB) is a unidirectional asynchronous
bus, formerly known as the Collins Standard Digital Bus.

Data is transmitted over an interconnect cable using devices compliant with the
RS-422A standard. RS-422A dictates that only one device can transmit and up
to ten devices can receive.

The CSDB standard conforms to the following specifications:

• Two bus speeds are supported: low bus speed 12,500 bps (+-0.1%) and
high bus speed 50,000 bps (+-0.1%).

• Data is transmitted using the NRZ (non return to zero) format with a logic
"1" positive and "0" negative. Start bits are logic "0" and stop bits logic
"1”.

• Data is sent in frames consisting of a synchronization block followed by
a number of message blocks.

• A frame is defined from the start of a sync block to the start of the next
sync block.

• A sync block consists of the sync character (0xA5) repeated N times.

• A message block consists of an address byte, followed by a status byte,
followed by 6 or 8 data bytes.

• Bytes within the sync or message blocks are spaced in time by a fixed
interbyte idle delay.

• Blocks are spaced in time by a fixed interblock idle delay.

• Frames are transmitted at a fixed rate.

Figure 1-2 CSDB Message Protocol

1.6.1 CSDB-509
CSDB Support

The DNx-CSDB-509 is a modified version of the DNx-SL-508 that includes fine
control of the interbyte and interblock delay.

The CSDB-509 supports RS-485 full duplex which is electrically equivalent to
RS-422 but allows for one driver and up to 32 receivers (instead of one
transmitter for 10 receivers on RS-422).

Refer to Chapter 3 for more information regarding the CSDB library and low-
level API implementation. Refer to Chapter 2 for CSDB high-level Framework
implementations.

SYNC
Block

“A5” bytes

Inter-
Block
Time

Message
Block

#1

Inter-
Block
Time

Message
Block

#2

Inter-
Block
Time

Message
Block

N

Idle
Time

Frame Time

t

August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 1 7

Introduction
1.7 Overview of
RS-232, RS-485,
& RS-422 Serial
Interfaces

Serial ports send and receive data one bit at a time over a serial line (composed
of a send, a receive, and one common ground wire).

RS-232 is a standard for serial binary data interconnection between a DTE (Data
terminal equipment) and a DCE (Data communication equipment) and normally
operates in a bipolar range of -10V to 10V.

RS-485 (i.e., EIA-485) is a physical electrical specification of a two-wire, half-
duplex, multipoint serial connection. A full duplex RS-485 system can be
constructed by using two twisted-pair connections (transmit/receive pairs)
together as shown in Figure 1-3.

UART data frames for RS-232 and RS-485 are shown in Figure 1-4.

RS- is an abbreviation for "Recommended Standard”.

Figure 1-3 RS-485 Topologies

-50 Master

Tx Tx Tx
Rx Rx Rx

Slave 1 Slave 2 Slave n

Two-wire Twisted-Pair Half Duplex Network with 240 Terminating Resistors

Four-wire Twisted-Pair Full Duplex Network with 240 Terminating Resistors

TX+

TX-
RX+

RX-

Tx Tx Tx
Rx Rx Rx

Slave 1 Slave 2 Slave n

TX+

TX-
RX+

RX-

240

-50 Master

240 240

240 240

240
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 1 8

Introduction
Figure 1-4 UART Data Frames for RS-232 and RS-485

1.8 Device
Architecture

The architecture of the DNx-CSDB-509 is illustrated in the block diagram shown
in Figure 1-5.

Figure 1-5 Logic Block Diagram: DNx-CSDB-509 Overview

Serial electrical impulses are received by and transmitted to a MAX3106E serial
transceiver chip via the DB-62 connector. The MAX3106E is a multiprotocol
transceiver that implements the RS-232/RS-485/RS-422 protocols by handling
transmission/reception between the serial line and the UART16550.

Data

RS-232

RS-485

S 0 1 2 3 4 5 6 7 P S IdleIdle

1 0 0 1 1 0 1 1 0

+5V

-5V

5V

0V

5V

0V

Example of UART Data Frame (0x 9 8 Data Bits, Odd Parity, 1 Stop Bit)

TX+

TX-

P0

P1

P6

P7

D
B

-6
2

C
on

ne
ct

or

32
-b

it
66

-M
H

z
bu

s

RS-232/485/CSDB
Transceiver

RS-232/485/CSDB
Transceiver

RS-232/485/CSDB
Transceiver

RS-232/485/CSDB
Transceiver

N
IS

 F
PG

A
C

on
tr

ol
 L

og
ic

.

.

.

16550C UART
Controller

16550C UART
Controller

16550C UART
Controller

16550C UART
Controller
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 1 9

Introduction
The transceiver and controller are isolated from each other by a high-speed
isolation integrated circuit (IC) capable of withstanding 350 V channel-to-
channel or 15 kV ESD. There are eight MAX3106E » isolation »
UART16550 structures, one per port; isolation is per-port.

The UART16550 is in turn controlled by a FPGA Control Chip, the board control
chip. FPGA works in conjunction with the core module logic of the DNx chassis.

The CSDB-509 board consists of two PC boards, one of which is a 60x Base
Board and another, which is the eight port CSDB-509-specific I/O board.The
509-specific board plugs into a bus connector on the base board.

1.9 Module
Capabilities

The CSDB-509 transmits and receives data compliant with the RS-422A
standard. When configured as a CSDB port, CSDB-509 supports two bus
speeds: low bus speed 12,500 bps and high bus speed 50 kbit/s.

