

DNx-MUX-414 / DNR-MUX-418
—

User Manual

14 channel 1x3 multiplexer / switch interface board

for the PowerDNA Cube and RACK chassis
and

18 channel 1x3 multiplexer / switch interface board
for the RACK chassis

May 2019

PN Man-DNx-MUX-414-418

© Copyright 1998-2019 United Electronic Industries, Inc. All rights reserved.

Information furnished in this manual is believed to be accurate and reliable. However, no responsibility
is assumed for its use, or for any infringement of patents or other rights of third parties that may result
from its use.

All product names listed are trademarks or trade names of their respective companies.

See the UEI website for complete terms and conditions of sale:

http://www.ueidaq.com/cms/terms-and-conditions/

Contacting United Electronic Industries

Mailing Address:

27 Renmar Avenue
Walpole, MA 02081
U.S.A.

For a list of our distributors and partners in the US and around the world, please contact a member of our
support team:

Support:

Telephone: (508) 921-4600
Fax: (508) 668-2350

Also see the FAQs and online “Live Help” feature on our web site.

Internet Support:

Support: support@ueidaq.com
Website: www.ueidaq.com
FTP site: ftp://ftp.ueidaq.com

Product Disclaimer:

WARNING!

DO NOT USE PRODUCTS SOLD BY UNITED ELECTRONIC INDUSTRIES, INC. AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

Products sold by United Electronic Industries, Inc. are not authorized for use as critical components in
life support devices or systems. A critical component is any component of a life support device or
system whose failure to perform can be reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness. Any attempt to purchase any United Electronic
Industries, Inc. product for that purpose is null and void and United Electronic Industries Inc. accepts
no liability whatsoever in contract, tort, or otherwise whether or not resulting from our or our
employees' negligence or failure to detect an improper purchase.

Specifications in this document are subject to change without notice. Check with UEI for
current status.

http://www.ueidaq.com

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board i
Table of Contents
Table of Contents
Chapter 1 Introduction . 1

1.1 Organization of Manual. 1

1.2 Manual Conventions . 2

1.3 MUX-414 / MUX-418 Board Overview . 3
1.3.1 Multiplexing Modes . 3
1.3.2 Switch Conditions . 3
1.3.3 Synchronization Input and Output Pins . 3
1.3.4 Diagnostic Capabilities. 3
1.3.5 Isolation & Over-voltage Protection . 3
1.3.6 Support Accessories . 3
1.3.7 Software Support . 4

1.4 Features . 4

1.5 Indicators . 4

1.6 Specification . 5

1.7 Device Architecture. 6
1.7.1 Input Circuitry. 7
1.7.2 Controlling Multiplexers . 7
1.7.3 Synchronization I/O . 7

1.8 Connectors and Wiring (Pinout) . 8

Chapter 2 Programming with the High-Level API . 9

2.1 Creating a Session . 9

2.2 Configuring Mux Port . 9
2.2.1 Configuring Break-before-make or Port On Delay . 10

2.3 Configuring the Timing . 10

2.4 Configuring Sync Input / Sync Output. 11
2.4.1 Configure Sync Out . 11
2.4.2 Configure Sync In . 12

2.5 Writing Data . 13

2.6 Monitoring Supply Voltage, Temperature & Status. 14

2.7 Monitoring Relay States & Status . 15

2.8 Cleaning-up the Session. 15

Chapter 3 Programming with the Low-Level API . 16

3.1 About the Low-level API . 16

3.2 Low-level Functions . 17

3.3 Low-level Programming Techniques. 17
3.3.1 Data Collection Modes. 17

3.4 Programming the MUX-414 / MUX-418 (Immediate Mode) 18

3.5 Writing MUX Relays & Control Bits. 18
3.5.1 Programming Relays . 18

3.6 Reading Diagnostic Voltage, Temperature, and Status . 21
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board ii
Table of Contents
3.7 Reading Status and Relay States . 22

3.8 Configuring Sync and Delays . 23
3.8.1 Example of Using Sync In / Sync Out Handshaking 24

3.9 Configuring Break-before-make Functionality. 25
3.9.1 Changing Break Duration. 25
3.9.2 Disabling Break-before-make . 25

Appendix A . 26

A. Accessories. 26
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board iii
List of Figures

May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

List of Figures

Chapter 1 Introduction . 1

1-1 Photo of MUX-414 Multiplexer Board ..4
1-2 Architecture Block Diagram of DNA-MUX-414 / MUX-418..6
1-3 Single Channel Block Diagram for MUX-414 / MUX-418 ..7
1-4 DB-62 I/O Connector Pinout for DNx-MUX-414 ..8
1-5 DB-78 I/O Connector Pinout for DNR-MUX-418..8

Chapter 2 Programming with the High-Level API . 9

Chapter 3 Programming with the Low-Level API . 16

3-1 Block Diagram for MUX-414 / MUX-418..18

Appendix A . 26

A-1 Pinout and Photo of DNA-STP-62 Screw Terminal Panel ...26

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 1 1

Introduction
Chapter 1 Introduction

This document outlines the feature set and use of the DNx-MUX-414 and
DNR-MUX-418 boards.

MUX-414 / MUX-418 boards are 1x3 multiplexer / cross point switch interface
modules, for interfacing with switching and digital control applications.

NOTE: The DNR-MUX-418 is designed for use with UEI’s RACKtangle chassis
and is not available for FLATRACK or Cube chassis.
The DNx-MUX-414 boards are designed for use with all UEI chassis.

This chapter includes the following sections:

• Organization of Manual (Section 1.1)

• Manual Conventions (Section 1.2)

• MUX-414 / MUX-418 Board Overview (Section 1.3)

• Features (Section 1.4)

• Indicators (Section 1.5)

• Specification (Section 1.6)

• Device Architecture (Section 1.7)

• Connectors and Wiring (Pinout) (Section 1.8)

1.1 Organization
of Manual

This MUX-414-418 User Manual is organized as follows:

• Introduction
This chapter provides an overview of DNx-MUX-414 and
DNR-MUX-418 1x3 multiplexer / cross point switch board features,
device architecture, connectivity, and logic.

• Programming with the High-Level API
This chapter provides an overview of how to create a session, configure
the session, and interpret results on the MUX-414 / MUX-418 series
boards for programming with the high-level Framework.

• Programming with the Low-Level API
This chapter provides an overview of low-level API commands for
configuring and using the MUX-414 / MUX-418.

• Appendix A - Accessories
This appendix provides a list of accessories available for use with the
DNx-MUX-414 and DNR-MUX-418 boards.

• Index
This is an alphabetical listing of the topics covered in this manual.
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 1 2

Introduction
1.2 Manual
Conventions

To help you get the most out of this manual and our products, please note that
we use the following conventions:

Tips are designed to highlight quick ways to get the job done or to reveal
good ideas you might not discover on your own.

NOTE: Notes alert you to important information.

CAUTION! Caution advises you of precautions to take to avoid injury, data loss,
and damage to your boards or a system crash.

Text formatted in bold typeface generally represents text that should be entered
verbatim. For instance, it can represent a command, as in the following
example: “You can instruct users how to run setup using a command such as
setup.exe.”

Bold typeface will also represent field or button names, as in “Click Scan
Network.”

