

UeiDaq Framework User Manual

January 2020 Edition

© Copyright 2007-2020 United Electronic Industries, Inc. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means,
electronic, mechanical, by photocopying, recording, or otherwise without prior written permission.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. i 508.921.4600

Table of contents
1. Introduction ... 1

2. UeiDaq framework architecture .. 2

2.1. Overview ... 2

2.2. Key Concepts .. 3

2.3. UeiDaq objects .. 3
2.3.1. Hierarchy... 3
2.3.2. Session .. 4
2.3.3. Channels .. 4
2.3.4. Devices .. 4
2.3.5. DataStream .. 5
2.3.6. Timing ... 5
2.3.7. Trigger... 5
2.3.8. Reader ... 5
2.3.9. Writer .. 5

3. Operating a Session ... 6

3.1. Creating a session ... 7

3.2. Creating the channel list.. 7
3.2.1. Analog input.. 9

3.2.1.1. Voltage .. 9
3.2.1.2. Voltage with excitation ... 10

3.2.1.3. Current .. 11
3.2.1.4. Thermocouple ... 11

3.2.1.5. Resistance ... 12

3.2.1.6. RTD... 13
3.2.1.7. LVDT/RVDT .. 14

3.2.1.8. SynchroResolver ... 15

3.2.1.9. Accelerometer ... 15

3.2.2. Analog output.. 16

3.2.2.1. Voltage .. 16
3.2.2.2. Current .. 17
3.2.2.3. Waveform ... 17

3.2.2.4. Protected voltage ... 18

3.2.2.5. Protected current ... 18

3.2.2.6. Simulated LVDT/RVDT ... 18

3.2.2.7. Simulated synchro/resolver ... 19

3.2.2.8. Simulated thermocouple ... 20

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. ii 508.921.4600

3.2.2.9. Simulated RTD ... 21

3.2.3. Digital input .. 22
3.2.3.1. Digital industrial input .. 22

3.2.4. Digital output .. 23
3.2.4.1. Digital output protected .. 23

3.2.5. Counter input .. 24
3.2.5.1. Quadrature encoder input .. 25

3.2.6. Timer/Frequency (Counter) output ... 25

3.2.7. Variable reluctance ... 26

3.2.8. Serial port .. 28
3.2.9. CSDB port ... 29
3.2.10. SSI port ... 30
3.2.11. HDLC port .. 31
3.2.12. CAN bus.. 32
3.2.13. ARINC-429 bus .. 32

3.2.13.1. ARINC-429 receiver ports .. 32

3.2.13.2. ARINC-429 transmitter ports ... 33

3.2.14. MIL-1553 bus ... 34

3.2.15. IRIG .. 35
3.2.15.1. IRIG timekeeper.. 35

3.2.15.2. IRIG output ... 36

3.2.15.3. IRIG input ... 37

3.2.15.4. IRIG TTL outputs ... 38

3.2.16. SYNC .. 39

3.3. Configuring the timing .. 39
3.3.1. Point by point timing mode... 39

3.3.2. Buffered timing mode ... 40

3.3.2.1. Advanced Circular Buffer ... 40

3.3.3. Data map timing mode (legacy) .. 43

3.3.4. Edge detection timing mode ... 44

3.3.5. Messaging timing mode .. 44

3.3.5.1. CAN bus data representation .. 45

3.3.5.2. ARINC 429 bus data representation ... 45

3.3.5.3. MIL-1553 bus data representation .. 46

3.4. Configuring the trigger(s) ... 49
3.4.1. Digital trigger .. 49
3.4.2. Analog software trigger .. 49

3.4.3. Internal signal trigger .. 50

3.5. Starting the session ... 51

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. iii 508.921.4600

3.6. Reading/Writing data from/to the device .. 51

3.7. Stopping the session .. 53

3.8. Destroying the session .. 53

4. Programming the UeiDaq framework ... 54

4.1. UeiDaq framework C++ API .. 54

4.1.1. Shared library .. 55
4.1.2. Static library .. 56
4.1.3. Step-by-step tutorial – Ms Visual C++ 6.0 ... 59

4.2. UeiDaq framework C API .. 60

4.3. UeiDaq framework .Net API .. 60

4.3.1. Using the UeiDaq .Net assembly in Visual studio 61

4.3.2. Using the UeiDaq .Net assembly in Matlab.. 63

4.3.2.1. Loading the assembly ... 63

4.4. UeiDaq framework Python interface .. 64

4.4.1. Installation under Windows .. 64

4.4.2. Installation under Linux .. 65

4.4.3. Verify installation ... 66

4.4.4. Framework API in python .. 66

4.4.1. Data buffer management ... 66

4.5. UeiDaq framework ActiveX interface .. 67

4.5.1. Step by step tutorial - Ms Visual Basic 6.0 ... 69

4.5.2. Step by Step tutorial - Borland Delphi .. 71

4.5.3. Step by Step tutorial - Borland C++ Builder .. 73

4.6. UeiDaq Framework Java API ... 76

4.7. UeiDaq framework LabVIEW library .. 77

4.7.1. Step-by-step tutorial – Trivial Analog Input example – LabVIEW 78

4.8. UeiDaq framework Excel Add-In ... 80

4.9. UeiDaq Framework OPC server ... 82

4.9.1. Configuring OPC items... 82

4.9.2. Selecting the UeiDaq OPC server in your client 85

5. Synchronization using the UeiDaq framework 89
5.1. Starting I/O layers simultaneously with a software trigger 89

5.2. Synchronizing I/O modules with external clock connected to sync connector 91

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. iv 508.921.4600

5.3. Synchronizing I/O modules with 1PPS timing signal or IEEE-1588 PTP
standard ... 93

5.3.1. Creating a 1PPS or PTP Synchronization session 94

5.3.1.1. 1PPS Synchronization session .. 94

5.3.1.2. PTP Synchronization session .. 97

5.3.2. Creating I/O sessions .. 100

5.3.3. Starting sessions .. 101
5.3.1. Checking PTP status ... 102

5.3.2. Reading UTC time .. 103

5.3.3. Checking ADPLL status ... 104

5.3.4. Sending trigger on next PPS ... 105

Appendix A: Error Codes .. 106

Appendix B: Custom Properties .. 111

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 1 508.921.4600

1. Introduction

This manual provides documentation for using the UeiDaq framework API.

The UeiDaq framework offers a simple yet powerful API to access your UEI data
acquisition devices. The API is used to access devices from the PowerDAQ and
PowerDNA product lines. It also implements a simulation device that allows the end-
user to start working with the API without hardware. The capabilities of the simulation
device are modeled after the capabilities of PowerDAQ multi-function devices.

The UeiDaq framework comes with bindings for various programming languages such as
C, C++, C#, VB6, VB.NET and scientific software packages such as LabVIEW and
Matlab.

The UeiDaq framework API is supported on Window (7 and greater) and Linux (Intel
and ARM).

This document gives further details on the features and functionalities of the API that a
designer can employ to create an application.

�

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 2 508.921.4600

2. UeiDaq framework architecture

2.1. Overview

The following diagram and component summary provide an overview of the architecture
of the UeiDaq library.

Figure 1 UeiDaq framework architecture

Hardware plugins
Used by the framework for communication with hardware and/or
simulation devices. There is one plugin for each family of supported
devices: PowerDAQ, PowerDNA, and simulation

Core
The heart of the framework. Detects available hardware plugins and
implements a hierarchy of objects that abstracts communication with
the plugins through a common interface

Bindings
Make the core’s object oriented API available to various development
environments and test and measurement software packages

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 3 508.921.4600

2.2. Key Concepts

The UeiDaq framework can be programmed using various development environments:

• A set of classes for object-oriented environments such as the C++ language,
.NET framework languages and ActiveX enabled environments.

• A set of functions for procedural languages such as ANSI C; the concept of classes
is still present and objects are manipulated using handles and accessor functions.

• A set of VIs for the National Instruments LabVIEW package. A session refnum
is used to specify and operate a session. Property nodes are used to access object
parameters.

• An adapter for the MathWorks Matlab DAQ toolbox.
• An OPC server.
• An Excel add-in.

2.3. UeiDaq objects
2.3.1. Hierarchy

The UeiDaq framework API is object oriented and implements a hierarchy of classes to
manage the communication with the data acquisition device.

Figure 2 UeiDaq framework UML class diagram showing a subset of Channel classes

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 4 508.921.4600

The UML class diagram in Figure 2 details the relationship between the various classes in
the framework.

If you don’t know UML don’t panic. The most important thing to understand in the
diagram is that the main object your application will interface with is the Session object.