If the CSDB-509 port is used as a standard serial device using the RS-232 or
RS-485 standard (non-CSDB mode), the controller is capable of communicating
at speeds up to 256 kbit/s for RS-232 and 1 Mbit/s for RS-485. When in RS-485
mode, the CSDB-509 is compatible with RS-422 networks.

The UART16550 runs at a base-clock frequency of 66MHz, with a FIFO size of
1024 bytes.

Each port has independently programmable when used as a standard serial
device:

• Baud/bit rate

• UART interrupt

• Timeout interrupt

• TX/RX FIFO interrupt

• Error interrupts (4 per port)

1.10 Wiring &
Connections
(pinouts)

The following signals are located at the DB-62 connector on the CSDB-509
board:

• GNDn - Isolated ground for the corresponding serial port

• TXDn/RXDn RS-232: Transmit/Receive

• RTSn/CTSn RS-232: Request to Send / Clear to Send

• TXn+/TXn- RS-422/485: Transmit pair

• RXn+/RXn- RS-422/485: Receive pair

The 62-pin female D-Sub connector on the CSDB-509 is divided into eight 9-pin
serial ports as shown in the pinout of Figure 1-6.

A user can connect eight serial lines to this connector either through a custom
made cable or by connecting to a DNA-STP-508 accessory panel, as described
in “Preferred Configuration Using an Accessory Terminal Panel” on page 11.
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 1 10

Introduction
Figure 1-6 DNx-CSDB-509 Pinout Diagram

Gndn Isolated ground for the corresponding

Serial Port “n”

TXn/RXn RS-232 Transmit/Receive, Port n

RTSn/CTSn RS-232: Request To Send / Clear To Send

TXn+/TXn- RS-485: Transmit Pair, Port n

RXn+/RXn- RS-485:Receive Pair, Port n

— No Internal Connection

SHIELD

 CSDB/
 232 422/485
Pin signal signal
1 - -
2 RTS1 TX1+
3 - -
4 RX2 RX2+
5 RTS2 TX2+
6 Gnd3 Gnd3
7 RX3 RX3+
8 RTS3 TX3+
9 RX4 RX4+
10 RTS4 TX4+
11 - -
12 RTS5 TX5+
13 - -
14 RX6 RX6+
15 RTS6 TX6+
16 Gnd7 Gnd7
17 RX7 RX7+
18 RTS7 TX7+
19 - -
20 RTS8 TX8+
21 - -

 CSDB/
 232 422/485
Pin signal signal
22 Gnd1 Gnd1
23 TX1 TX1-
24 - -
25 CTS2 RX2-
26 TX2 TX2-
27 - -
28 CTS3 RX3-
29 TX3 TX3-
30 CTS4 RX4-
31 TX4 TX4-
32 - -
33 TX5 TX5-
34 Gnd5 Gnd5
35 CTS6 RX6-
36 TX6 TX6-
37 - -
38 CTS7 RX7-
39 TX7 TX7-
40 Gnd8 Gnd8
41 TX8 TX8-
42 - -

 CSDB/
 232 422/485
Pin signal signal
43 CTS1 RX1-
44 RX1 RX1+
45 Gnd2 Gnd2
46 - -
47 - -
48 - -
49 - -
50 - -
51 Gnd4 Gnd4
52 - -
53 CTS5 RX5-
54 RX5 RX5+
55 Gnd6 Gnd6
56 - -
57 - -
58 - -
59 - -
60 - -
61 CTS8 RX8-
62 RX8 RX8+
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 1 11

Introduction
1.10.1 Preferred
Configuration
Using an
Accessory
Terminal
Panel

Figure 1-7 shows a DNA-CBL-62 62-conductor cable, which is designed to
connect the CSDB-509 board to a DNA-STP-508 accessory terminal panel.

The DNA-STP-508 accessory panel provides a convenient interface for
connecting the eight serial cables for the serial ports to the CSDB-509 board.
The panel accepts eight 9-pin DB-9 connectors and also has eight screw
terminal blocks that may be used for individual wire connections, if preferred.

The eight DB-9 cable connectors are labeled JS1 to JS8 and the eight 5-terminal
screw terminal blocks are labeled JT1 through JT8, as shown in Figure 1-7.

Figure 1-7 DNA-STP-508 Screw Terminal Panel Connections

DNA-STP-508

DNx-CSDB-509
 Board

DB-62
Connector

DNA-CBL-62
Screw Terminal Blocks (8)

DB-9
Cable
Connectors

DB-62 Connector

for 8 serial
lines

for 8 serial lines

JT1 JT3 JT5 JT7

JS1 JS3 JS5 JS7

JS2 JS4 JS6 JS8

JT2 JT4 JT6 JT8
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 1 12

Introduction
1.10.2 Pinout of
DNA-STP-508
Panel

The following diagram shows the pinout connections for the DNA-STP-508
panel.

D
B

-6
2

P

in
 N

o
.

2
3

2
S

ig
n

al

4
8

5
S

ig
n

al

D
B

-9

P
in

 N
o

.

D
B

-6
2

P

in
 N

o
.

2
3

2
S

ig
n

al

4
8

5
S

ig
n

al

D
B

-9

P
in

 N
o

.

D
B

-6
2

P

in
 N

o
.

2
3

2
S

ig
n

al

4
8

5
S

ig
n

al

D
B

-9

P
in

 N
o

.