Text formatted in fixed typeface generally represents source code or other text
that should be entered verbatim into the source code, initialization, or other file.

Before you begin:

Before plugging any I/O connector into the Cube or RACK chassis,
be sure to remove power from all field wiring. Failure to do so may
cause severe damage to the equipment.

No HOT SWAP

Always turn POWER OFF before performing maintenance on a UEI system.
Failure to observe this warning may result in damage to the equipment and
possible injury to personnel.

Usage of Terms

Throughout this manual, the term “Cube” refers to either a PowerDNA Cube
product or to a PowerDNR RACKtanglerack mounted system, whichever is
applicable. The term DNR is a specific reference to the RACKtangle, DNA to the
PowerDNA I/O Cube, and DNx to refer to both.
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 1 3

Introduction
1.3 MUX-414 /
MUX-418
Board
Overview

The DNx-MUX-414 boards provide 14 independent 1 x 3 switches for use with
UEI Cube and RACK systems.

The DNA-MUX-414, DNR-MUX-414, and DNF-MUX-414 board versions are
compatible with the UEI Cube, RACKtangle, and FLATRACK respectively. All
board versions are functionally identical except for the mounting hardware. The
DNA version is designed to stack in a Cube chassis. The DNR/F versions are
designed to plug into the backplane of a RACK chassis.

The DNR-MUX-418 boards provide 18 independent 1 x 3 switches for use with
UEI RACKtangle and HalfRACK systems.

MUX-414 / MUX-418 boards are designed for use in a wide variety of switching
and digital control applications.

1.3.1 Multiplexing
Modes

Each channel provides a “common” terminal connected to three independent
SPST (Form A) contacts. In a typical SIL application, this allows each flight
computer signal to be connected to the actual trainer, a simulated device, a third
test or error signal, or left open to simulate a broken wire or other open circuit
condition.

1.3.2 Switch
Conditions

Each channel is capable of switching voltages up to ±48 VDC, AC waveforms
with peaks less than ±48 VDC or sinusoidal signals up to 34 Vrms.

Each channel is rated for continuous operation at 1 A DC or AC rms (at -40 to
85°C) with a switch resistance of less than 0.2 Ω (typical, not including external
cables). All relays default to “open” on power up/reset.

Switching rates up to 250 Hz are supported, and all channels default to break-
before-make relay operation.

1.3.3 Synchro-
nization Input
and Output
Pins

MUX-414 / MUX-418 boards can synchronize relay switching via the sync in pin
and sync out pins.

The sync out pin can be configured to change state when programming a relay
state change, and the sync in pin can be configured to delay the switching of
relays until the sync in pulses. Wiring the sync out pin of the final board
configured with the sync in pins of multiple MUX-414 / MUX-418 boards allows
hardware synchronization of relay switching on all outputs.

1.3.4 Diagnostic
Capabilities

Users have the capability of reading onboard 2.5 V and 3.3 V supply levels, as
well as onboard temperatures. Users can also read back the current state of
each relay.

1.3.5 Isolation &
Over-voltage
Protection

Each board provides 350 VDC isolation between channels, as well as between
the board, chassis and other installed I/O boards.

1.3.6 Support
Accessories

All DNx-MUX-414 connections are made through a 62-pin D connector. Users
may also connect the boards to our DNA-STP-62 screw terminal panel via the
DNA-CBL-62 cables. The cables are fully shielded and are available in 1, 3, 6,
10 and 20 foot lengths.

All DNx-MUX-418 connections are made through a 78-pin D connector. Users
may connect the boards to our DNA-STP-78 screw terminal panel via the
DNA-CBL-78 cables. The cables are fully shielded and are available in
3 and 10 foot lengths.
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 1 4

Introduction
1.3.7 Software
Support

The MUX-414 / MUX-418 series includes software drivers supporting all popular
operating systems including: Windows, Linux, QNX, VXWorks, RTX, and other
popular Real-Time Operating Systems. Windows users may use the UEIDAQ
Framework which provides a simple and complete software interface to all
popular Windows programming languages and data acquisition and control
applications (e.g. LabVIEW, MATLAB).

1.4 Features The MUX-414 / MUX-418 board provides the following features:

• DNx-MUX-14: 14 fully isolated 1 x 3 channel multiplexer/switch
DNR-MUX-18: 18 fully isolated 1 x 3 channel multiplexer/switch

• ±48 VDC / 34 Vrms (sinusoidal) maximum operating voltage

• 0.2 Ohm resistance (not including cabling)

• 1 A continuous load current rating (at -40 to 85°C)

• 3 A surge current (<100 mS)

• 250 Hz update rate

• All switches Normally Off power up / reboot state

• 350 VAC isolation

1.5 Indicators The MUX-414 / MUX-418 indicators are described in Table 1-1 and illustrated in
Figure 1-1.

Figure 1-1. Photo of MUX-414 Multiplexer Board

Table 1-1 MUX-414 / MUX-418 Indicators

LED Name Description

RDY Indicates board is powered up and operational

STS Indicates which mode the board is running in:

• OFF: Configuration mode (e.g., configuring channels,
running in point-by-point mode)

• ON: Operation mode

DNR bus
connector

DB-62 (female)
62-pin I/O connector

RDY LED
 STS LED
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 1 5

Introduction
1.6 Specification The technical specifications for the MUX-414 are listed in Table 1-2, and
 technical specifications for the MUX-418 are listed in Table 1-3.

Table 1-2. DNx-MUX-414 Technical Specificationsp
Output confi guration 14 independent 1 x 3 switches
Output specifi cations

Rated Load (continuous) 1 A (-40 to +85°C) 2 A (-40 to +25°C)
Rated Load (peak) 3 A < 0.1 second
Max Operating Voltage 48 VDC, 48 V peak in AC waveforms,

34 Vrms (sinusoidal signals)
Absolute Max Voltage 55 VDC
Contact type Solid State
Contact ON impedance 0.2 Ohm typical, 0.25 Ohm max (at the I/O

connector)
Contact OFF impedance >100 MOhm
Off Leakage Current < 5 nA typical, <3 μA max over full temp range
Max update rate 250 Hz (including break-before-make timing)
Turn-Off Time <0.2 mS typical (1 mS max)
Turn-On Time < 0.45 mS typical (2 mS max)

Power up / reboot state All Switches Off
Sync in/out specifi cations

Sync in High Voltage 2.8 V min
Sync in Low Voltage 1.0 V max
Sync out High Voltage 3.55 V min / 4.0 V max @ 3 mA
Sync out Low Voltage 0.4 V max @ 3 mA

Power dissipation < 5 W
Isolation 350 Vrms
Isolation resistance >1 GOhm
Operating Temp. Range Tested -40 to +85 °C
Operating Humidity 95%, non-condensing
Vibration IEC 60068-2-6

IEC 60068-2-64
5 g, 10-500 Hz, sinusoidal
5 g (rms), 10-500 Hz, broad-band random

Shock IEC 60068-2-27 50 g, 3 ms half sine, 18 shocks @ 6 orientations
30 g, 11 ms half sine, 18 shocks @ 6 orientations
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 1 6

Introduction
Table 1-3. DNR-MUX-418 Technical Specifications

1.7 Device
Architecture

The MUX-414 / MUX-418 supports 14 and 18 independent 1x3 switches
respectively.