The Session object acts as a container for other objects, such as Timing and Trigger. You
only need to manage the lifetime of the Session object, which will in turn control the
lifetime of its child objects.

The following sections provide a short description of each class. Please refer to the
UeiDaq Framework Reference Manual for detailed information about each UeiDaq
framework class.

2.3.2. Session

The Session manages communication with a data acquisition device subsystem. In order
to do anything with your data acquisition device, you need to create a session first. You
can then configure the session parameters and operate the session.

A session is tied to one subsystem at a time. If you want to use multiple subsystems (for
example simultaneous analog input and output), you need to use multiple sessions.

2.3.3. Channels

A channel is part of the channel list associated with a Session. The channel object gives
access to channel-specific parameters, such as gain for analog input channels.

Figure 2 shows that there is a derivation of the Channel class for each subsystem type:
Analog Input, Analog Output, Digital Input, Digital Output, Counter Input, and Counter
Output.

Note that Figure 2 also shows that the AIChannel class is also derived for specialized
analog input measurement types: Voltage with excitation (AIVexChannel) and
Thermocouple (TCChannel).

2.3.4. Devices

Each Session is tied to a subsystem that belongs to a specific device. The device object
gives access to device properties such as its name, serial number, and calibration data.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 5 508.921.4600

2.3.5. DataStream

The DataStream object is used to transfer data between the device and the host.

2.3.6. Timing

The Timing object specifies how the subsystem clocks are configured. With it you can
select whether you want to use a clock or not and whether the clock is internal or
external.

2.3.7. Trigger

The Trigger object defines how the Session is started or stopped. You can configure the
Session to start immediately or to wait for an external event to happen before starting.

2.3.8. Reader

The Reader object manages the transfer and formatting of data from a Session object.
This object lifetime is independent of the session’s lifetime; it needs to be linked to the
session’s DataStream object before it can start reading data.

The Reader class is designed to be derived. You can overload it to add functionalities to
it; for example you could create an FFTReader object that would retrieve data from a
session and compute an FFT before returning the result to the calling program.

2.3.9. Writer

The Writer object manages the transfer and formatting of data to a Session object. This
object lifetime is independent of the Session’s lifetime; it needs to be linked to the
Session’s DataStream object before it can start writing data.

�

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 6 508.921.4600

3. Operating a Session

Figure 3 below is the typical flow of operations necessary to configure and execute a
session:

Create a session

Add channels to session

Is session buffered?

Configure buffer size
and sample rate

Is session triggered?

Configure trigger(s)

Start

Read/Write

Dispose session

Done?

No

Yes

No

Yes

Yes

No

Figure 3 Flow of operations

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 7 508.921.4600

The following sections provide examples to show how each operation is programmed
with the UeiDaq framework. These examples are primarily coded using the C++ API;
however, note that each development environment supported by the framework follows
the same model.

3.1. Creating a session
To get started, you need to create a session object.

In C++, simply instantiate a CUeiSession object:

//Create a session on the stack
UeiDaq::CUeiSession mySession;

//Create a session on the heap
UeiDaq::CUeiSession* pMySession = new UeiDaq::CUeiS ession();

In C, call the UeiDaqCreateSession() function:

SessionHandle mySession;
int error = UeiDaqCreateSession(&mySession);

From any managed .NET language, create a Session object:

UeiDaq.Session mySession = new UeiDaq.Session()

The next step is to create the channel list associated with the session.

3.2. Creating the channel list
The Session object has methods that select and configure channels that will be accessed
during the session. All channels must belong to the same subsystem; for example, you
cannot configure a single session with both Analog Input and Analog Output channels.

The framework uses resource strings to select which device, subsystem and channels to
use within a session. The syntax for resource strings is similar to a web URL:
<device class>://<IP address>/<Device Id>/<Subsyste m><Channel list>

The device class can be any of the following:

• “pwrdaq ” for PowerDAQ PCI and PXI boards
• “pdna ” for PowerDNA Ethernet I/O modules
• “simu ” implements software simulation of various data acquisition devices,

allowing you to start programming the framework without hardware.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 8 508.921.4600

The device Id must start with the string “dev” followed by the 0-based device number.

The IP address only needs to be specified if the device class requires it. PowerDNA
devices need an IP address; PowerDAQ devices will ignore it, if specified.

The subsystem must be one of the following:

• AI: analog input session to measure voltage, current, temperature, strain, etc.
• AO: analog output session to generate voltage, current, etc.
• DI: digital input session to measure discrete signals.
• DO: digital output session to generate digital patterns.
• CI: counter input session to count discrete events, or measure pulse width and

period.
• CO: counter output session to generate pulses and pulse trains.
• CAN: CAN bus session to send/receive data over a CAN bus.
• COM: serial port session to send/receive data over a serial port.
• CSDB: specialized serial session to send/receive data over a Commercial Serial

Data Bus port.
• SSI: specialized serial session to send/receive data over a serial port using the

Synchronous Serial Interface standard.
• HDLC: specialized serial session to send/receive data over a serial port that

supports the high-level data link control protocol.
• ATX: ARINC-429 transmitter session to send data to an ARINC-429 bus.
• ARX: ARINC-429 receiver session to receive data from an ARINC-429 bus.
• MILB: MIL-1553B session to send/receive data over a MIL-1553 port.
• IRIG: Inter-range Instrumentation Group timing generation and synchronization

session to capture IRIG data or to generate timing and synchronization signals for
other device.

• VR: variable reluctance session to measure velocity and position and to count the
teeth of a rotating gear-toothed wheel.

• SYNC: synchronization session to configure multi-layer, multi-chassis
synchronization to a 1PPS pulse or the IEEE-1588 Precision Time Protocol
standard.

The channel list is a comma-separated list of channels; you can also specify a range of
channels using the lowest and highest channels separated by a colon. The channels in the
channel list do not have to be sequential; you can even repeat channels multiple times.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 9 508.921.4600

Note that the resource string is not case sensitive. The following are examples of
supported resource string formatting:

Pwrdaq://Dev0/Ai0:15
PDNA://192.168.100.2/Dev1/AO3
simu://Dev2/Di3

3.2.1. Analog input
There are several categories of Analog Input measurement: Voltage, Voltage with
excitation, Current, Thermocouple, Resistance, Resistance temperature detectors (RTD),
Linear variable differential transformer (LVDT), Synchro/Resolver, and Accelerometer.

NOTE: For each of the Analog Input sessions, timestamps may also be acquired by
adding a ts channel as the last channel in the resource string.
For example: “pdna://192.168.100.2/dev0/Ai0:3,ts”. The time unit for the acquired
timestamp is seconds.

3.2.1.1. Voltage
Voltage measurements are configured using the Session object’s method
CreateAIChannel().

The gain to apply on each voltage channel is specified using low and high input range
parameters. For example, if your device has an input range of –10/+10V with gains of
1,10,100,1000, specifying an input range of –0.1,+0.1 will turn on the gain of 100.

// Add 4 channels (0 to 3) to the channel list and configure
// them to measure a voltage between –10.0V and 10. 0V in
// differential mode

MySession.CreateAIChannel(“pwrdaq://dev0/Ai0:3”,
 -10.0, 10.0,
 UeiAIChannelInputModeDiff erential);

CreateAIChannel creates the specified number of channel child objects and initializes
them with the specified input range and mode. (Refer to the UeiDaq Framework
Reference Manual for more details about this method).

You can call CreateAIChannel several times in a row to add channels with different
input ranges and modes to the list.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 10 508.921.4600

3.2.1.2. Voltage with excitation
Voltage measurements with excitation are configured using the Session object’s method
CreateAIVExChannel() .

You use a voltage with excitation channel when measuring data from a sensor that
requires excitation, such as a strain gauge or a load cell.

// Add 4 channels (0 to 3) to the channel list and configure
// them to measure a voltage between –0.05V and 0.0 5V from a
// full bridge sensor in differential mode. Also co nfigure the
// excitation voltage to 10.0V and turn on ratiomet ric scaling.

MySession.CreateAIVExChannel(“pdna://192.168.100.2/ dev0/Ai0:3”,
 -0.05, 0.05,
 UeiSensorBridgeFull,
 10.0,
 true,
 UeiAIChannelInputModeD ifferential);

CreateAIVExChannel creates the specified number of channel child objects and
initializes them with the specified input range, sensor type, excitation voltage and input
mode. (Refer to the UeiDaq Framework Reference Manual for more details about this
method).

You can call CreateAIVExChannel several times in a row to add channels with different
parameters to the list.

