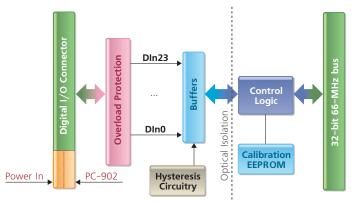
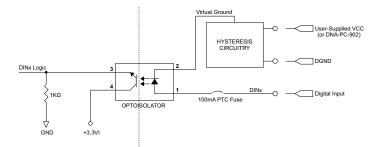
DNA-DIO-401 for use with "Cube" I/O chassis DNR-DIO-401 for use with "Cube" I/O chassis DNR-DIO-401 for use with RACKtangle™ I/O chassis A digital input channels Supports wide range of digital logic levels User-programmable hysteresis I/O throughput rate of 1KS/sec Requires external 7-36V (24V nominal) power source

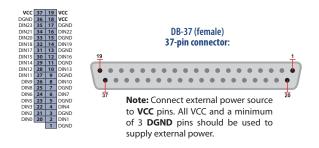

Supports UEIDaq Framework Data Acquisition Software Library for Windows. Linux and QNX drivers available. Visit our website for more details

General Description:


The DNA/DNR-DIO-401 are digital input boards designed for low-speed, high-reliability isolated industrial digital I/O. The DNA-DIO-401 is compatible with UEI's "Cube" chassis while the DNR-DIO-401 is designed for installation in the RACKtangle I/O chassis.

The DNA/DNR-DIO-401 features 24 digital input channels, I/O throughput rate of 1kHz, and offers 350Vrms isolation between layers. The board is compatible with 5-36V digital logic levels and can accept a wide range of user-supplied power sources (7 to 36V DC). In Cube based applications, the DNA-DIO-401 can be powered internally using a DNA-PC-912 power conversion layer. When a single DNA-PC-912 is used to power multiple DNA-DIO layers, total power consumption should not exceed 40W. Digital inputs on the DNA-DIO-401 use a unique programmable hysteresis feature which dramatically improves noise immunity of input signals. All digital inputs are protected with a 100mA PTC fuse and ESD/overvoltage protection device.

Block Diagram:


Simplified Input Channel Diagram

Technical Specifications:

recurrent oper incurrons.						
Number of channels	24 digital inputs					
Logic Level	5V - VCC					
Input FIFO	1024 samples					
Default Hysteresis Values	Lower DAC limit: 200 Upper DAC limit: 300					
Input High Voltage:	@7V	@12V	@24V	@36V		
(with default hysteresis)	4.5V	4.75V	10.5V	13V		
Input Low Voltage: (with default hysteresis)	@7V	@12V	@24V	@36V		
	4.25V	4V	6.75V	8.75V		
Input Protection	±40V over/under voltage, 7kV ESD					
Internal Sampling Rate	2 kHz					
I/O Throughput Rate	1 kHz max					
Power Requirements (VCC)	7-36V (24V nominal) - external source					
	or DNA-PC-912 internally					
Power Consumption	@7V	@12V	@24V	@36V		
	0.5W	0.6W	0.8W	1.6W		
Physical Dimensions	3.875" x 3.875" (98 x 98 mm)					
Operating Temp. Range	Tested -40 to +85 °C					
Operating Humidity	0 - 95%, non-condensing					
Isolation	350Vrms					

Pinout Diagram:

Connection Options:

Cable	Screw Terminal Panel	Description		
DNA-CBL-37S	DNA-STP-37	Shielded cable connection to 37-way terminal panel.		
DNA-CBL-37	DNA-STP-37	Ribbon cable connection to 37-way terminal panel.		
United Electropic In	dustrios las	1	http://www.upidag.com	

United Electronic Industries, Inc. Tel: **(508) 921-4600**

Hysteresis Setup: Hysteresis is a very powerful feature that improves noise immunity on the digital inputs in industrial environments. Hysteresis on the DNA-DIO-401 is implemented as follows:

Two user programmable digital-to-analog converters are used to set upper and lower limits for the hysteresis function. These D/A converters are referred to as Lower limit DAC and Upper limit DAC. DAC outputs are connected to the multiplexer and then amplified using the high-speed amplifier. The amplifier drives the 'virtual' ground of the optical isolator.

- All inputs initially read while optical isolators are driven with virtual ground level that corresponds to the value of Lower DAC
- Another read is performed while the optical isolators are driven with a virtual ground level that corresponds to the value of Upper limit DAC
- If digital input values from both reads are the same the input signal state is assigned to the last read value, otherwise input signal state is unchanged
- This process repeats itself 1000 times a second

To set the hysteresis values, program the Lower and Upper DACs with an arbitrary number from 0 to 1023. The value of the Upper DAC should always be greater than LowerDAC by at least 50. Actual DAC values should be selected based on user requirements using the formula below:

 $DAC Value^{3} = \frac{Desired Hysteresis Voltage}{VCC \times 800}$

 3 Since different optocouplers have different characteristics, this formula gives you approx $\pm 10\%$ accuracy.