A block diagram of the MUX-414 / MUX-418 is shown below:

Figure 1-2. Architecture Block Diagram of DNA-MUX-414 / MUX-418

Output confi guration 18 independent 1 x 3 switches
Output specifi cations

Rated Load (continuous) 1A (-40 to +85°C) 2A (-40 to +25°C)
Rated Load (peak) 3 A < 0.1 second
Max Operating Voltage 48 VDC, 48V peak in AC waveforms,

34 Vrms (sinusoidal signals)
Absolute Max Voltage 55 VDC
Contact type Solid State
Contact ON impedance 0.2 Ohm typical, 0.25 Ohm max (at the I/O

connector)
Contact OFF impedance >100 MOhm
Off Leakage Current 5 nA typical, 3 μA max over full temp range
Max update rate 250 Hz (including break-before-make timing)
Turn-Off Time <0.2 mS typical (1 mS max)
Turn-On Time < 0.45 mS typical (2 mS max)

Power up / reboot state All Switches Off
Sync in/out specifi cations

Sync in High Voltage 2.8 V min
Sync in Low Voltage 1.0 V max
Sync out High Voltage 3.55 V min / 4.0 V max @ 3 mA
Sync out Low Voltage 0.4 V max @ 3 mA

Power dissipation < 5 W not including output switches
Isolation 350 Vrms
Isolation resistance >1 GOhm
Operating Temp. Range Tested -40 to +85 °C
Operating Humidity 95%, non-condensing
Vibration IEC 60068-2-6

IEC 60068-2-64
5 g, 10-500 Hz, sinusoidal
5 g (rms), 10-500 Hz, broad-band random

Shock IEC 60068-2-27 50 g, 3 ms half sine, 18 shocks @ 6 orientations
30 g, 11 ms half sine, 18 shocks @ 6 orientations

MTBF >400,000 hours

 I
/
O

 C
o
n
n
ec

to
r

3
2
-
b
it
 6

6
-
M

H
z

b
u
s

C
o
n
tr

o
l
Lo

g
ic

R
e
la

y
 D

ri
v
e
rs

R
e
la

y
s

May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 1 7

Introduction
1.7.1 Input Circuitry Each channel provides a common (COM) terminal connected to three
independent SPST “A”/”B”/”C” (Form A) contacts. Refer to Figure 1-3 below for
a simplified block diagram of channel muxing.

Figure 1-3. Single Channel Block Diagram for MUX-414 / MUX-418

1.7.2 Controlling
Multiplexers

Channel relays are opened or closed based on a single write, written as a port.
This means that each channel can have “A”, “B”, “C” or “none” closed
independently, but when you write the configuration state, all 14 / 18 channels
are written at once as a group.

By default, when users write new relay states, all closed relays open before new
relay states are closed. This break-before-make functionality is user-
configurable. Users can disable this feature, as well as program a delay in
microseconds for how long the contacts will be open before new connections are
made.

1.7.3 Synchro-
nization I/O

Users have access to synchronization functionality via a sync in pin on the DB
connector and sync out functionality via a sync out pin on the DB connector or
via internal chassis bus lines.

The sync out functionality can be enabled to change state when programming a
relay state change. The pulse width and level of the pulse is user configurable.

The sync in functionality can be enabled, which delays relay state changes until
a pulse is received on the sync in pin. Triggering on a level or edge change, as
well as the polarity (high/rising or low/falling) is user configurable.

COM

A

B

C

Contacts for A, B and C are
independently programmable.
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 1 8

Introduction
1.8 Connectors
and Wiring
(Pinout)

Figure 1-4 shows the pinout of the 62-pin female connector of the MUX-414.

NOTE: *Pins marked ‘rsvd’ should be left open.

Figure 1-4. DB-62 I/O Connector Pinout for DNx-MUX-414

Figure 1-5 shows the pinout of the 78-pin female connector of the MUX-418:

Figure 1-5. DB-78 I/O Connector Pinout for DNR-MUX-418

SHIELD

Pin Signal
1 ch 11-A
2 ch 13 -B
3 ch 13 -A
4 ch 12 -B
5 sync out
6 ch 10 -B
7 ch 10 -A
8 ch 9 -B
9 ch 8 -B
10 ch 7 -B
11 ch 7 -A
12 ch 6 -B
13 ch 5 -B
14 ch 5 -A
15 ch 2 -A
16 ch 1 -B
17 ch 4 -B
18 ch 3 -B
19 ch 3 -A
20 ch 0 -B
21 rsvd*

Pin Signal
22 ch 11 -com
23 ch 13 -C
24 ch 13 -com
25 ch 12 -C
26 sync gnd
27 ch 10 -C
28 ch 10 -com
29 ch 9 -C
30 ch 8 -C
31 ch 7 -C
32 ch 7 -com
33 ch 6 -C
34 ch 5 -C
35 ch 5 -com
36 ch 2 -com
37 ch 1 -C
38 ch 4 -C
39 ch 3 -C
40 ch 3 -com
41 ch 0 -C
42 rsvd*

Pin Signal
43 ch 11 -C
44 ch 11 -B
45 ch 12 -A
46 ch 12 -com
47 sync +3.75V
48 sync in
49 ch 9 -A
50 ch 9 -com
51 ch 8 -A
52 ch 8 -com
53 ch 6 -A
54 ch 6 -com
55 ch 2 -C
56 ch 2 -B
57 ch 1 -A
58 ch 1 -com
59 ch 4 -A
60 ch 4 -com
61 ch 0 -A
62 ch 0 -com

Pin Signal
1 ch 17 -A
2 ch 17 -B
3 ch 17 -C
4 ch 17 -Com
5 ch 16 -A
6 ch 16 -B
7 ch 16 -C
8 ch 16 -Com
9 ch 15 -A
10 ch 15 -B
11 ch 15 -C
12 ch 15 -Com
13 ch 14 -A
14 ch 14 -B
15 ch 14 -C
16 ch 14 -Com
17 ch 0 -Com
18 rsvd*
19 rsvd*
20 ch 0 -B

Pin Signal
21 ch 11 -A
22 ch 13 -B
23 ch 13 -A
24 ch 12 -B
25 sync out
26 ch 10 -B
27 ch 10 -A
28 ch 9 -B
29 ch 8 -B
30 ch 7 -B
31 ch 7 -A
32 ch 6 -B
33 ch 5 -B
34 ch 5 -A
35 ch 2 -A
36 ch 1 -B
37 ch 4 -B
38 ch 3 -B
39 ch 3 -A

Pin Signal
40 ch 11 -Com
41 ch 13 -C
42 ch 13 -Com
43 ch 12 -C
44 sync gnd
45 ch 10 -C
46 ch 10 -Com
47 ch 9 -C
48 ch 8 -C
49 ch 7 -C
50 ch 7 -Com
51 ch 6 -C
52 ch 5 -C
53 ch 5 -Com
54 ch 2 -Com
55 ch 1 -C
56 ch 4 -C
57 ch 3 -C
58 ch 3 -Com
59 ch 0 -C