The parameter “scale with excitation ”, determines whether the measurements are
returned in V or in mV/V (measured voltage divided by excitation voltage).
Getting the measurements in mV/V is very useful with ratiometric sensors such as load
cells that return a voltage proportional to the physical value measured and come with
calibration values in mV/V.

You can only use voltage with excitation channels with devices that can provide
excitation voltage, such as the DNA-AI-208 or DNx-AI-224.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 11 508.921.4600

3.2.1.3. Current
Current measurements are configured using the Session object’s method
CreateAICurrentChannel().

// Add 4 channels (0 to 3) to the channel list and configure
// them to measure a current between –10.0mA and 10 .0mA in
// differential mode

MySession.CreateAICurrentChannel(“pdna://192.168.10 0.2/dev0/Ai0:3”,
 -10.0, 10.0, UeiFeatureDi sabled, // for CB
 UeiAIChannelInputModeDiff erential);

CreateAICurrentChannel creates the specified number of channel child objects and
initializes them with the specified input range, circuit breaker enable, and mode. (Refer to
the UeiDaq Framework Reference Manual for more details about this method).

You can call CreateAICurrentChannel several times in a row to add channels with
different input ranges and modes to the list.

3.2.1.4. Thermocouple
Thermocouple measurements are configured using the Session object’s method
CreateTCChannel() .

// Add 4 channels (0 to 3) to the channel list and configure
// them to measure a temperature between 0.0 and 10 00.0 degrees C
// from type J thermocouples, scale temperatures in Celsius
// degrees and use a constant value of 25 degrees C for the
// cold junction temperature

MySession.CreateTCChannel(“pdna://192.168.100.2/dev 0/Ai0:3”,
 0, 1000.0,
 UeiThermocoupleTypeJ,
 UeiTemperatureScaleCelsiu s,
 UeiColdJunctionCompensati onConstant,
 25.0,
 “”,
 UeiAIChannelInputModeDiff erential);

CreateTCChannel creates the specified number of channel child objects and initializes
them with the specified input range, thermocouple type, temperature scale, cold-junction
compensation and input mode. (Refer to the UeiDaq Framework Reference Manual for
more details about this method).

You can call CreateTCChannel several times in a row to add channels with different
parameters to the list.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 12 508.921.4600

The gain to apply on each thermocouple channel is specified using low and high input
range parameters. The unit of the range values is in degree C/F/K (depending on the
selected temperature scale).

The measurements will be scaled in the unit specified by the “temperature scale”
parameter. Depending on your hardware you can specify whether the scaling calculation
will use a constant cold-junction temperature or measure it from a built in sensor. (See
the DNA-STP-AI-U datasheet for information about our STP panels with built in CJC
sensors.)

3.2.1.5. Resistance
Resistance measurements are configured using the Session object’s method
CreateResistanceChannel() .

In order to measure a resistance, we need to know the amount of current flowing through
it. We can then calculate the resistance by dividing the measured voltage by the known
excitation current.

To measure the excitation current, we measure the voltage from a high precision
reference resistor whose resistance is known.

// Add 4 channels (0 to 3) to the channel list and configure
// them to measure a resistance between 0.0 and 100 0.0 Ohms.
// The resistive sensor is connected to the DAQ dev ice using
// two wires, the excitation voltage is 5V

MySession.CreateResistanceChannel(“pdna://192.168.1 00.2/dev0/Ai0:3”,
 0, 1000.0,
 UeiTwoWires,
 5.0,
 UeiAIChannelInput ModeDifferential);

CreateResistanceChannel creates the specified number of channel child objects and
initializes them with the specified input range, wiring scheme, excitation voltage,
reference resistor and input mode. (Refer to the UeiDaq Framework Reference Manual
for more details about this method).

You can call CreateResistanceChannel several times in a row to add channels with
different parameters to the list.

The measurements will be scaled in the unit specified by the “temperature scale”
parameter.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 13 508.921.4600

3.2.1.6. RTD
Resistance temperature detector (RTD) measurements are configured using the Session
object’s method CreateRTDChannel() .

RTD sensors are resistive sensors whose resistance varies with temperature. Knowing an
RTD’s resistance at a given time, we can calculate the temperature using the “Callendar,
Van-Dusen” equations.

RTD sensors are specified using the "alpha" (α) constant. It is also known as the
temperature coefficient of resistance and symbolizes the resistance change factor per
degree of temperature change. The RTD type is used to select the proper A, B and C
coefficients for the Callendar Van-Dusen equation used to convert resistance
measurements to temperature.

The exact same procedure used to configure resistance measurements in
“CreateResistanceChannel ” is used to configure the measurement of RTD resistances.
In addition you must configure the RTD type and its nominal resistance at 0 deg. Celsius.

// Add 4 channels (0 to 3) to the channel list and configure
// them to measure a temperature between 0.0 and 20 0.0 deg. C.
// The RTD sensor is connected to the DAQ device us ing
// two wires, the excitation voltage is 5V,the alph a coefficient is
// 0.00385, and the nominal resistance is 100 ohms.
MySession.CreateRTDChannel(“pdna://192.168.100.2/de v0/Ai0:3”,
 0, 1000.0,
 UeiTwoWires,
 5.0,
 UeiRTDType3850,
 100.0,
 UeiTemperatureScaleCelsi us,
 UeiAIChannelInputModeDif ferential);

CreateRTDChannel creates the specified number of channel child objects and initializes
them with the specified input range, wiring scheme, excitation voltage, RTD type,
temperature scale and input mode. (Refer to the UeiDaq Framework Reference Manual
for more details about this method).

You can call CreateRTDChannel several times in a row to add channels with different
parameters to the list.

The measurements will be scaled in the unit specified by the “temperature scale”
parameter.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 14 508.921.4600

3.2.1.7. LVDT/RVDT
Linear variable differential transformer (LVDT) or rotational variable differential
transformer (RVDT) measurements are configured using the Session object’s method
CreateLVDTChannel() .

LVDT/RVDT sensors are electromechanical transducers that measure displacement
relative to a core position. The LVDT/RVDT sensor consists of a primary winding
energized by a sine wave reference and two secondary windings, with the moveable core
between the primary and secondary windings. As the core moves from the center
position, an output voltage across the secondary windings is generated and used to
determine the positional displacement (linear or rotational).

The CreateLVDTChannel method is used to program the input channels and parameters
associated with each channel. This method will only work with devices that can provide
an excitation waveform to the LVDT or RVDT.

// Configure 2 channels (0 to 1) on device 1. Speci fy
// -2.5v and 2.5v as the minimum / maximum range of the LVDT sensor
// and the sensor sensitivity specification at 153. 65 mV/V/mm
// The LVDT sensor is connected to the DAQ device u sing
// a five-wire wiring scheme, and the excitation si ne wave is
// configured to have an amplitude at 3.0Vrms, a fr equency at 5kHz,
// and to be generated internally.
MySession.CreateLVDTChannel("pdna://192.168.100.2/D ev1/Ai0:1",
 -2.5, //Minimum range
 2.5, //Maximum range
 153.65, //Sensor sensit ivity
 UeiLVDTFiveWires, //Wir ing scheme
 3.0, //Excitation volta ge
 5000.0, //Excitation fr equency
 false); //External exci tation;

CreateLVDTChannel creates the specified number of channel child objects and
initializes them with the specified input range, sensor sensitivity, wiring scheme,
excitation voltage, excitation frequency, and excitation mode. The measurements will be
scaled in the unit specified by the “sensor sensitivity” parameter. (Refer to the UeiDaq
Framework Reference Manual for more details about this method).

You can call CreateLVDTChannel several times in a row to add channels with different
parameters to the list.

See CreateSimulatedLVDTChannel in the Analog Output Channel section for
information about configuring the device as a simulated LVDT/RVDT sensor.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 15 508.921.4600

3.2.1.8. SynchroResolver
Synchro/Resolver measurements are configured using the Session object’s method
CreateSynchroResolverChannel() .

Synchro and resolver sensors are electromechanical transducers that measure the angular
displacement of a rotating shaft.

The CreateSynchroResolverChannel method is used to program the input channels
and parameters associated with each channel. This method will only work with devices
that can provide an excitation waveform to the Synchro or Resolver sensor.