D
B

-9

C
o

n
n

e
ct

o
r

1 – – 22 Gnd1 Gnd1 5 43 CTS1 RX1– 8
JS1

2 RTS1 TX1+ 7 23 TX1 TX1– 3 44 RX1 RX1+ 2

3 – – 24 – – 45 Gnd2 Gnd2 5

JS24 RX2 RX2+ 2 25 CTS2 RX2– 8 46 – –

5 RTS2 TX2+ 7 26 TX2 TX2– 3 47 – –

6 Gnd3 Gnd3 5 27 – – 48 – –

JS37 RX3 RX3+ 2 28 CTS3 RX3– 8 49 – –

8 RTS3 TX3+ 7 29 TX3 TX3– 3 50 – –

9 RX4 RX4+ 2 30 CTS4 RX4– 8 51 Gnd4 Gnd4 5

JS410 RTS4 TX4+ 7 31 TX4 TX4- 3 52 – –

11 – – 32 – –

12 RTS5 TX5+ 7 33 TX5 TX5– 3 53 CTS5 RX5– 8
JS5

13 – – 34 Gnd5 Gnd5 5 54 RX5 RX5+ 2

14 RX6 RX6+ 2 35 CTS6 RX6– 8 55 Gnd6 Gnd6 5
JS6

15 RTS6 TX6+ 7 36 TX6 TX6– 3 56

57 – –

JS7
16 Gnd7 Gnd7 5 37 – – 58 – –

17 RX7 RX7+ 2 38 CTS7 RX7– 8 59 – –

18 RTS7 TX7+ 7 39 TX7 TX7– 3 60 – –

19 – – 40 Gnd8 Gnd8 5 61 CTS8 RX8– 8

JS820 RTS8 TX8+ 7 41 TX8 TX8– 3 62 RX8 RX8+ 2

21 – – 42 – –
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 1 13

Introduction
1.11 Jumper
Settings for
CSDB-509
Boards for the
Cube

The base board of a DNA-CSDB-509 has a jumper block that assigns the
position of the module within a PowerDNA Cube. The jumpers must be set to
match the physical position of an I/O board of CSDB-509 board in the Cube.

This function is not required with DNR/F (RACK) board versions.

NOTE: Since all CSDB-509s are assembled in Cubes before shipment to a
customer, you should never have to change a jumper setting unless you
change a CSDB-509 from one position to another in the field.

A diagram of the jumper block is shown in Figure 1-8. To set the CSDB-509
address, place jumpers as shown.

Figure 1-8 Diagram of DNA-CSDB-509 Layer Position Jumper
Settings

Figure 1-9 Physical Layout of DNA-CSDB-509 Base Board (60x)

Layer’s Position as marked on the Faceplate*

I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6
Jx

 P
in

s

9-10

11-12

13-14

15-16

* All I/O Layers are sequentially enumerated from top to the bottom of the Cube

 - Open - Closed

DNA 120-pin Bus Connector

DB-62 I/O Connector

Power
Connector

External Circuits

16

J1

15

21

8
6

43
5

7

1413

1211

109

See Figure 1-7 for
jumper locations for
setting CSDB-509
board position.
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 2 14

Programming with the High-level API
Chapter 2 Programming with the High-level API

This chapter provides the following information about using the UeiDaq high-
level Framework API to control the DNx-CSDB-509.

• About the High-level Framework (Section 2.1)

• Using High-level API to Program CSDB Ports (Section 2.2)

• Using High-level API to Program Standard Serial Ports (Section 2.3)

2.1 About the
High-level
Framework

UeiDaq Framework is object oriented and its objects can be manipulated in the
same manner from different development environments, such as Visual C++,
Visual Basic, or LabVIEW.

UeiDaq Framework is bundled with examples for supported programming
languages. Examples are located under the UEI programs group in:

• Start » Programs » UEI » Framework » Examples

The following sections in this chapter focus on C++ API examples, but the
concept is the same no matter what programming language you use.

Please refer to the UeiDaq Framework User Manual for more information on use
of other programming languages.

2.2 Using High-
level API to
Program
CSDB Ports

The following sections describe programming CSDB ports using the high-level
Framework.

2.2.1 Creating a
CSDB Session

The Session object controls all operations on your PowerDNA device.
Therefore, the first task is to create a session object:

CUeiSession session;
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 2 15

Programming with the High-level API
2.2.2 Configuring
the CSDB
Ports

The Framework uses resource strings to select which device, subsystem, and
channels to use within a session. The resource string syntax is similar to a web
URL:

<device class>://<IP address>/<Device Id>/
<Subsystem><Channel list>

For PowerDNA, the device class is pdna.

For example, the following resource string selects serial ports 0,2,3 on device 1
at IP address 192.168.100.2:

pdna://192.168.100.2/Dev1/CSDB0,2,3

In addition to the resource, you will also configure:

• Bit rate (bits per second): 12500 or 50000

• Parity (odd or even): 0 for even, any value > 0 for odd

• The CSDB message block size: the number of bytes in a message block
including the address and status bytes

• The number of CSDB message blocks per frame

• The inter-byte delay within a message block in microseconds

• The inter-block delay within a frame in microseconds

• The period at which the frame is transmitted in microseconds

mySession.CreateCSDBPort(
 "pdna://192.168.100.3/Dev1/CSDB0,1",
 bps,
 parity,
 blockSize,
 numMessagesPerFrame,
 interByteDelay,
 interBlockDelay,
 framePeriod);

2.2.3 Configuring
the CSDB
Timing

You need to configure the CSDB-509 to use the “messaging” timing mode.

When programming messaging timing, you typically need to pass a
bufferSize value and a refreshRate value.