Pin Signal
60 ch 11 -C
61 ch 11 -B
62 ch 12 -A
63 ch 12 -Com
64 sync +3.75V
65 sync in
66 ch 9 -A
67 ch 9 -Com
68 ch 8 -A
69 ch 8 -Com
70 ch 6 -A
71 ch 6 -Com
72 ch 2 -C
73 ch 2 -B
74 ch 1 -A
75 ch 1 -Com
76 ch 4 -A
77 ch 4 -Com
78 ch 0 -A
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 2 9

Programming with the High-Level API
Chapter 2 Programming with the High-Level API

This chapter provides the following information about using the UeiDaq
Framework High-Level API to control the MUX-414 / MUX-418:

• Creating a Session (Section 2.1)

• Configuring Mux Port (Section 2.2)

• Configuring the Timing (Section 2.3)

• Configuring Sync Input / Sync Output (Section 2.4)

• Writing Data (Section 2.5)

• Monitoring Supply Voltage, Temperature & Status (Section 2.6)

• Monitoring Relay States & Status (Section 2.7)

• Cleaning-up the Session (Section 2.8)

UeiDaq Framework is object oriented and its objects can be manipulated in the
same manner from different development environments, such as Visual C++,
Visual Basic, or LabVIEW.

The following section focuses on the C++ API, but the concept is the same no
matter what programming language you use.

Please refer to the “UeiDaq Framework User Manual” for more information on
use of other programming languages.

2.1 Creating a
Session

The Session object controls all operations on your PowerDNx device. The first
task when programming using the high-level Framework is to create a session
object:

2.2 Configuring
Mux Port

You use a Mux session to configure MUX-414 / MUX-418 channels. All channels
are configured as one port (mux0).

The MUX-414 / MUX-418 provides break-before-make functionality, which
defaults to opening all relays (A, B, and C) for a channel when opening or
closing any one relay (A, B, or C). You can disable this break-before-make
default functionality if you wish when creating the session.

The following call configures the mux port of a DNx-MUX-414 / MUX-418 set as
device 1 with break-before-make functionality enabled.

CreateMuxPort configures the following parameters:

• breakBeforeMake: true to enable break-before-make, false otherwise
(boolean).

// create a session object

CUeiSession muxSession;

// Configure session to write to port 0 on device 1

muxSession.CreateMuxPort("pdna://192.168.100.2/Dev1/mux0", true);
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 2 10

Programming with the High-Level API
2.2.1 Configuring
Break-before-
make or Port
On Delay

Users can configure the delay that relays will stay open before closing (break-
before-make delay), whether or not break-before-make functionality is enabled,
and the delay before a new write will be accepted (port on delay).

By default, break-before-make circuitry is enabled, and the break delay is set to
250 µS. The default port on delay is 100 µS.

To enable/disable break-before-make and/or program delays, you first get a
pointer to the mux port object of the MUX-414 / MUX-418 board:

You can enable or disable break-before-make when you first create the channel
(see Section 2.2 above) or by using the EnableBreakBeforeMake method.

The following example shows you how to turn break-before-make off using the
EnableBreakBeforeMake method:

You can change the amount of time the A, B, and C relays for a channel open
before they close with the SetOffDelay method.

The following example sets the off delay to 350 µS:

You can change the amount of time before a new write command will be
accepted with the SetOnDelay method.

The following example sets the on delay to 150 µS:

2.3 Configuring
the Timing

You can configure the MUX-414 / MUX-418 to run in simple mode (point by
point).

In simple mode, the delay between samples is determined by software on the
host computer.

The following sample shows how to configure the simple mode. Please refer to
the UeiDaq Framework User Manual to learn how to use other timing modes.

CUeiMuxPort* pChan =
 dynamic_cast<CUeiMuxPort *>(muxSession.GetChannel(0));

pChan->EnableBreakBeforeMake(false);

pChan->SetOffDelay(350);

pChan->SetOnDelay(150);

// configure timing for point-by-point (simple mode)

muxSession.ConfigureTimingForSimpleIO();
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 2 11

Programming with the High-Level API
2.4 Configuring
Sync Input /
Sync Output

Users can optionally configure the MUX-414 / MUX-418 to synchronize relay
switching to use an external hardware trigger via the sync in pins. Alternatively,
you can configure sync out pins to pulse on a relay write.

As an example, you can use the sync out pin on one MUX-414 / MUX-418 to
synchronize other MUX-414 / MUX-418 boards via their sync in pins.

To use this option, connect the sync out pin of the one board to the sync in pins
of the others (and connect sync gnd of all boards).

In your application, program multiple MUX-414 / MUX-418 boards to turn
channel relays on or off as needed, but configure the sync in flag to delay the
actual hardware switching until those boards receive a synchronization pulse on
their sync in pins. Then configure the MUX-414 / MUX-418 board that is
controlling sync out to pulse its MUX-414 / MUX-418 sync output pin when its
relay write is programmed.

2.4.1 Configure
Sync Out

To program this, first get a pointer to the mux port object of the
MUX-414 / MUX-418 board that you wish to configure the sync out pin for:

Configure the sync output mode with the SetSyncOutputMode API.
The following configures the sync out pin to pulse low when the relays are ready
(otherwise it is high).:

SetSyncOutputMode accepts the following options for configuration:

CUeiMuxPort* pChanOut =
 dynamic_cast<CUeiMuxPort *>(muxSessionOut.GetChannel(0));

pChanOut->SetSyncOutputMode(UeiMuxSyncOutputRelaysReadyPulse1);

Option Name Description

UeiMuxSyncOutputLogic0 drive constant logic '0'

UeiMuxSyncOutputLogic1 drive constant logic '1'

UeiMuxSyncOutputSyncLine0 through
UeiMuxSyncOutputSyncLine3

driven by internal SYNC BUS[0] through [3]

UeiMuxSyncOutputRelaysReadyPulse0 pulse logic ‘1’ on "relays ready" for a pulse width duration
of programmed with SetSyncOutputPulseWidth
(100 µs default)

UeiMuxSyncOutputRelaysReadyPulse1 pulse logic ‘0’ on "relays ready" for a pulse width duration
of programmed with SetSyncOutputPulseWidth
(100 µs default)

UeiMuxSyncOutputRelaysReadyLogic0 drive logic ‘0’ while "relays ready" (UEI internal test mode)

UeiMuxSyncOutputRelaysReadyLogic1 drive logic ‘1’ while "relays ready" (UEI internal test mode)
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 2 12

Programming with the High-Level API
You configure the sync out pulse width with the SetSyncOutputPulseWidth
method. Note that the pulse width is only configurable when using the following
sync modes:

• UeiMuxSyncOutputRelaysReadyPulse0

• UeiMuxSyncOutputRelaysReadyPulse1

In this example, we configure the sync out pin to pulse low for 1 ms when the
relays are ready (otherwise it is high):

SetSyncOutputPulseWidth accepts 1 µS, 10 µS, 100 µS, and 1000 µS
options as the pulse width parameter.

2.4.2 Configure
Sync In

To configure sync in, get the pointer(s) to the mux port object(s) of the
MUX-414 / MUX-418 board(s) that you wish to configure the sync in pin(s) for.