// Configure channel 0 on device 1 to acquire posit ion measured
// by a synchro powered by a 600Hz sine waveform wi th
// amplitude of 10.0 VRMS excitation that is genera ted internally.

mySession.CreateSynchroResolverChannel(
 "pdna://192.168.100.2/Dev1/Ai 0",
 UeiSynchroMode,
 10.0,
 600.0,
 false);

CreateSynchroResolverChannel creates the specified number of channel child objects
and initializes them with the specified synchro/resolver type, excitation voltage,
excitation frequency, and excitation mode. (Refer to the UeiDaq Framework Reference
Manual for more details about this method).

You can call CreateSynchroResolverChannel several times in a row to add channels
with different parameters to the list.

See CreateSimulatedSynchroResolverChannel in the Analog Output Channel section
for information about configuring the device as a simulated synchro or resolver sensor.

3.2.1.9. Accelerometer
Accelerometer measurements are configured using the Session object’s method
CreateAccelChannel() .

ICP and IEPE sensors measure dynamic pressure, force, strain, or acceleration. The
sensing element converts mechanical strain into a voltage, and the sensor is powered by a
constant excitation source.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 16 508.921.4600

The CreateAccelChannel method is used to program the input channels and parameters
associated with each channel. This method will only work with devices that can provide
excitation current for ICP and IEPE sensors.

// Configure channels 0 to 3 on device 1 to acquire acceleration
// measured by a sensor with a sensitivity of 10 mV /g, powered by a
// current of 5mA. The gain of the device is adjust ed to measure
// accelerations between -100.0g and +100.0g. Uses AC coupling and
// enables the low-pass anti-aliasing filter.

mySession.CreateAccelChannel(
 "pdna://192.168.100.2/Dev1/Ai 0:3",
 -100.0,
 100.0,
 24.0,
 UeiCouplingAC,
 true);

CreateAccelChannel creates the specified number of channel child objects and
initializes them with the gain, sensor sensitivity, excitation current, coupling setting, and
low-pass filter setting. (Refer to the UeiDaq Framework Reference Manual for more
details about this method).

You can call CreateAccelChannel several times in a row to add channels with different
parameters to the list.

3.2.2. Analog output
There are several categories of Analog Output measurement: Voltage, Current,
Waveform Protected Voltage Channel, Protected Current Channel, Simulated
LVDT/RVDT, Simulated Synchro/Resolver, Simulated Thermocouple, and Simulated
Resistance Temperature Detector.

3.2.2.1. Voltage
Voltage generation channels are configured using the Session object’s method
CreateAOChannel() .

// Add 4 channels (0 to 3) to the channel list with an expected
// minimum and maximum output voltage of -10v / 10v
MySession.CreateAOChannel(“pwrdaq://dev0/Ao0:3”, -1 0, 10);

CreateAOChannel creates the specified number of channel child object(s). (Refer to the
UeiDaq Framework Reference Manual for more details about this method).

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 17 508.921.4600

3.2.2.2. Current
Current generation channels are configured using the Session object’s method
CreateAOCurrentChannel() .

// Add 2 channels (0 to 1) to the channel list with an expected
// minimum and maximum output current of 0mA / 10mA
MySession.CreateAOCurrentChannel
 "pdna://192.168.100.2/Dev1/Ao0:1 ",
 0, 10);

CreateAOCurrentChannel creates the specified number of channel child object(s).
(Refer to the UeiDaq Framework Reference Manual for more details about this method).

3.2.2.3. Waveform
Waveform generation channels are configured using the Session object’s method
CreateAOWaveformChannel() .

// Add 3 channels (0 to 2) to the channel.
// Set the clock from the PLL as the source of the clock used to time
// the main DAC.
// Specify using software for a DC offset on the DA C
// Specify external triggers or clock sources will not be routed over
// the SYNC lines.

MySession.CreateAOWaveformChannel(
 "pdna://192.168.100.2/Dev0/Ao0:2" ,
 UeiAOWaveformClockSourcePLL,
 UeiAOWaveformOffsetClockSourceSW ,
 UeiAOWaveformClockRouteNone);

CreateAOWaveformChannel creates the specified number of channel child object(s) and
sets up clocking and triggers. (Refer to the UeiDaq Framework Reference Manual for
more details about this method).

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 18 508.921.4600

3.2.2.4. Protected voltage
Protected voltage generation channels are configured using the Session object’s method
CreateAOProtectedChannel() .

Protected AO channels are available on certain devices, such as the DNA-AO-318. The
amount of current flowing through each output is monitored at the given rate and must
stay within the specified range, otherwise the device circuit breaker will open. Users can
specify whether the device should attempt to reset the circuit breaker and how often the
reset attempt should be made.

CreateAOProtectedChannel creates the specified number of channel child object(s).
(Refer to the UeiDaq Framework Reference Manual for more details about this method).

3.2.2.5. Protected current
Current generation channels with over/under range protection are configured using the
Session object’s method CreateAOProtectedCurrentChannel() .

Protected AO current channels are available on certain devices, such as the DNA-AO-
318-020. The amount of current flowing through each output is monitored at the given
rate and must stay within the specified range, otherwise the device circuit breaker will
open. Users can specify whether the device should attempt to reset the circuit breaker and
how often the reset attempt should be made.

CreateAOProtectedChannel creates the specified number of channel child object(s).
(Refer to the UeiDaq Framework Reference Manual for more details about this method).

3.2.2.6. Simulated LVDT/RVDT
Simulated LVDT/RVDT generated channels are configured using the Session object’s
method CreateSimulatedLVDTChannel() .

The CreateSimulatedLVDTChannel method is used to program the channels and
parameters associated with each channel. This method will only work with devices that
can provide an excitation waveform.

// Configure channel 0 on device 1 to simulate posi tion measurement
// given by a LVDT with a sensitivity of 24 mV/V/mm , powered by a
// 600Hz sine waveform with amplitude of 10.0V RMS.
MySession.CreateSimulatedLVDTChannel(
 "pdna://192.168.100.2/Dev1/Ao0",
 24, // sensor sensitivity
 UeiLVDTFiveWires, //Wiring scheme
 10.0, //Excitation voltage
 600.0); //Excitation frequency

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 19 508.921.4600

CreateSimulatedLVDTChannel creates the specified number of channel child objects
and initializes them with the specified sensor sensitivity, wiring scheme, and excitation
voltage and frequency. (Refer to the UeiDaq Framework Reference Manual for more
details about this method).

See CreateLVDTChannel in the Analog Input Channel section for information about
configuring the device as a LVDT/RVDT input device.

3.2.2.7. Simulated synchro/resolver
Simulated Synchro or Resolver generated channels are configured using the Session
object’s method CreateSimulatedSynchroResolverChannel() .

The CreateSimulatedSynchroResolverChannel method is used to program the
channels and parameters associated with each channel. This method will only work with
devices that can provide an excitation waveform.

// Configure channel 0 on device 1 to simulate posi tion measurement
// returned by a synchro powered by a 600Hz sine wa veform with
// amplitude of 10.0 VRMS.
mySession.CreateSimulatedSynchroResolverChannel(
 "pdna://192.168.100.2/Dev1/Ai 0",
 UeiSynchroMode,
 10.0,
 600.0,
 false);

CreateSimulatedSynchroResolverChannel creates the specified number of channel
child objects and initializes them with the specified synchro/resolver type, excitation
voltage, excitation frequency, and excitation mode. (Refer to the UeiDaq Framework
Reference Manual for more details about this method).

You can call CreateSimulatedSynchroResolverChannel several times in a row to add
channels with different parameters to the list.

See CreateSynchroResolverChannel in the Analog Input Channel section for
information about configuring the device as a synchro or resolver input device.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 20 508.921.4600

3.2.2.8. Simulated thermocouple
Simulated Thermocouple generated channels are configured using the Session object’s
method CreateSimulatedTCChannel() .

The CreateSimulatedTCChannel method is used to program the channels and
parameters associated with each channel. This method can only be used on devices that
support simulated thermocouple functionality, such as the DNx-TC-378 devices.

// Configure channel 0 on device 1 to simulate a ty pe K thermocouple
// Temperatures to simulate are provided in Cels ius and
// CJC sensors are read and offsets compensated for.
mySession.CreateSimulatedTCChannel(
 "pdna://192.168.100.2/Dev1/Ao 0",
 UeiThermocoupleTypeK,
 UEITemperatureScaleCelsius,
 true);

CreateSimulatedTCChannel creates the specified number of channel child objects and
initializes them with the specified thermocouple type, temperature scale, and CJC enable
configuration. (Refer to the UeiDaq Framework Reference Manual for more details about
this method).

You can call CreateSimulatedTCChannel several times in a row to add channels with
different parameters to the list.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 21 508.921.4600

3.2.2.9. Simulated RTD
Simulated Resistance Temperature Detector (RTD) generated channels are configured
using the Session object’s method CreateSimulatedRTDChannel() .