The message I/O parameters are ignored when setting up messaging for CSDB
ports because these parameters are set by the protocol:

session.ConfigureTimingForMessagingIO(1, 0.0);
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 2 16

Programming with the High-level API
2.2.4 Reading
CSDB Data

CSDB data is represented by the structure tUeiCSDBMessage:

typedef struct
{

 /// address byte of the message
 unsigned char address;

 /// status byte of the message
 unsigned char status;

 /// number of meaningful data bytes in payload
 /// (block size – 2)

 unsigned char dataSize;

 /// payload bytes of the message.
 unsigned char data[10];

} tUeiCSDBMessage;

Reading data from the CSDB-509 is done using a reader object. As there is no
multiplexing of data (contrary to what’s being done with AI, DI, or CI sessions),
you need to create one reader object per serial port to be able to read from each
port in the port list.

The CSDB frame is constantly being transmitted by the transmitter node. The
reader object returns data from the most recent CSDB frame.

The reader object can either read the entire CSDB frame as an array of
tUeiCSDBMessage, or it can read a single message block specified by its
index in the frame.

The following sample code shows how to create a reader object tied to port 1
and read the entire frame and a single message block.

// Create a reader and link it to the session’s stream, port 1
reader = new CUeiCSDBReader(session.GetDataStream(), 1);

// Read up to 10 messages,
// numMessagesRead contains the number of messages
// actually received which can’t be higher than
// the number of messages per frame.
tUeiCSDBMessage frame[10];
reader->ReadFrame(10, frame, &numMessagesRead);

// Read message block at index 1
tUeiCSDBMessage block;
reader->ReadMessageByIndex(1, &block);
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 2 17

Programming with the High-level API
2.2.5 Writing CSDB
Data

Writing data to the CSDB-509 is done using a writer object. As there is no
multiplexing of data (contrary to what’s being done with AI, DI, or CI sessions),
you need to create one writer object per serial port to be able to write from each
port in the port list.

The CSDB frame is constantly being transmitted by the transmitter node. The
writer object updates data which will be transmitted on the next CSDB frame.

The writer object can either update the entire CSDB frame as an array of
tUeiCSDBMessage or it can update a single message block specified by its
index in the frame.

The following sample code shows how to create a writer object tied to port 0 and
write the entire frame and a single message block.

// Create a writer and link it to the session’s stream, port 0
writer = new CUeiCSDBWriter(session.GetDataStream(), 1);

// Write up to 10 messages,
// numMessagesWritten contains the number of messages
// actually written which can’t be higher than the
// number of messages per frame.
tUeiCSDBMessage frame[10];
writer->WriteFrame(10, frame, &numMessagesWritten);

// Update message block at index 1
tUeiCSDBMessage block;
writer->WriteMessageByIndex(1, &block);

2.2.6 Cleaning-up
the CSDB
Session

The session object cleans itself up when it goes out of scope or when it is
destroyed. However, you can manually clean up the session (to reuse the object
with a different set of channels or parameters).

session.CleanUp();
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 2 18

Programming with the High-level API
2.3 Using High-
level API to
Program
Standard
Serial Ports

The CSDB-509 can be used as a standard serial device, with the same
functionality as the SL-508 board. The following sections provide details about
programming the CSDB-509 using UEI’s high-level Framework API; however,
note that Section 2.3.1 thru Section 2.3.6 are not supported when using the
CSDB protocol.

The CSDB API sits on top of the PowerDNA low-level API. The following
examples only use the PowerDNA library, not the UEI CSDB library.

2.3.1 Creating a
Standard
Serial Session

The Session object controls all operations on your PowerDNA device.
Therefore, the first task is to create a session object:

CUeiSession session;

2.3.2 Configuring
Standard
Serial Ports

Framework uses resource strings to select which device, subsystem, and
channels to use within a session. The resource string syntax is similar to a web
URL:

<device class>://<IP address>/<Device Id>/
<Subsystem><Channel list>

For PowerDNA, the device class is pdna.

For example, the following resource string selects serial ports 0,2,3 on device 1
at IP address 192.168.100.2:

pdna://192.168.100.2/Dev1/Com0,2,3

In addition to the resource, you will also configure:

• Port mode (RS-232, RS-485 half-duplex or RS-485 full duplex)

• Bit rate (bits per second)

• Number of data bits

• Parity

• Number of stop bits

// Configure Com ports 0, 2 and 3 on device 1
session.CreateSerialPort(
 “pdna://192.168.100.2/Dev1/Com0,2,3”,
 UeiSerialModeRS232,
 UeiSerialBitsPerSecond57600,
 UeiSerialDataBits8,
 UeiSerialParityNone,
 UeiSerialStopBits1);
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 2 19

Programming with the High-level API
2.3.3 Configuring
Standard
Serial Timing

You need to configure the CSDB-509 to use the “messaging” timing mode. A
message is represented by an array of bytes:

When the CSDB-509 is used as a standard serial device, it can be programmed
to wait for a certain number of bytes to be received before notifying the session.

It is also possible to program the maximum amount of time to wait for the
specified number of bytes before notifying the session.

The following sample shows how to configure the messaging I/O mode in
standard serial mode to be notified when 10 bytes have been received or every
second, whichever is less. (Note that if the serial port receives fewer than 10
bytes per second, it will return whatever number of bytes are available every
second).

session.ConfigureTimingForMessagingIO(10, 1.0);

2.3.4 Reading
Standard
Serial Data

Reading data from the CSDB-509 is done using a reader object. As there is no
multiplexing of data (contrary to what’s being done with AI, DI, or CI sessions),
you need to create one reader object per serial port to be able to read from each
port in the port list.