To program this, first get a pointer to the mux port object of the
MUX-414 / MUX-418 board that you wish to configure the sync in pin for:

Enable sync in:

Configure the sync in circuitry to trigger the relay writes on a rising edge:

Accepted values for SetSyncInputEdgePolarity are:

• UeiDigitalEdgeRising: Detect rising edge

• UeiDigitalEdgeFalling: Detect falling edge

pChanOut->SetSyncOutputPulseWidth(1000);

CUeiMuxPort* pChan =
 dynamic_cast<CUeiMuxPort *>(muxSession.GetChannel(0));

pChan->EnableSyncInput(true);

pChan->SetSyncInputEdgePolarity(UeiDigitalEdgeRising);
pChan->EnableSyncInputEdgeMode(true);
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 2 13

Programming with the High-Level API
2.5 Writing Data Writing data is done using a MuxWriter object.

The following sample shows how to create a writer object and write multiplexer
switches:

You program the multiplexer channels using the WriteMux method, which gets
passed how many channels you wish to program, which channels, and what
states.

You can program one of 4 mux states for each MUX-414 / MUX-418 channel:

• 0: Open A, B, and C relays

• 1: Close the A relay, open B and C

• 2: Close the B relay, open A and C

• 3: Close the C relay, open A and B

The following example of writes 5 channels: 0, 2, 5, 11, and 12, which are
reprogrammed with the following changes:

• channel 0: close relay A (1)

• channel 2: close relay B (2)

• channel 5: close relay C (3)

• channel 11: open all relays (0)

• channel 12 close relay C (3)

// create a writer and link it to the session’s stream

CUeiMuxWriter muxWriter(muxSession.GetDataStream());

// declare arrays to hold channels and states (up to 14 channels)

int channels[14];
int relays[14]

// set up list of channels as described in example:

channels[0] = 0;
channels[1] = 2;
channels[2] = 5;
channels[3] = 11;
channels[4] = 12;

// set up list of relay states as described in example:

relays[0] = 1;
relays[1] = 2;
relays[2] = 3;
relays[3] = 0;
relays[4] = 3;

// write the 5 channels

writer.WriteMux(5, channels, relays);
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 2 14

Programming with the High-Level API
2.6 Monitoring
Supply
Voltage,
Temperature
& Status

The MUX-414 / MUX-418 provides the diagnostic capability of monitoring
onboard supply voltages and temperature using an onboard ADC. Additionally,
you can also retrieve status.

To monitor diagnostic data, use the ReadADC method.

You can read up to 5 diagnostic channels:

• ADC channel 0: <Reserved>

• ADC channel 1: The 3.3 V supply in volts

• ADC channel 2: The 2.5 V supply in volts

• ADC channel 3: The temperature in degrees C

• ADC channel 4: The status (uint32, see description in Section 2.7)

The following code shows how to read the voltage and temperature:

NOTE: You can also retrieve status data with the ReadStatus method (see
Section 2.7).

// read all 5 values

double adcBuffer[5];
muxWriter.ReadADC(5, adcBuffer, NULL);

// print supplies and temp

for(int j = 1; j<4; j++)
{
 std::cout << " adc" << j << "= " << adcBuffer[j];
}
std::cout << std::endl;
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 2 15

Programming with the High-Level API
2.7 Monitoring
Relay States
& Status

You can monitor current relay states and status data with the ReadStatus
method:

ReadStatus(uInt32 *relayA, uInt32 *relayB,
 uInt32 *relayC, uInt32 *status)
where

• relayA: bitwise representation of relay A states (1 is closed, 0 open)

• relayB: bitwise representation of relay B states

• relayC: bitwise representation of relay C states

• status: bitwise representation of board status

Status is returned as:

• Bit 17: ‘1’ means data is ready from ADC

• Bit 16: ‘1’ means overrun (write while busy)

• Bit 3: ‘1’ means state machine is busy

• Bit 2: ‘1’ means output state machine is waiting for the
 external SYNC/ready

• Bit 1: ‘1’ means relays are settled

• Bit 0: reports the logic state of the sync in pin

• all other bits are <Reserved>

The following code shows how to read the relay states and status:

2.8 Cleaning-up
the Session

The session object will clean itself up when it goes out of scope or when it is
destroyed. To reuse the object with a different set of channels or parameters,
you can manually clean up the session as follows:

// read all current relay state and status

uInt32 stRelayA, stRelayB, stRelayC, status;
muxWriter.ReadStatus(&stRelayA, &stRelayB, &stRelayC, &status);

// print results

std::cout << std::hex << " relayA=" << stRelayA <<
 " relayB=" << stRelayB <<
 " relayC=" << stRelayC <<
 " status=" << status << std::dec << std::endl << std::endl;

// clean up the session

muxSession.CleanUp();
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 3 16

Programming with the Low-Level API
Chapter 3 Programming with the Low-Level API

This chapter provides the following information about programming the
MUX-414 / MUX-418 using the low-level API:

• About the Low-level API (Section 3.1)

• Low-level Functions (Section 3.2)

• Low-level Programming Techniques (Section 3.3)

• Programming the MUX-414 / MUX-418 (Immediate Mode) (Section 3.4)

• Writing MUX Relays & Control Bits (Section 3.5)

• Reading Diagnostic Voltage, Temperature, and Status (Section 3.6)

• Reading Status and Relay States (Section 3.7)

• Configuring Sync and Delays (Section 3.8)

• Configuring Break-before-make Functionality (Section 3.9)

3.1 About the
Low-level API

The low-level API provides direct access to the DAQBIOS protocol structure and
registers in C. The low-level API is intended for speed-optimization, when
programming unconventional functionality, or when programming under Linux or
real-time operating systems.

When programming in Windows OS, however, we recommend that you use the
UeiDaq high-level Framework API (see Chapter 2). The Framework extends the
low-level API with additional functionality that makes programming easier and
faster.

For additional information regarding low-level programming, refer to the
“PowerDNA API Reference Manual” located in the following directories:

• On Linux systems:
<PowerDNA-x.y.z>/docs

• On Windows systems:
Start » All Programs » UEI » PowerDNA » Documentation
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 3 17

Programming with the Low-Level API
3.2 Low-level
Functions

Table 3-1 provides a summary of MUX-414 / MUX-418-specific functions. All
low-level functions are described in detail in the PowerDNA API Reference
Manual.

3.3 Low-level
Programming
Techniques

Application developers are encouraged to explore the existing source code
examples when first programming the MUX-414 / MUX-418. Sample code
provided with the installation is self-documented and serves as a good starting
point.

Code examples are located in the following directories:

• On Linux systems: <PowerDNA-x.y.z>/src/DAQLib_Samples

• On Windows: Start » All Programs » UEI » PowerDNA » Examples

Sample code for data acquisition modes have the name of the mode and the
name of the I/O boards being programmed embedded in the sample name.
Note that immediate mode samples are named Sample<I/O board name>,
(i.e., Sample414_418).

3.3.1 Data
Collection
Modes

The MUX-414 / MUX-418 supports the following acquisition mode:

• Immediate (point-to-point): Designed to provide easy access to a single I/O
board at a non-deterministic pace. Acquires a single data point per channel.
Runs at a maximum of 100 Hz.

API that implement data acquisition modes and additional mode descriptions
are provided in the PowerDNA API Reference Manual.