The CreateSimulatedRTDChannel method is used to program the channels and
parameters associated with each channel. This method can only be used on devices that
support simulated RTD functionality, such as the DNx-RTD-388 devices.

// Configure channel 0 on device 1 to simulate an R TD sensor
// with an α constant equal to .003850 Ω/ Ω/ºC and
// a nominal resistance of 100.0
// Temperatures to simulate are provided in Cels ius.
mySession.CreateSimulatedRTDChannel(
 "pdna://192.168.100.2/Dev1/Ao 0",
 UeiRTDType3850,
 100.0,
 UEITemperatureScaleCelsius);

CreateSimulatedRTDChannel creates the specified number of channel child objects and
initializes them with the specified RTD type, nominal resistance, and temperature scale.
(Refer to the UeiDaq Framework Reference Manual for more details about this method).

You can call CreateSimulatedRTDChannel several times in a row to add channels with
different parameters to the list.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 22 508.921.4600

3.2.3. Digital input
Digital input channels are configured using the session object’s method
CreateDIChannel() .

// Add 4 ports (0 to 3) to the input port list
MySession.CreateDIChannel(“pwrdaq://dev0/Di0:3”);

CreateDIChannel creates the specified number of channel child object(s). (Refer to the
UeiDaq Framework Reference Manual for more details about this method).
Each entry in the channel list correspond to a digital port (usually 16 to 32 input lines per
port). Note: you cannot specify individual digital input lines directly.

Note that for devices with bi-directional ports, this operation configures the specified
ports as input.

3.2.3.1. Digital industrial input
Digital industrial input channels are configured using the session object’s method
CreateDIIndustrialChannel() .

Digital Industrial channels are only available on certain DIO devices, such as the DNA-
DIO-449, which supports industrial input ranges of ±150 VDC and 0-150 VAC.

You can program the levels at which the input line changes state as well as configure a
digital filter to eliminate glitches and spikes.

// Add 2 ports (0 and 1) to the input port list
// Set low threshold to 1.5V, high threshold to 3.5 V
// Set minimum input width to 0.01ms
MySession.CreateDIIndustrialChannel(
 “pdna://192.168.100.2/dev0/Di0,1”, 1.5, 3.5, 0.01);

Parameters include the following:
• lowThreshold: the low hysteresis threshold
• highThreshold: the high hysteresis threshold
• minPulseWidth: the digital filter minimum pulse width in ms. Use 0.0 to disable

digital input filter.

CreateDIIndustrialChannel creates the specified number of channel child object(s).
(Refer to the UeiDaq Framework Reference Manual for more details about this method).
Each entry in the channel list correspond to a digital port (usually 16 to 32 input lines per
port). Note: you cannot specify individual digital input lines directly.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 23 508.921.4600

3.2.4. Digital output

Digital output channels are configured using the Session object’s method
CreateDOChannel() .

// Add 4 ports (0 to 3) to the output port list
MySession.CreateDOChannel(“pwrdaq://dev0/Do0:3”);

CreateDOChannel creates the specified number of channel child object(s). (Refer to the
UeiDaq Framework Reference Manual for more details about this method).

Each entry in the channel list correspond to a digital port. Note: you cannot specify
individual digital output lines directly.

Note that for devices with bi-directional ports, this operation configures the specified
ports as output.

3.2.4.1. Digital output protected
Protected digital output channels are configured using the Session object’s method
CreateDOProtectedChannel() .

Protected DO channels are available on certain devices, such as the DNx-DIO-432, DNx-
DIO-433, and DNA-DIO-462.
The amount of current flowing through each digital line is monitored at the specified rate
and must stay within the specified range, otherwise the device will automatically open the
circuit acting as a breaker.

You can specify whether the device should attempt to reestablish the circuit and how
often it should try to do so.

// Add 1 port to the output port list
// Set current limits to [0.0, 0.2A]
// Set current sample rate to 100Hz
// Enable auto-retry at 10Hz
MySession.CreateDOProtectedChannel(“pdna://192.168. 100.2/dev0/Do0”,
0.0, 0.2, 100.0, true, 10.0);

Parameters include the following:
• resource: device and channel(s) to add to the list
• underCurrentLimit: minimum amount of current allowed in Amps
• overCurrentLimit: maximum amount of current allowed in Amps

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 24 508.921.4600

• currentSampleRate: current sampling rate. Determines how fast the breaker
react after an over or under-current condition

• autoRetry: specifies whether the device will attempt to reestablish the circuit
after an over or under-current condition

• retryRate: number of retries per second

CreateDOProtectedChannel creates the specified number of channel child object(s).
(Refer to the UeiDaq Framework Reference Manual for more details about this method).

Each entry in the channel list corresponds to a digital port. Note: you cannot specify
individual digital output lines directly.

3.2.5. Counter input
Counter input channels are configured using the Session object’s method
CreateCIChannel() .

// Add 1 counter (0) to the input counter list and configure
// it to count events coming on its input pin, the gate will
// be controlled by software, the signal coming on its input
// pin will be divided by 10 and inverted before be ing counted.

MySession.CreateCIChannel(“pwrdaq://dev0/Ci0”, UeiC ounterSourceInput,
UeiCounterModeCountEvents, UeiCounterGateInternal, 10, true);

CreateCIChannel creates the specified number of channel child object(s) and configure
the counter(s) mode, input, gate, and clock divider. (Refer to the UeiDaq Framework
Reference Manual for more details about this method).

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 25 508.921.4600

3.2.5.1. Quadrature encoder input
Counter input channels are configured using the Session object’s method
CreateQuadratureEncoderChannel() .

// Add 1 counter (0) to the input counter list and configure
// it to start with an initial count of 102190.
// Set decoding type to 1x and enable reset of the position when
// the Z input goes high
MySession.CreateQuadratureEncoderChannel(
 “pdna://192.168.100.2/dev0/Ci0”, 102190,
 UeiQuadratureDecodingType1x, tru e,
 UeiQuadratureZeroIndexPhaseZHigh);

Parameters include the following:
• resource: device and channel(s) to add to the list
• initialPosition: initial number of pulses when the session starts
• decodingType: decoding type 1x, 2x or 4x
• enableZeroIndexing: enable or disable resetting the measurement when a zero

index event is detected
• zeroIndexPhase: specifies the states of A, B and Z inputs that will generate a

zero index event

CreateQuadratureEncoderChannel creates the specified number of channel child
object(s). (Refer to the UeiDaq Framework Reference Manual for more details about this
method).

3.2.6. Timer/Frequency (Counter) output
Timer/Frequency (Counter) output channels are configured using the Session object’s
method CreateCOChannel() .

// Add 1 counter (1) to the output counter list and configure
// it to generate a pulse train timed by its intern al clock, pulses
// will stay low for 102 clock ticks and high for 5 08 ticks,
// the gate will be controlled by software, the tim er’s clock
// will be divided by 10 and the signal generated w on’t be inverted.

MySession.CreateCOChannel(“pwrdaq://dev0/Co1”, UeiC ounterSourceInput,
UeiCounterModeGeneratePulseTrain, UeiCounterGateClo ck, 102, 508, 10,
false);

CreateCOChannel creates the specified number of channel child object(s) and configure
the timer(s) mode, clock, gate, generated pulses shape and clock divider. (Refer to the
UeiDaq Framework Reference Manual for more details about this method).

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 26 508.921.4600

3.2.7. Variable reluctance
Variable Reluctance (VR) channels are configured using the Session object’s method “
CreateVRChannel() .

A VR-session type measures velocity and position and counts the teeth of a geartoothed
wheel rotating next to a variable reluctance sensor. Each VR channel can convert the
output signal of the VR sensor to a pulse train that can be counted and whose frequency
can be measured.

The following call configures channel 0 of a VR-608 set as device 1:

// Configure session to write to channel 0 on devic e 1
session.CreateVRChannel("pdna://192.168.100.2/Dev1/ vr0", vrMode);

The VR mode parameter can be set to any of the following:
• UeiVRModeCounterTimed : Count number of teeth detected during a timed

interval
• UeiVRModeCounterNPulses : Measure the time taken to detect N teeth. Number

of teeth needs to be set separately.
• UeiVRModeZPulse : Measure the number of teeth and the time elapsed between

two Z pulses. The Z tooth is usually a gap or a double tooth on the encoder wheel

In addition you can set additional parameters using the channel object methods
(or a property node under LabVIEW):

• Zero Crossing mode : Configures the method used to detect zero crossing.
A Zero crossing identifies the point in time where the VR sensor output voltage
transitions from positive to negative. This point is the center of the tooth is
transitioning past the front of the VR sensor.