The following sample code shows how to create a reader object tied to port 1
and read up to 10 bytes from a standard serial port.

// Create a reader and link it to the session’s stream, port 1
reader = new CUeiSerialReader(session.GetDataStream(), 1);

// read up to 10 bytes, numBytesRead contains the
// number of bytes actually received.

Unsigned char bytes[10];
reader->Read(10, bytes, &numBytesRead);

2.3.5 Writing
Standard
Serial Data

Writing data to the CSDB-509 is done using a writer object. As there is no
multiplexing of data (contrary to what’s being done with AO, DO, or CO
sessions), you need to create one writer object per serial port to be able to write
to each port in the port list.

The following sample code shows how to create a writer object tied to port 2 and
send one byte to a standard serial port.

// Create a writer and link it to the session’s stream, port 2
writer = new CUeiSerialWriter(session.GetDataStream(), 2);

// Write 1 byte, numBytesWritten contains the
// number of bytes actually sent

unsigned char bytes[2] = {0x23, 0};
writer->Write(1, bytes, &numBytesWritten);

2.3.6 Cleaning-up
the Standard
Serial Session

The session object cleans itself up when it goes out of scope or when it is
destroyed. However, you can manually clean up the session (to reuse the object
with a different set of channels or parameters).

session.CleanUp();
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 3 20

Programming with the Low-level API
Chapter 3 Programming with the Low-level API

This chapter provides the following information about programming the
DNx-CSDB-509 using the low-level API:

• About the Low-level API (Section 3.1)

• UEI CSDB Library (Section 3.2)

• CSDB Low-level Functions (Section 3.3)

• CSDB Low-level Programming Examples (Section 3.4)

• Standard Serial (non-CSDB) Programming Examples (Section 3.5)

3.1 About the
Low-level API

UEI’s low-level API provides direct access to the DAQBIOS protocol structure
and registers in C. The CSDB-509 requires both the PowerDNx libraries and a
custom CSDB library for CSDB implementations.

The CSDB API sits on top of the PowerDNA low-level API. User code must call
the PowerDNA API to obtain a handle on the hardware and use that handle
when calling the CSDB API.

3.2 UEI CSDB
Library

The UEI CSDB library consists of custom API to configure one or more
CSDB-509 serial ports as CSDB ports. The CSDB API periodically transmits
CSDB frames and parses incoming frames.

The UEI CSDB library is implemented as a static library that will need to be
included in your project:

For Windows systems, the UEI CSDB library is named “ueicsdb.lib”:

• Add ueicsdb.lib to your Visual Studio project to call the CSDB API from
your application.

For Linux systems, the UEI CSDB library is named “libueicsdb.a”:

• Add “-l lueicsdb” to your compiler command line to call the CSDB
API from your application.
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 3 21

Programming with the Low-level API
3.3 CSDB
Low-level
Functions

Table 3-1 provides a summary of low-level CSDB-509-specific functions. CSDB
functions are described in detail in the Section 3.3.1 thru Section 3.3.8 below.

Table 3-1 Summary of Low-level API Functions for DNx-CSDB-509

Function Description

UeiCSDBConfigureChannel Configures a CSDB port (device channel)

UeiCSDBConfigureFrame Configures the CSDB frame transmitted on a given channel

UeiCSDBGetStatus Gets last comm error that occurred on a given device

UeiCSDBInitialize Initializes internal buffers and variables

UeiCSDBReadRxFrame Reads an array containing the message blocks received in the

most recent RX frame

UeiCSDBSetTxFrame Sets the address, status and data bytes of a message block

UeiCSDBStart Starts all configured CSDB channels

UeiCSDBStop Stops all configured CSDB channels
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 3 22

Programming with the Low-level API
3.3.1 UeiCSDBConfigureChannel()

int UeiCSDBConfigureChannel(int hd, int devn, int channel, int bps, int
parity)

Parameters:

Returns:

Status code: 0 upon success, negative upon error. Table 3-2 on page 24 lists all
CSDB-509-specific status codes.

Description:

Configures a serial port on a given device to work as a CSDB channel.

Note:

Parity is used for controlling the integrity of TX/RX data.

• RX: The CSDB-509 calculates the parity of received message characters
based on the parity parameter setting for a specific channel. The integrity
of the received data byte is determined by comparing the calculated parity
with the parity bit read in the incoming message.

• TX: The CSDB-509 calculates the parity based on the data to be transmitted
and based on the parity parameter for this channel. The calculated parity
bit is transmitted with the data.

Parity is calculated as follows:

• For Odd parity, the parity bit will be set to a 1 or 0 to make the total
number of ONES in the data byte odd.

• For Even parity, the parity bit is set to make the total number of ONES
even.

hd handle to the IOM where the serial device is located

devn ID of the serial device (zero based index)

channel ID of the channel to configure (zero based index)

bps channel speed in bits per second: possible values are
12.5 kbps and 50 kbps

parity 0 for even, 1 for odd (see NOTE below)
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 3 23

Programming with the Low-level API
3.3.2 UeiCSDBConfigureFrame()

int UeiCSDBConfigureFrame (int hd, int devn, int channel, int numMessages,
int blockSize, int interByteDelayUs, int interBlockDelayUs, int
framePeriodUs)

Parameters:

Returns:

Status code: 0 upon success, negative upon error. Table 3-2 on page 24 lists all
CSDB-509-specific status codes.

Description:

Configures the CSDB frame transmitted on a given channel. A CSDB frame is
composed of a SYNC block followed by one or more message blocks. Address,
status and data bytes in each Message Block are set to 0 by default. The
transmit frame is periodically transmitted. Refer to Figure 3-1 for parameter
relationships.