Table 3-1 Summary of Low-level API Functions for DNx-MUX-414 / MUX-418

Function Description

DqAdv414Write Writes to output port(s) (mux control); also accepts OR’ed

in optional control flags to disable break-before-make

functionality and program sync in and sync out

DqAdv414SetCfg Configures break-before-make delay characteristics and

sync in pin and sync out pin characteristics

DqAdv414ReadADC Allows users to read diagnostic internal voltage and board

temperature

DqAdv414ReadStatus Allows users to read back the position of relay A, B, and C

and read board status
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 3 18

Programming with the Low-Level API
3.4 Programming
the MUX-414 /
MUX-418
(Immediate
Mode)

The following sections provide an overview of how to set up and use your
MUX-414 / MUX-418 in Immediate Mode using the low-level API.

For best results, use this overview in conjunction with actual sample code,
(i.e., Sample414_418). This overview does not address typical initialization or
error handling. Refer to Section 3.3 for sample code location.

3.5 Writing MUX
Relays &
Control Bits

Set A, B, or C relays on or off for the MUX-414 / MUX-418 channels using the
DqAdv414Write API:

 DqAdv414Write(hd0, DEVN, rly_wr);

where

• hd0 is the handle to the IOM

• DEVN is the MUX-414 / MUX-418 position in the chassis

• rly_wr is a data structure of type DQ414W.

The DQ414W data structure has elements for closing or opening the A, B, and/or
C relays and programming sync in, sync out, and/or break-before-make
configuration.

 typedef struct {

 int32 rflags;

 int32 mux_select[2];

 int32 relay_select[3];

 } DQ414W, *pDQ414W;

3.5.1 Programming
Relays

You have two options of how to program the A, B, or C relays.

The typical application will use the mux_select array, which closes a single
relay per channel. With this, you can connect COM to A, B, or C (or open all 3
for open circuit tests).

Figure 3-1. Block Diagram for MUX-414 / MUX-418

Alternatively, you can program more than one relay closed per channel using
relay_select.

NOTE: You must use extreme caution if you choose to program using
relay_select. relay_select allows users to close multiple mux
relays per channel. This means if you have a source on A, B, and C, you
will short your source equipment. This mode is meant for diagnostic
purposes: for example, a sensor connected to COM, and listening
devices on A, B, and/or C.

COM

A

B

C

May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 3 19

Programming with the Low-Level API
You set the rflags parameter to tell the firmware whether you are
programming with mux_select or relay_select.

The rflags parameter must include one (and only one) of the rflags listed in
Table 3-2.

Note that rflags can optionally have the following flags ORed in also:

• DQ_MUX414_W_OPTION_SOUT: Programs the sync out pin to pulse
when DqAdv414Write executes (refer to Section 3.8)

• DQ_MUX414_W_OPTION_SIN: Uses sync in as a trigger to delay the
relays from changing state when DqAdv414Write until the sync in pin
transitions (refer to Section 3.8)

• DQ_MUX414_W_OPTION_NO_BBM: disables break-before-make cir-
cuitry (Section 3.9)

Table 3-2 Settings for rflags (mux_select or relay_select)

Name Description

DQ_MUX414_W_PORT0 Program A, B, or C relay connect for channel 0 through 13;
Allows write to mux_select[0] (414 or 418)

DQ_MUX414_W_PORT1 Program A, B, or C relay connect for channel 14 through 17;
Allows write to mux_select[1] (418 only)

DQ_MUX414_W_PORT10 Program A, B, or C relay connect for channel 0 through 17;
Allows write to mux_select[1] and mux_select[0]

DQ_MUX414_W_RELAY_A Program A relays to connect or disconnect (all channels);
Allows write to relay_select[0]

DQ_MUX414_W_RELAY_B Program B relays to connect or disconnect (all channels);
Allows write to relay_select[1]

DQ_MUX414_W_RELAY_BA Program A & B relays to connect or disconnect (all channels);
Allows write to relay_select[1] and relay_select[0]

DQ_MUX414_W_RELAY_C Program C relays to connect or disconnect (all channels);
Allows write to relay_select[2]

DQ_MUX414_W_RELAY_CA Program C & A relays to connect or disconnect (all channels);
Allows write to relay_select[2] and relay_select[0]

DQ_MUX414_W_RELAY_CB Program C & B relays to connect or disconnect (all channels);
Allows write to relay_select[2] and relay_select[1]

DQ_MUX414_W_RELAY_CBA Program A, B & C relays to connect or disconnect (all channels);
Allows write to relay_select[2] and relay_select[1] and
relay_select[0]
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 3 20

Programming with the Low-Level API
3.5.1.1 Example of
Using
mux_select

When using mux_select, the following mux states for each channel are
programmed to its corresponding 2-bits in mux_select:

• 1 to close A relay

• 2 to close B relay

• 3 to close C relay

• 0 to open all 3 relays

To program channel 0, you set bits 1 and 0 to 1,2,3 or 0 mux state;
to program channel 1, you set bits 3 and 2 to 1,2,3 or 0; etc.

As an example, to program

• channel 0 to close the B-relay (2),

• channel 2 to close the C-relay (3),

• channel 8 to close the A relay (1),

• channel 9 to close the C-relay (3) and

• all other channels up to channel 13 to open all the relays (0),

you set the rflags for using mux_select[0] and program the following:

 pdata.rflags= DQ_MUX414_W_PORT0;

 pdata.mux_select[0] = 0x00D0032;

 DqAdv414Write(hd0, DEVN, pdata);

3.5.1.2 Example of
Using
relay_select

When using relay_select, you can close more than 1 relay per channel.

• relay_select[0] closes A relays.

• relay_select[1] closes B relays.

• relay_select[2] closes C relays.

NOTE: Each channel is programmed by setting or resetting its corresponding
bit in the relay_select array, (e.g. the A relay for channel 0
corresponds to bit 0 in relay_select[0], the B relay for channel 5
corresponds to bit 5 in relay_select[1], etc.).
A ‘1’ corresponds to closing the relay, ‘0’ to opening.

Use caution if you choose to program using relay_select.
Using relay_select gives you the capability of closing more than one mux
switch for a channel. This means if you have a source on A, B, and C, you could
short your source equipment. This mode is meant for systems with a single
source on COM, node A, node B, or node C.

Example: To program channel 0 through 13 to close the A relay, and channel 2
to close the C-relay, and all other channels to open all other relays, you set the
rflags for using relay_select:

 pdata.rflags= DQ_MUX414_W_RELAY_CBA;

 pdata.relay_select[0] = 0x00003FFF; //A

 pdata.relay_select[1] = 0x00000000; //B

 pdata.relay_select[2] = 0x00000004; //C

 DqAdv414Write(hd0, DEVN, pdata);
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 3 21

Programming with the Low-Level API
3.6 Reading
Diagnostic
Voltage,
Temperature,
and Status

You can read diagnostic data for the MUX-414 / MUX-418 using the
DqAdv414ReadADC API.