// Set ZC mode to let chip automatically program ze ro crossing
// (alternate mode is UeiZCModeFixed)
pVrChan-> SetZCMode(UeiZCModeChip);

• Zero Crossing level : Configures the threshold to detect zero crossing -only

when ZC mode is set to UeiZCModeFixed .

// Set ZC level to 2.0V
pVrChan-> SetZCLevel(2.0);

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 27 508.921.4600

• Adaptive Peak Threshold mode : Configures the adaptive peak threshold (APT)
mode on variable reluctance sessions. APT finds the point in time where the VR
sensor output voltage falls below a certain threshold. This point marks the
beginning of the gap between two teeth on the gear-wheel.

// Set APT mode to let chip automatically program p eak threshold
// (alternate mode is UeiAPTModeFixed)
pVrChan-> SetAPTMode(UeiAPTModeChip);

• APT threshold : Configures the APT fixed threshold. This parameter is only used

when APT mode is set to UeiAPTModeFixed.

// Set APT threshold to 4 volts
pVrChan->SetAPTThreshold(4);

• Number of teeth : Configures the number of teeth on the encoder wheel. This

parameter is required to measure the position when the mode is set to Timed or
NPulses. It is ignored in ZPulse mode.

// Set number of teeth to 60
pVrChan->SetNumberOfTeeth(60);

• Size of Z-tooth : For gear-wheels with an index/z-tooth you can set the number

of missing teeth (from -1 to -3) or long teeth (1 to 3) with this function to add
them to the total number of teeth:

// Set width of the z-tooth to 0 teeth
// (gear wheel has no index tooth)
pVrChan->SetZToothSize(0);

• Timed Mode Rate : When a channel is in UeiVRModeCounterTimed mode the

channel’s counter-timer unit saves a new read point into the input buffer at a rate /
time-base that you configure with SetTimedModeRate() .
This is not the sampling rate (see SetADCRate call) which is the same for all
channels, but rather the rate at which data is stored:

// Set the read frequency to 10 Hz in UeiVRModeCoun terTimed mode
pVrChan->SetTimedModeRate(10);

CreateVRChannel creates the specified number of port child object(s) and configures the
above communication parameters.
Note that you need to create one reader and one writer object per port to be able to read
and write from/to each port in the port list.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 28 508.921.4600

3.2.8. Serial port
Serial ports are configured using the Session object’s method CreateSerialPort() .

// Configure 4 serial ports on the serial device in device 1
// to use the same communication parameters: 57600 bps, 8 data
// bits, no parity and 1 stop bit.

mySession.CreateSerialPort(“pdna://192.168.100.2/De v1/COM0:3”,
UeiSerialBitsPerSecond57600, UeiSerialDataBits8, Ue iSerialParityNone,
UeiSerialStopBits1);

CreateSerialPort creates the specified number of port child object(s) and configures
the communication parameters: bit per second, number of data bits, parity and number of
stop bits.

Note that there is no multiplexing of data (contrary to what’s being done with AI, AO,
DI, DO, CI and CO sessions): you need to create one reader and one writer object per
port to be able to read and write from/to each port in the port list.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 29 508.921.4600

3.2.9. CSDB port
Commercial Standard Digital Bus (CSDB) ports are configured using the Session
object’s method CreateCSDBPort() . This method can only be used on devices that
support CSDB functionality, such as the DNx-CSDB-509.

// Configure 2 CSDB ports on the serial device in d evice 1
// to use the same communication parameters: 50000 bps, odd parity,
// 10 µs inter-byte delay, 200 µs inter-block delay ,
// and 100000 µs frame period.

mySession.CreateCSDBPort(“pdna://192.168.100.2/Dev1 /CSDB0,1",
 50000,
 1,
 blockSize,
 numMessagesPerFrame,
 10,
 200,
 100000);

Parameters include the following:
• Bit rate: bits per second
• Parity: odd or even
• CSDB message block size: the number of bytes in a message block including the

address and status bytes
• Number of CSDB message blocks per frame
• Inter-byte delay within a message block in microseconds
• Inter-block delay within a frame in microseconds
• Period at which the frame is transmitted in microseconds

CreateCSDBPort creates the specified number of port child object(s) and configures the
above communication parameters.

Note that there is no multiplexing of data (contrary to what’s being done with AI, AO,
DI, DO, CI and CO sessions): you need to create one reader and one writer object per
port to be able to read and write from/to each port in the port list.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 30 508.921.4600

3.2.10. SSI port
Synchronous Serial Interface (SSI) ports are configured using the Session object’s
method CreateSSIMasterPort() and/or CreateSSISlavePort() . These methods can
only be used on devices that support SSI functionality, such as the DNx-SL-514.

// Configure 2 SSI master ports on the serial devic e in device 1
// use 125000 bps, 8-bit word size, enable clo ck,
// do not enable termination resistor,
// set the pause time to 10000 µs, set the tra nsfer timeout to
// 16.02 µs, and set the bit update time to 0. 45 µs

mySession.CreateSSIMasterPort(“pdna://192.168.100.2 /Dev1/SSI0,1",
 125000,
 8,
 TRUE,
 FALSE,
 10000.0,
 16.03,
 0.45);

// Configure 2 SSI slave ports on the serial device in device 2
// use 125000 bps, 8-bit word size, enable clo ck,
// do not enable termination resistor,
// set the pause time to 10000 µs, set the tra nsfer timeout to
// 16.09 µs, and set the bit update time to 0. 0 µs

mySession.CreateSSISlavePort(“pdna://192.168.100.2/ Dev2/SSI2,3",
 125000,
 8,
 TRUE,
 FALSE,
 10000.0,
 16.00,
 0.0);

CreateSSIMasterPort and CreateSSISlavePort creates the specified number of port
child object(s) and configures the above communication parameters.

Note that there is no multiplexing of data (contrary to what’s being done with AI, AO,
DI, DO, CI and CO sessions): you need to create one reader and one writer object per
port to be able to read and write from/to each port in the port list.

Also note that data received over the master port can be optionally timestamped. Pass a
TRUE to the CUeiSSIMasterPort member function to enable timestamps:

masterPort->EnableTimestamping(true);

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 31 508.921.4600

3.2.11. HDLC port
High-level Data Link Control (HDLC) ports are configured using the Session object’s
method CreateHDLCPort() . This method can only be used on devices that support
HDLC functionality, such as the DNx-SL-504.

// Configure HDLC ports 2&3 on the serial device in device 1

mySession.CreateHDLCPort(“pdna://192.168.100.2/Dev1 /hdlc2,3”,
 UeiHDLCPortRS232,
 100000,
 UeiHDLCPortEncodingNRZ,
 UeiHDLCPortCRCNone,
 UeiHDLCPortClockBRG,
 UeiHDLCPortClockExternal);

Parameters include the following:
• Physical interface: (RS-232, RS-422, RS-485)
• Bits per second: the number of bits per second transmitted / received
• Encoding: the method used to encode bits, (e.g., NRZ, NRZI, NRZIMark, etc.)
• CRC: the method used to calculate the cyclic redundancy code (error checking)
• TX clock source: clock source used to synchronize transmitter
• RX clock source: clock source used to synchronize receiver

CreateHDLCPort creates the specified number of port child object(s) and configures the
above communication parameters.

Note that there is no multiplexing of data (contrary to what’s being done with AI, AO,
DI, DO, CI and CO sessions): you need to create one reader and one writer object per
port to be able to read and write from/to each port in the port list.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 32 508.921.4600

3.2.12. CAN bus
CAN ports are configured using the session object’s method CreateCANPort().

// Configure the four CAN ports available on the Po werDNA CAN-503
// layer to use the same parameters: 250000 bps, ex tended, frames,
// normal port operation and acceptance mask and co de.

mySession.CreateCANPort(“pdna://192.168.100.2/Dev1/ CAN0:3”,
UeiCANBitsPerSecond250K, UeiCANFrameExtended, UeiCA NPortModeNormal,
0xffffffff, 0x0);

CreateCANPort creates the specified number of port child object(s) and the
communication parameters: bit per second, frame format, port operation mode, etc.

Note that there is no multiplexing of data (contrary to what’s being done with AI, AO,
DI, DO, CI and CO sessions): you need to create one reader and one writer object per
CAN port to be able to read and write from/to each port in the port list.