Figure 3-1 Frame Configuration Parameters

hd handle to the IOM where the serial device is located

devn ID of the serial device (zero based index)

channel ID of the channel to configure (zero based index)

numMessages number of message blocks to transmit

blockSize number of bytes in message blocks (including address
and status bytes): usually 6 or 8.

interByteDelayUs idle time between each byte in micro seconds

interBlockDelayUs idle time between each message block in micro seconds

framePeriodUs period of the frame in microseconds, this value must be
greater than the time taken to transmit the frame

framePeriodUs = Frame Time

...

(next Frame)SYNC
Block

Inter-block
Time

Message
Block

Message
Block N

Idle
Time

numMessages = Number of Message Blocks (including SYNC Block)

Message
Block

Inter-block
Time

Inter-block
Time

blockSize
=

Number of bytes
in a Message Block

interByteDelayUs
=

Idle time delay
inbetween byte
transmissions

represents a single SYNC byte (0xA5),
or a single address, status, or data byte

interBlockDelayUs
=

Idle time delay
inbetween Message
Block transmissions
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 3 24

Programming with the Low-level API
3.3.3 UeiCSDBGetStatus()

tUeiCSDBStatus UeiCSDBGetStatus (int hd, int devn)

Parameters:

Returns:

Status code of type tUeiCSDBStatus: 1 is waiting for frame, 0 is success,
negative numbers are last error. Table 3-2 below lists all status codes that this
function returns.:

Description:

Gets last comm error / status code that occurred on a given device.

hd handle to the IOM where the serial device is located

devn ID of the serial device (zero based index)

 1 UeiCSDBNoFrameAvailable Did not receive a complete frame yet

 0 UeiCSDBSuccess Success

-1 UeiCSDBInvalidId Handle or device parameter is incorrect

-2 UeiCSDBChannelNotFound Can't find a channel with specified id

-3 UeiCSDBDeviceNotFound Can't find a device with specified id

-4 UeiCSDBTimeout Timeout error

-5 UeiCSDBBadParameter Invalid parameter

-6 UeiCSDBChannelNotConfigured Specified channel is not configured

-7 UeiCSDBCommError Error occurred in the driver handling the serial device

-8 UeiCSDBRXFifoOverflowError RX FIFO overflow error

-9 UeiCSDBInvalidFrame Received invalid frame (no header detected, not enough
message blocks etc...)

-10 UeiCSDBInternalError Unrecoverable internal error, look at stderr output for details

Table 3-2 CSDB-509 Error / Status Codes Returned by API
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 3 25

Programming with the Low-level API
3.3.4 UeiCSDBInitialize ()

void UeiCSDBInitialize ()

Parameters:

none

Returns:

none

Description:

Initializes internal buffers and variables

3.3.5 UeiCSDBReadRxFrame()

int UeiCSDBReadRxFrame (int hd, int devn, int channel, int numMessages,
tUeiCSDBMessage * messages)

Parameters:

Returns:

Status code: 0 upon success, negative upon error. Table 3-2 on page 24 lists all
CSDB-509-specific status codes.

Description:

Reads RX FIFO and transfers message block data received in the most recent
RX frame to the messages array.

hd handle to the IOM where the serial device is located

devn ID of the serial device (zero based index)

channel ID of the channel to configure (zero based index)

numMessages maximum number of message blocks that can be
stored in the messages array

messages array containing the received message blocks
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 3 26

Programming with the Low-level API
3.3.6 UeiCSDBSetTxFrame()

int UeiCSDBSetTxFrame (int hd, int devn, int channel, int messageIndex,
tUeiCSDBMessage * message)

Parameters:

Returns:

Status code: 0 upon success, negative upon error. Table 3-2 on page 24 lists all
CSDB-509-specific status codes.

Description:

Sets the address, status and data bytes of a message block. Messages are
assembled in structures of type tUeiCSDBMessage:

typedef struct _UeiCSDBMessage

{

 unsigned char address; // address byte for the message

 unsigned char status; // status byte for the message

 unsigned char data[10];//data bytes* for the message

 // *Number of data bytes is block size - 2

} tUeiCSDBMessage;

3.3.7 UeiCSDBStart()

int UeiCSDBStart (int hd)

Parameters:

Returns:

Status code: 0 upon success, negative upon error. Table 3-2 on page 24 lists all
CSDB-509-specific status codes.

Description:

Starts all configured CSDB channels.

hd handle to the IOM where the serial device is located

devn ID of the serial device (zero based index)

channel ID of the channel to configure (zero based index)

messageIndex zero based index of the message block to update

message tUeiCSDBMessage structure containing the
message content

hd handle to the IOM where the serial device is located
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 3 27

Programming with the Low-level API
3.3.8 UeiCSDBStop()

int UeiCSDBStop (int hd)

Parameters:

Returns:

Status code: 0 upon success, negative upon error.Table 3-2 on page 24 lists all
CSDB-509-specific status codes.

Description:

Stops all configured CSDB channels.

3.3.9 PowerDNx
Low-level
Functions

Low-level functions that are not specific to the CSDB-509 are described in detail
in the PowerDNA API Reference Manual.