Data is returned as DQ414ADC data structure and includes onboard voltage
supply readings, onboard temperature readings, and status:

 typedef struct {

 double adc_in; // Reserved

 double adc_3_3; // monitor internal 3.3V supply

 double adc_2_5; // monitor internal 2.5V supply

 double adc_deg_c; // adc temperature in degrees C

 uint32 status; // status identical to .status

 // returned by DqAdv414ReadStatus()

 } DQ414ADC, *pDQ414ADC;

NOTE: Before reading data, call DqAdv414ReadADC(hd, devn, NULL)
once to initialize the ADC.

Example:

// startup ADC reads
DqAdv414ReadADC(hd, DEVN, NULL);

// Get voltages and temperature along with status
DqAdv414ReadADC(hd, DEVN, &adc_reads);

printf(" Internal 3.3V supply = %lf\n", adc_reads.adc_3_3);
printf(" Internal 2.5V supply = %lf\n", adc_reads.adc_2_5);
printf(" Internal temperature = %lf\n", adc_reads.adc_deg_c);
printf(" status = %x\n", adc_reads.status);

NOTE: Refer to DqAdv414ReadStatus API for status bit meanings.
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 3 22

Programming with the Low-Level API
3.7 Reading
Status and
Relay States

You can read board status and current A, B, and C relay states for the
MUX-414 / MUX-418 using the DqAdv414ReadStatus API.

The DQ414STATUS data structure holds status data, as well as the current state
the A, B, and C relays for each channel:

 typedef struct {

 uint32 relay_a;

 uint32 relay_b;

 uint32 relay_c;

 uint32 status;

 } DQ414STATUS, *pDQ414STATUS;

Relay position data is returned as a ‘1’ for closed and a ‘0’ for open.

Status is returned as:

• Bit 17, DQ_MUX414_STS_ADCDR: ‘1’ means data is ready from ADC

• Bit 16, DQ_MUX414_STS_OVR: ‘1’ means overrun (write while busy)

• Bit 3, DQ_MUX414_STS_BUSY: ‘1’ means state machine is busy

• Bit 2, DQ_MUX414_STS_SYNCWAIT: ‘1’ means output state machine
 is waiting for the external SYNC/ready

• Bit 1, DQ_MUX414_STS_RDY: ‘1’ means relays are settled

• Bit 0, DQ_MUX414_STS_DI_STS: reports the logic state of the sync
in pin

For example:

// Get relay states and status
DqAdv414ReadStatus(hd, DEVN, &r_sts);
printf(" relays A = %x\n", r_sts.relay_a);
printf(" relays B = %x\n", r_sts.relay_b);
printf(" relays C = %x\n", r_sts.relay_c);
printf(" status = %x\n", r_sts.status);
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 3 23

Programming with the Low-Level API
3.8 Configuring
Sync and
Delays

The MUX-414 / MUX-418 provides a sync in and sync out pin.

The sync out pin can be configured to change state when calling the API to
program relay state changes, and the sync in pin can be configured to delay
switching relays until the sync in is triggered.

Users can program the sync out pin to pulse / change state when the
DQ_MUX414_W_OPTION_SOUT flag is ORed into rflags with the relay flags
when calling the DqAdv414Write API (see Section 3.5 for more information
about the DqAdv414Write API).

Users can program using the sync in pin as a gating device when the
DQ_MUX414_W_OPTION_SIN flag is ORed into rflags with the relay flags
when calling the DqAdv414Write API (see Section 3.5 for more information
about the DqAdv414Write API).

You can configure delays and sync in / sync out modes with the DqAdv414Cfg
API.

 typedef struct {
 uint32 on_delay;
 uint32 off_delay;
 uint32 di_mode;
 uint32 di_polarity;
 uint32 sync_out_pw;
 uint32 sync_out_mode;
 } DQ414CFG, *pDQ414CFG;
:

Table 3-3 Settings for DQ414CFG Elements

Name Description

on_delay program the time before next command is accepted in 10uS units,
range 1..256

off_delay program the breaking time of break-before-make in 10uS units,
range 1..256

di_mode program the sync in pin operation mode,
0 = level / 1 = edge

di_polarity program the polarity of sync in strobe:
0-falling (low) / 1-rising (high)

sync_out_pw program the sync out pin pulse length for sync_out_mode 6 and 7
0 - 1uS; 1 - 10uS; 2 - 100uS; 3 - 1mS; 4..15 - reserved

sync_out_mode program mode of operation for the sync out pin
0 - drive constant logic '0'
1 - drive constant logic '1'
2..5 - driven by internal SYNC BUS[0]..[3
6 - positive transitioning pulse on "relays ready"
7 - negative transitioning pulse on "relays ready"
8 - logic '1' level on "relays ready" (UEI test adapter expects this)
9 - logic '0' level on "relays ready"
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 3 24

Programming with the Low-Level API
3.8.1 Example of
Using Sync In
/ Sync Out
Handshaking

The following example programs relays on a MUX-414 board located in
DEVN=0 to switch at the same time as relays on a MUX-414 board located in
DENV=1.

3.8.1.1 Configure
Sync In

Configure delays and pulse characteristics of the sync in pin for the first
MUX-414 in DEVN0:

// fill a DQ414CFG struct
 r_cfg.on_delay = 2; // (20us) time before next command is accepted
 r_cfg.off_delay = 2; // (20uS) breaking time of break-before-make
 r_cfg.di_mode = 0; // sync in pin operation mode, 0 = level
 r_cfg.di_polarity = 0; // Polarity of sync_in strobe: 0=falling(low)
 r_cfg.sync_out_pw = 0; // not using, program 0
 r_cfg.sync_out_mode = 0; // not using, program 0

// set configuration
DqAdv414SetCfg(hd, DEVN0, &r_cfg);

3.8.1.2 Configure
Sync Out

Configure delays and pulse characteristics of the sync out pin for the second
MUX-414 in DEVN1:

// fill a DQ414CFG struct
 r_cfg.on_delay = 2; // (20us)time before next command is accepted
 r_cfg.off_delay = 25; // (250uS) breaking time of break-before-make
 r_cfg.di_mode = 0; // not using, program 0
 r_cfg.di_polarity = 0; // not using, program 0
 r_cfg.sync_out_pw = 3; // sync_out pin pulse length
 // for sync_out_modes 6 and 7
 // 0 - 1uS, 1 - 10uS, 2 - 100uS, 3 - 1mS
 r_cfg.sync_out_mode = 7; // sync_out pin mode of operation
 // 0 - drive constant logic '0'
 // 1 - drive constant logic '1'
 // 2..5 - driven by internal SYNC BUS[0]..[3]
 // 6 - '1' going pulse on "relays ready"
 // 7 - '0' going pulse on "relays ready"
 // 8 - logic '1' level on "relays ready"
 // 9 - logic '0' level on "relays ready"
// set configuration
DqAdv414SetCfg(hd, DEVN1, &r_cfg);

3.8.1.3 Program
Writing Relays
Gated by Sync
In

Program all B relays to close for DEVN0 and OR in
DQ_MUX414_W_OPTION_SIN to gate the relays from actually switching until a
sync in pulse is accepted:

 pdata.rflags= DQ_MUX414_W_PORT0 | DQ_MUX414_W_OPTION_SIN;
 pdata.mux_select[0] = 0xAAAAAAA;
 DqAdv414Write(hd0, DEVN0, pdata);

3.8.1.4 Program
Writing Relays
and Pulsing
Sync Out

Program all A relays to open for DEVN1 and OR in
DQ_MUX414_W_OPTION_SOUT to pulse when relays are written:

 pdata.rflags= DQ_MUX414_W_PORT0| DQ_MUX414_W_OPTION_SOUT;
 pdata.mux_select[0] = 0x5555555;
 DqAdv414Write(hd0, DEVN1, pdata);
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Chapter 3 25

Programming with the Low-Level API
3.9 Configuring
Break-before-
make
Functionality

By default, when users program a relay state change for a channel, MUX-414 /
MUX-418 break-before-make circuitry will open the A, B, and C relays for that
channel before connecting.