3.2.13. ARINC-429 bus
There are two methods to configure ARINC-429 input (receiver) and output (transmitter)
ports.

3.2.13.1. ARINC-429 receiver ports
ARINC input ports are configured using the session object’s method
CreateARINCInputPort().

// Configure 2 ARINC-429 input ports to receive at 100000 bps,
// using no parity and disabling the SDI filter
mySession.CreateARINCInputPort("pdna://192.168.100. 2/Dev0/ARX0,1",
UeiARINCBitsPerSecond100000, UeiARINCParityNone, fa lse, 0);

CreateARINCInputPort creates the specified number of port child object(s) and the
communication parameters: bit per second, parity and SDI filter setting.

Note that there is no multiplexing of data (contrary to what’s being done with AI, AO,
DI, DO, CI and CO sessions): you need to create one reader per ARINC-429 input port to
be able to read from each port in the port list.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 33 508.921.4600

3.2.13.2. ARINC-429 transmitter ports
ARINC input ports are configured using the session object’s method
CreateARINCOutputPort().

// Configure 2 ARINC-429 output ports to receive at 100000 bps,
// using no parity

mySession.CreateARINCOutputPort("pdna://192.168.100 .2/Dev0/ATX0,1",
UeiARINCBitsPerSecond100000, UeiARINCParityNone);

CreateARINCOutputPort creates the specified number of port child object(s) and the
communication parameters: bit per second and parity.

Note that there is no multiplexing of data (contrary to what’s being done with AI, AO,
DI, DO, CI and CO sessions): you need to create one writer per ARINC-429 output port
to be able to write to each port in the port list.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 34 508.921.4600

3.2.14. MIL-1553 bus
MIL-1553 ports are configured using the session object’s method
CreateMIL1553Port().

session.CreateMIL1553Port(“pdna://192.168.100.2/dev 0/milb0”,
 UeiMIL1553CouplingTransfo rmer,
 UeiMIL1553OpModeBusContro ller);

The created MIL1553 port can be used in one of three modes:
• UeiMIL1553OpModeBusMonitor – port allows receiving ongoing activity on the

bus using CUeiMIL1553Reader object. In this mode of operation
CUeiMIL1553Writer object also allows to send unscheduled continuous data on
the bus.

• UeiMIL1553OpModeRemoteTerminal – port allows to program remote terminals
and send and receive data from the remote terminal data memory.

• UeiMIL1553OpModeBusController – port allows to program bus controller
scheduler and send and receive data from and to bus controller data memory.

The port can be used in one of the four coupling modes:
• UeiMIL1553CouplingDisconnected – port is completely disconnected from the

bus
• UeiMIL1553CouplingTransformer – normal mode of operations

• UeiMIL1553CouplingLocalStub – isolation coupler of the layer, requires
special; version of the hardware

• UeiMIL1553CouplingDirect - direct connection without transformer

You will need to create one reader and one writer per port to access port data in any
modes of operation.
A user can select which bus to transmit data using CUeiMIL1553Port::SetRxBus()

method. Notice that for transmission bus A or bus B should be selected (default is bus A)
while for bus monitor both buses are enabled by default.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 35 508.921.4600

3.2.15. IRIG
There are several methods to configure IRIG channels: IRIG timekeeper, IRIG input and
output channels, and IRIG DO TTL channels.

3.2.15.1. IRIG timekeeper
IRIG timekeeper ports are configured using the Session object’s method
CreateIRIGTimeKeeperChannel() . This method can only be used on devices that
support IRIG functionality, such as the DNx-IRIG-650.

The following sample code shows how to configure the time keeper channel of
an IRIG-650 set as device 1:

// Configure the time keeper

CUeiIRIGTimeKeeperChannel* pTKChannel =
 irigSession.CreateIRIGTimeKeeperChannel(
 "pdna://192.168.100.2/Dev1/Irig 0",
 UeiIRIG1PPSInternal,
 autoFollow);

Parameters include the following:
• 1PPS source : source of the 1PPS signal (internally generated 1PPS is selected in

the example above)
• Auto-follow : When auto-Follow is enabled, if the external 1PPS source does not

deliver pulses (because of a break in timecode transmission, for example), the
Timekeeper can switch to internal timebase when externally derived one is not
available.

In addition you can set additional parameters using the channel object methods
(or a property node under LabVIEW):

• Nominal Value enabled : Select whether to use nominal period (i.e. 100E6
pulses of 100MHz base clock) or the period measured by timekeeper (it measures
and averages number of base clock cycles between externally derived 1PPS
pulses when they are valid).
pTKChannel->EnableNominalValue(true);

• Sub PPS enabled : Select whether external timebase is slower than 1PPS or is not

derived from the timecode.
//disable sub pps
pTKChannel->EnableSubPPS(false);

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 36 508.921.4600

• Initial time : The initial time loaded in time keeper.
// initial time
tUeiANSITime now;
pTKChannel->SetInitialTime(now)

CreateIRIGTimeKeeperChannel creates the specified number of port child object(s) and
configures the above communication parameters.

Note that there is no multiplexing of data (contrary to what’s being done with AI, AO,
DI, DO, CI and CO sessions): you need to create one reader and one writer object per
port to be able to read and write from/to each port in the port list.

3.2.15.2. IRIG output
IRIG time code output ports are configured using the Session object’s method
CreateIRIGOutputChannel() . This method can only be used on devices that support
IRIG functionality, such as the DNx-IRIG-650.

The following sample code shows how to configure the time code output channel of
a IRIG-650 set as device 1:

// configure the time code output

CUeiIRIGOutputChannel* pOutChannel =
 irigSession.CreateIRIGOutputChannel(
 "pdna://192.168.100.2/Dev1/Irig 0",
 timeCodeformat);

Parameters include a Timecode Format parameter:
• UeiIRIGTimeCodeFormatA : IRIG-A
• UeiIRIGTimeCodeFormatB : IRIG-B
• UeiIRIGTimeCodeFormatE_100Hz : IRIG-E 100Hz
• UeiIRIGTimeCodeFormatE_1000Hz : IRIG-E 1000Hz
• UeiIRIGTimeCodeFormatG : IRIG-G

In addition you can set the following parameter using the channel object
methods (or a property node under LabVIEW):

• Start when input is valid : If selected, the output time coder waits for the
input time decoder to receive a valid time code before starting.
// start when input is valid
pOutChan->EnableStartWhenInputValid(true);

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 37 508.921.4600

CreateIRIGOutputChannel creates the specified number of port child object(s) and
configures the above communication parameters.

Note that there is no multiplexing of data (contrary to what’s being done with AI, AO,
DI, DO, CI and CO sessions): you need to create one reader and one writer object per
port to be able to read and write from/to each port in the port list.

3.2.15.3. IRIG input
IRIG time code input ports are configured using the Session object’s method
CreateIRIGInputChannel() . This method can only be used on devices that support
IRIG functionality, such as the DNx-IRIG-650.

The following sample code shows how to configure the time code input channel of
a IRIG-650 set as device 1:

// Configure the time code input

CUeiIRIGInputChannel* pInChannel =
 irigSession.CreateIRIGInputChannel(
 "pdna://192.168.100.2/Dev1/Irig 0",
 decoderInput,
 timeCodeformat);

Parameters include the following:
• Decoder Input Type : time code format used by the input signal,

(e.g., UeiIRIGDecoderInputAM , UeiIRIGDecoderInputManchesterRF0)
• Timecode Format : input where the timecode signal is connected,

(e.g., UeiIRIGTimeCodeFormatB : IRIG-B)

In addition you can set additional parameters using the channel object methods
(or a property node under LabVIEW):

• Idle character : Determines whether idle character in the timing byte stream are
accepted.
// disable idle character
pInChan->EnableIdleCharacter(false);

• Single P0 Marker: Determines whether to use only on e marker P0 in

the timing byte stream.
// Enable single P0 marker
pInChan->EnableSingleP0Marker(true);

CreateIRIGInputChannel creates the specified number of port child object(s) and
configures the above communication parameters.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 38 508.921.4600

Note that there is no multiplexing of data (contrary to what’s being done with AI, AO,
DI, DO, CI and CO sessions): you need to create one reader and one writer object per
port to be able to read and write from/to each port in the port list.

3.2.15.4. IRIG TTL outputs
IRIG TTL output channels are configured using the Session object’s method
CreateIRIGDOTTLChannel() . All four TTL outputs are represented using only one
channel object.This method can only be used on devices that support IRIG functionality,
such as the DNx-IRIG-650.