For additional information regarding low-level programming, refer to the
PowerDNA API Reference Manual located in:

• On Linux systems:
<PowerDNA-x.y.z>/doc

• On Windows systems:
Start » All Programs » UEI » PowerDNA » Documentation

NOTE: When the DNx-CSDB-509 is used as a standard serial device in non-
CSDB mode, the CSDB-509 uses the same API functions as the
DNx-SL-508 / SL-501 boards. CSDB-specific functions unique to the
DNx-CSDB-509 are found only in the UEI CSDB library and described
only in this manual.

hd handle to the IOM where the serial device is located
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 3 28

Programming with the Low-level API
3.4 CSDB
Low-level
Programming
Examples

Application developers are encouraged to explore existing source code
examples when first programming the CSDB-509. Sample code provided with
the installation is self-documented and serves as a good starting point.

CSDB code examples are located in the following directories:

• For Linux: <UeiCSDB-x.y.z>/src/DAQLib_Samples

• For Windows: Start » All Programs » CSDB » PowerDNA » Examples

Section 3.4.1 thru Section 3.4.6 step through a programming example for the
CSDB-509. The provided example relies on the following hardware conditions:

• A CSDB-509 device is installed in slot DEVN in an IOM

• CSDB-509 channels (ports) 1 and 0 are enabled

• Both channels are configured as 50 kbits/s baud rate with odd parity
enabled

• Channel 0 TX pins are externally wired to feed Channel 1 RX pins

• Channel 1 is reading serial data transmitted from channel 0

3.4.1 Including
Library
Header Files

The first step is to include the PowerDNA low-level API and UEI CSDB library
header files.

#include "PDNA.h"

#include "UeiCSDBLib.h"

3.4.2 Opening
Communication
between IOM
and Host PC

A handle on the IOM must be created to identify where the CSDB-509 is located
to open communication:

DqOpenIOM(IOM_IPADDR0, DQ_UDP_DAQ_PORT, TIMEOUT_DELAY,
&hd0, &DQRdCfg);

3.4.3 Initializing and
Configuring
Channels

The following initializes the CSDB library:

UeiCSDBInitialize();

The channel configuration API sets channel speed (50 kbit/second in this
example) and parity (odd).

UeiCSDBConfigureChannel(hd0, // Handle to IOM
 DEVN, // Device # in IOM
 0, // Channel #
 50000, // baud rate
 1 // parity
);

UeiCSDBConfigureChannel(hd0, // Handle to IOM
 DEVN, // Device # in IOM
 1, // Channel #
 50000, // baud rate
 1 // parity
);
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 3 29

Programming with the Low-level API
3.4.4 Configuring
Timing and
CSDB Frames

The following API configures the CSDB frame transmitted on a given channel,
(e.g., block size, delays).

UeiCSDBConfigureFrame(hd0, // Handle to IOM
 DEVN, // Device # in IOM
 0, // Channel #
 NUM_MESSAGES, // # Messages in Frame
 BLOCK_SIZE, // # bytes in Message
 100, // Idle time between bytes
 2000, // Idle time between Messages
 200000);// Frame (SYNC to SYNC time)

UeiCSDBConfigureFrame(hd0, // Handle to IOM
 DEVN, // Device # in IOM
 1, // Channel #
 NUM_MESSAGES, // # Messages in Frame
 BLOCK_SIZE, // # bytes in Message
 100, // Idle time between bytes
 2000, // Idle time between Messages
 200000 // Frame (SYNC to SYNC time)
);

Frame configuration parameters are detailed in Figure 3-1 on page 23.
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 3 30

Programming with the Low-level API
3.4.5 Writing and
Reading Data

The following code initializes message block 0 in the frame; each message
block can be initialized similarly:

message.address = 0x10;
message.status = 0x1A;
for (i = 0; i < 6; i++) {
 message.data[i] = message.address + i;
}
UeiCSDBSetTxFrame(hd0, // Handle to IOM
 DEVN, // Device # in IOM
 0, // Channel #
 0, // Message block index #
 &message // address, status & data bytes
); // in Message block

The following starts periodic frame transmission, checks status, and updates
message blocks periodically transmitted by port 0 and received on port 1:

UeiCSDBStart(hd0);
count = 0;
while (!stop &&
 (UeiCSDBSuccess == UeiCSDBGetStatus(hd0, DEVN))) {
 message.address = 0x10 + (count % 16);
 for (i = 0; i < 6; i++) {
 message.data[i] = message.address + i;
 }
 UeiCSDBSetTxFrame(hd0, DEVN, 0, 3, &message);

 UeiCSDBReadRxFrame(hd0, DEVN, 1, NUM_MESSAGES,
rxMessages);
 for (i = 0; i < NUM_MESSAGES; i++) {
 printf("Message #%d: address=0x%x, status=0x%x,
data=[", i, rxMessages[i].address, rxMessages[i].status);
 for (j = 0; j < BLOCK_SIZE - 2; j++) printf("0x%x ",
rxMessages[i].data[j]);
 printf("]\n");
 }
}

3.4.6 Stopping and
Cleaning-up

The following API stops CSDB transmissions and stops the RX port from
receiving data.

UeiCSDBStop(hd0);

Closing the IOM cleans up connections and frees up resources.

DqCloseIOM(hd0);
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Chapter 3 31

Programming with the Low-level API
3.5 Standard
Serial
(non-CSDB)
Programming
Examples

To program the CSDB-509 as a standard serial device in non-CSDB mode,
please refer to sample programs for the SL-501/8 provided with the PowerDNA
installation. Sample code is self-documented and serves as a good starting
point.