Users can adjust the duration of time you break on a relay state change, as well
as disable break-before-make functionality completely.

3.9.1 Changing
Break
Duration

To change the duration of the break time, you configure the off_delay
element in the DQ414CFG structure using the DqAdv414SetCfg API.

 typedef struct {
 uint32 on_delay;
 uint32 off_delay;
 uint32 di_mode;
 uint32 di_polarity;
 uint32 sync_out_pw;
 uint32 sync_out_mode;
 } DQ414CFG, *pDQ414CFG;
:

For example, to set 1 ms as the amount of time you break connections for A, B,
and C relays before you reconnect to a new configuration, you program the
following:

// set delay in DQ414CFG struct
r_cfg.off_delay = 100; // 100*10us(1000uS) breaking time

 // of break-before-make

// set configuration
DqAdv414SetCfg(hd, DEVN1, &r_cfg);

3.9.2 Disabling
Break-before-
make

To disable the break-before-make functionality on MUX-414 / MUX-418 relay
switches, you set the DQ_MUX414_W_OPTION_NO_BBM flag using the
DqAdv414Write API.

For example, the following disables break-before-make circuitry for the following
DqAdv414Write:

 pdata.rflags=DQ_MUX414_W_PORT0 | DQ_MUX414_W_OPTION_NO_BBM;
 pdata.mux_select[0] = 0x000D032;
 DqAdv414Write(hd0, DEVN, pdata);

Table 3-4 Setting for DQ414CFG Break-before-make Delay

Name Description

off_delay program the breaking time of break-before-make in 10uS units,
range 1..256
May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
Appendix A 26

May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

Appendix A

A. Accessories The following cables and STP boards are available for the MUX-414 / MUX-418
board.

DNA-CBL-62

This is a 62-conductor round shielded cable with 62-pin male D-sub connectors
on both ends. It is made with round, heavy-shielded cable; 2.5 ft (75 cm) long,
weight of 9.49 ounces or 269 grams; up to 10ft (305cm) and 20ft (610cm).

DNA-STP-62

The STP-62 is a Screw Terminal Panel with three 20-position terminal blocks
(JT1, JT2, and JT3) plus one 3-position terminal block (J2). The dimensions of
the STP-62 board are 4w x 3.8d x1.2h inch or 10.2 x 9.7 x 3 cm (with standoffs).
The weight of the STP-62 board is 3.89 ounces or 110 grams.

Figure A-1. Pinout and Photo of DNA-STP-62 Screw Terminal Panel

62 to J2 42 to J2 21 to J2
61 to JT1 41 to JT1 20 to JT1
60 to JT1 40 to JT1 19 to JT1
59 to JT1 39 to JT1 18 to JT1
58 to JT1 38 to JT1 17 to JT1
57 to JT1 37 to JT1 16 to JT1
56 to JT1 36 to JT1 15 to JT1
55 to JT2 35 to JT1 14 to JT1
54 to JT2 34 to JT2 13 to JT2
53 to JT2 33 to JT2 12 to JT2
52 to JT2 32 to JT2 11 to JT2
51 to JT2 31 to JT2 10 to JT2
50 to JT2 30 to JT2 9 to JT2
49 to JT2 29 to JT2 8 to JT2
48 to JT3 28 to JT3 7 to JT2
47 to JT3 27 to JT3 6 to JT3
46 to JT3 26 to JT3 5 to JT3
45 to JT3 25 to JT3 4 to JT3
44 to JT3 24 to JT3 3 to JT3
43 to JT3 23 to JT3 2 to JT3

22 to JT3 1 to JT3

SHIELD

DB-62 (female)
62-pin connector:

to J2 to JT1 to JT2 to JT3

Tel: 508-921-4600 www.ueidaq.com Vers: 4.5
Date: 05. 15. 2019 DNx-MUX-414-418-ManualIX.fm

© Copyright 2019
United Electronic Industries, Inc.

May 2019 www.ueidaq.com
508.921.4600

© Copyright 2019
United Electronic Industries, Inc.

DNx-MUX-414 / DNR-MUX-418 1x3 Multiplexer Board
 Index 27

Index
A
ACB 17
Architecture 6

B
Block Diagram 6

C
Cable(s) 26
Cleaning-up the session 15
Conventions 2
Creating a Session 9

H
High Level API 9

O
Organization 1

P
Pinout 8

S
Screw Terminal Panels 26
Specifications 5, 6
Support ii
Support email

support@ueidaq.com ii
Support FTP Site

ftp
//ftp.ueidaq.com ii

Support Web Site
www.ueidaq.com ii

	DNx-MUX-414 / DNR-MUX-418 — User Manual
	Table of Contents
	List of Figures
	Chapter 1 Introduction
	1.1 Organization of Manual
	1.2 Manual Conventions
	1.3 MUX-414 / MUX-418 Board Overview
	1.3.1 Multiplexing Modes
	1.3.2 Switch Conditions
	1.3.3 Synchronization Input and Output Pins
	1.3.4 Diagnostic Capabilities
	1.3.5 Isolation & Over-voltage Protection
	1.3.6 Support Accessories
	1.3.7 Software Support

	1.4 Features
	1.5 Indicators
	1.6 Specification
	1.7 Device Architecture
	1.7.1 Input Circuitry
	1.7.2 Controlling Multiplexers
	1.7.3 Synchronization I/O

	1.8 Connectors and Wiring (Pinout)

	Chapter 2 Programming with the High-Level API
	2.1 Creating a Session
	2.2 Configuring Mux Port
	2.2.1 Configuring Break-before- make or Port On Delay

	2.3 Configuring the Timing
	2.4 Configuring Sync Input / Sync Output
	2.4.1 Configure Sync Out
	2.4.2 Configure Sync In

	2.5 Writing Data
	2.6 Monitoring Supply Voltage, Temperature & Status
	2.7 Monitoring Relay States & Status
	2.8 Cleaning-up the Session

	Chapter 3 Programming with the Low-Level API
	3.1 About the Low-level API
	3.2 Low-level Functions
	3.3 Low-level Programming Techniques
	3.3.1 Data Collection Modes

	3.4 Programming the MUX-414 / MUX-418 (Immediate Mode)
	3.5 Writing MUX Relays & Control Bits
	3.5.1 Programming Relays

	3.6 Reading Diagnostic Voltage, Temperature, and Status
	3.7 Reading Status and Relay States
	3.8 Configuring Sync and Delays
	3.8.1 Example of Using Sync In / Sync Out Handshaking

	3.9 Configuring Break-before- make Functionality
	3.9.1 Changing Break Duration
	3.9.2 Disabling Break-before- make

	Appendix A
	Index