Code examples are located in the following directories:

• For Linux: <PowerDNA-x.y.z>/src/DAQLib_Samples

• For Windows: Start » All Programs » UEI » CSDB » Examples

When the DNx-CSDB-509 is used as a standard serial device, the CSDB-509
uses the same API as the DNx-SL-508 / SL-501 boards. See “PowerDNx
Low-level Functions” on page 27 for PowerDNx API information.
August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
Appendix A 32

August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

 Appendix A

A.1 Accessories The following cables and STP boards are available for the CSDB-509 board.

DNA-CBL-62

This is a 62-conductor round shielded cable with 62-pin male D-sub connectors
on both ends. It is made with round, heavy-shielded cable; 2.5 ft (75 cm) long,
weight of 9.49 ounces or 269 grams; up to 10ft (305cm) and 20ft (610cm).

DNA-STP-62

The STP-62 is a Screw Terminal Panel with three 20-position terminal blocks
(JT1, JT2, and JT3) plus one 3-position terminal block (J2). The dimensions of
the STP-62 board are 4w x 3.8d x1.2h inch or 10.2 x 9.7 x 3 cm (with standoffs).
The weight of the STP-62 board is 3.89 ounces or 110 grams.

Figure A-1 Pinout and Photo of DNA-STP-62 Screw Terminal Panel

DNA-STP-508

A DNA-STP-508 screw terminal panel is an accessory that serves as a
convenient wiring interface between a 62-pin connector that plugs into a mating
connector on the CSDB-509 boards and either DB-9 serial cable connectors or
eight 5-pin screw terminal blocks on the DNA-STP-508 accessory panel.

62 42 21
61 41 20
60 40 19
59 39 18
58 38 17
57 37 16
56 36 15
55 35 14
54 34 13
53 33 12
52 32 11
51 31 10
50 30 9
49 29 8
48 28 7
47 27 6
46 26 5
45 25 4
44 24 3
43 23 2

22 1

SHIELD

DB-62 (female)
62-pin connector:

to J2 to JT1 to JT2 to JT3

JT3 — 20-position
terminal block:

44

4

47

GND

JT2 — 20-position
terminal block:

7

JT1 — 20-position
terminal block:

J2 — 5-position
terminal block:

5
4
3
2
1

Tel: 508-921-4600 www.ueidaq.com Vers: 4.5
Date: 08. 22. 2017 DNx-CSDB-509-ManualIX.fm

© Copyright 2017
United Electronic Industries, Inc.

August 2017 www.ueidaq.com
508.921.4600

© Copyright 2017
United Electronic Industries, Inc.

DNx-CSDB-509 Serial Communication Board
 Index 33

Index

A
Accessories 32
API 14, 20

B
Block diagram 8

C
Capabilities 9
Cleaning-up 17, 19
Configuring ports 15, 18
Configuring timing 15, 19
Contact ii
Creating a session 14, 18
CSDB library 20
CSDB Overview 3

D
DNA-CBL-62 11
DNA-STP-508 accessory panel 11
DNA-STP-62 32

F
Features 3
Framework 14

J
Jumper Settings 13

L
Layer position jumper settings 13
Low-level API 20
Low-level Programming Examples 28, 31

P
Physical layout 13
Pinout 10
Programming with the High-Level API 14
Programming with the Low-Level API 20

S
Serial communication 7
Setting Operating Parameters 4
Software API

reading data 16, 19
writing data 17, 19

Support ii

W
Website ii
Wiring 9

	DNx-CSDB-509 — User Manual
	Table of Contents
	Table of Figures
	Chapter 1 Introduction
	1.1 Organization of this Manual
	1.2 CSDB-509 Board Overview
	1.2.1 Baud Rates
	1.2.2 Interface Modes
	1.2.3 Accessories
	1.2.4 Software Support

	1.3 Features
	1.4 Indicators
	1.5 Specification
	1.6 Overview of CSDB
	1.6.1 CSDB-509 CSDB Support

	1.7 Overview of RS-232, RS-485, & RS-422 Serial Interfaces
	1.8 Device Architecture
	1.9 Module Capabilities
	1.10 Wiring & Connections (pinouts)
	1.10.1 Preferred Configuration Using an Accessory Terminal Panel
	1.10.2 Pinout of DNA-STP-508 Panel

	1.11 Jumper Settings for CSDB-509 Boards for the Cube

	Chapter 2 Programming with the High-level API
	2.1 About the High-level Framework
	2.2 Using High- level API to Program CSDB Ports
	2.2.1 Creating a CSDB Session
	2.2.2 Configuring the CSDB Ports
	2.2.3 Configuring the CSDB Timing
	2.2.4 Reading CSDB Data
	2.2.5 Writing CSDB Data
	2.2.6 Cleaning-up the CSDB Session

	2.3 Using High- level API to Program Standard Serial Ports
	2.3.1 Creating a Standard Serial Session
	2.3.2 Configuring Standard Serial Ports
	2.3.3 Configuring Standard Serial Timing
	2.3.4 Reading Standard Serial Data
	2.3.5 Writing Standard Serial Data
	2.3.6 Cleaning-up the Standard Serial Session

	Chapter 3 Programming with the Low-level API
	3.1 About the Low-level API
	3.2 UEI CSDB Library
	3.3 CSDB Low-level Functions
	3.3.9 PowerDNx Low-level Functions

	3.4 CSDB Low-level Programming Examples
	3.4.1 Including Library Header Files
	3.4.2 Opening Communication between IOM and Host PC
	3.4.3 Initializing and Configuring Channels
	3.4.4 Configuring Timing and CSDB Frames
	3.4.5 Writing and Reading Data
	3.4.6 Stopping and Cleaning-up

	3.5 Standard Serial (non-CSDB) Programming Examples

	Appendix A