The following sample code shows how to configure the TTL output channels of an
IRIG-650 set as device 1:

// configure the TTL output

CUeiIRIGDOTTLChannel* pTTLChan =
 irigSession.CreateIRIGDOTTLChannel(
 "pdna://192.168.100.2/Dev1/Irig 0",
 Line0Source,
 Line1Source,
 Line2Source,
 Line3Source);

Each of the TTL line sources (Line[0:3]Source) is configured with a specific TTL
pattern, such as AM-> NRZ output (UeiIRIGDOTTLAMtoNRZ), custom frequency output

(UeiIRIGDOTTL1PPS), the 1PPS pulse (UeiIRIGDOTTL1PPS), and more.

In addition you can set the following parameter using the channel object methods (or a
property node under LabVIEW):

• 40 ns pulse : Set pulse width to 40ns instead of the default 60µs.
// enable 40 ns pulses on TTL line 1
pTTLChan->Enable40nsPulse(1, true);

• Use one or two TTL drivers : Enables the second TTL driver (provides
stronger driving capabilities and sharper edges).
// enable dual TTL driver on all outputs
pTTLChan->EnableTwoTTLBuffers(true);

• Drive Sync line : Drive sync line instead of TTL output line.
// configure line 3 to drive sync line 3
pTTLChan->DriveSyncLine(3, true);

CreateIRIGDOTTLChannel creates the specified number of port child object(s) and
configures the above communication parameters.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 39 508.921.4600

Note that there is no multiplexing of data (contrary to what’s being done with AI, AO,
DI, DO, CI and CO sessions): you need to create one reader and one writer object per
port to be able to read and write from/to each port in the port list.

3.2.16. SYNC
A SYNC session is a specialized session specifically for synchronization. The sync
session configures hardware on the CPU board of any cube(s) and/or rack(s) that require
synchronization, enabling multi-layer, multi-chassis synchronization to a one pulse per
second (1PPS) reference signal or to the IEEE-1588 Precision Time Protocol (PTP)
standard.

Refer to Chapter 5 for detailed information about using a SYNC session, as well as more
information regarding all synchronization-specific capabilities.

3.3. Configuring the timing

3.3.1. Point by point timing mode
Point by point timing mode uses a software clock to time the data acquisition/generation
and is well suited for slow speed operations (less than 500Hz).

The session object’s method ConfigureTimingforSimpleIO() is called to perform a
software timed acquisition or generation.

mySession.ConfigureTimingForSimpleIO();

In point by point mode, data is read or written from/to the device, one scan at a time, each
channel in the channel list is acquired or updated once per software request.

The acquired data is returned as an array containing one sample per channel.
The data to be generated must be passed as an array containing one value for each
channel.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 40 508.921.4600

3.3.2. Buffered timing mode
Buffered timing mode uses a hardware clock to time the data acquisition/generation. This
mode is required to perform high-speed data acquisition or generation.

The session object’s method ConfigureTimingForBufferedIO() is called to perform a
hardware timed acquisition or generation.

// Configure the timing object to acquire or genera te 1000
// samples per channel at 5000 Hz, use the device’s internal clock
// rising edges in continuous mode.
mySession.ConfigureTimingForBufferedIO(1000,
UeiTimingClockSourceInternal, 5000.0, UeiDigitalEdg eRising,
UeiTimingDurationContinuous);

In buffered mode, samples are read or written from/to the device in buffers. The samples
from each channel of the channel list are interleaved in the buffer.
With LabVIEW and the ActiveX interface, the samples are stored in a 2D array with all
samples from the same channel in the same row.

3.3.2.1. Advanced Circular Buffer
Advanced circular buffer (ACB) is a UEI developed buffered timing mode that uses
multiple internal buffers (called frames) for data transfers.

In the case of an input session, the driver continuously fills buffers with data from the
device and sends them to the user application, which can process them at its own pace.
For an output session, the user application can fill multiple buffers and send them to the
driver without waiting for the device to be ready to accept them.

Having multiple buffers helps to avoid gaps in the acquired or generated data, especially
under non real-time operating systems such as Windows. Note that general purpose
operating systems sometimes takes away CPU cycles from your application to run
various background tasks, such as services, servers, network requests, virus scanning, etc.
During that time, the driver keeps filling-up buffers with data that your application will
receive as soon as the operating system allows it to run.
Another advantage of circular buffers is the situation when your application takes more
time to process a buffer than the time it took to acquire it. It allows your application to
later catch up and avoid losing any data. Of course this will only work if this behavior is
not recurrent.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 41 508.921.4600

The size of each buffer is equal to the buffer size parameter specified when calling
ConfigureTimingForBufferedIO() . The default number of buffers is 4. You can
change the number of buffers by calling the DataStream object’s method
“SetNumberOfFrames” .

The circular buffer uses read and write pointers to keep track of the state of both reader
and writers. The write pointer position moves along as the writer is writing new data into
the circular buffer, and the read pointer does the same as the reader is reading.

• In input sessions, the reader is the user program and the writer is the Data
Acquisition device.

• In output sessions, the reader is the Data Acquisition device and the writer is the
user program.

Frame2 Frame1 Frame3 Frame4

Write pointer Read pointer

New acquired data

Figure 4 Diagram of read/write pointers in a typical circular buffer

Figure 4 shows a typical case where the reader is following the writer closely.

Frame2 Frame1 Frame3 Frame4

Write pointer Read pointer

New acquired data New acquired data

Figure 5 Diagram of read/write points when reads are lagging

Figure 5 shows a case where the reader is late and the writer is about to catch up with it.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 42 508.921.4600

This can happen if your application takes too long to process incoming buffers or doesn’t
send outgoing buffers fast enough.
A buffer over-run or under-run error will occur when the write pointer meets the reader
pointer and the session will abort.

For input applications where losing data doesn’t matter, you can tell the session to ignore
the over-run error and the writer will over-write buffers whose data hasn’t been processed
yet with new data. The write pointer will just “pass” the read pointer without sending any
error to the application.
The same thing is possible for output applications; the reader will recycle already
generated data and send it again to the device.

You can disable the over/under run error notification by calling the DataStream object’s
method ”SetOverUnderRun” .

The following sample shows how to set the number of frames and disable the buffer
over-run error.

// Get a point to the data stream object
CueiDataStream* pDataStream = mySession.GetDataStre am();

// Configure the number of frames
pDataStream->SetNumberOfFrames(8);

// Disable buffer over-run error
pDataStream->SetOverUnderRun(1);

By default, the reader reads the oldest data from the circular buffer and updates the read
pointer accordingly. However, you can arbitrarily set the position of the read pointer by
calling the DataStream object’s methods ”SetRelativeTo” and ”SetOffset” .
This can be useful to skip unread data when you know your application is getting late or
to always read the most recently acquired data and discard any “older” data.

You can set the ”RelativeTo” property to ”CurrentPosition” (its default value) or
“MostRecent ” which correspond to the position of the write pointer.
The “Offset ” property specifies the new position of the read pointer relative to the
“RelativeTo ” property. Its value can be negative to move the read pointer backward or
positive to move it forward.

For example to immediately read the most recently acquired 100 samples you would set
“RelativeTo ” to “MostRecent ” and “Offset ” to –100. This will move the read pointer
100 scans before the write pointer.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 43 508.921.4600

The following sample shows how to change the read pointer position.

// Get a point to the data stream object
CueiDataStream* pDataStream = mySession.GetDataStre am();

// Configure the new RelativeTo property
pDataStream->SetRelativeTo(UeiDataStreamRelativeToM ostRecentSample);

// Move read pointer 100 scans backward
pDataStream->SetOffset(-100);

You can access the number of scans that are available to be read from (or written to) the
circular buffer using the DataStream object’s method “GetAvailableScans() ”.
You can also get the total number of scans read from (or written to) the circular buffer
using the DataStream object’s method “GetTotalScans() ”.

3.3.3. Data map timing mode (legacy)
The “data map” timing mode (also called DMAP mode) is only available with
PowerDNA devices. It allows for transfer of single scans at a given rate timed by a
hardware clock and is the equivalent of legacy DMAP mode in the low-level
programming environment.

This mode is very useful for real-time applications that need to acquire and process scans
one by one but at a fixed rate.

The session object’s method ConfigureTimingForDataMappingIO() is called to
perform a hardware timed acquisition or generation.

// Configure the timing object to acquire or genera te 1
// sample per channel at 100 Hz, using the device’s internal clock
mySession.ConfigureTimingForDataMappingIO(

UeiTimingClockSourceInternal, 100.0);

This mode offers better performance than the “point by point” timing mode where each
device is polled one by one in a software timed loop. In contrast, using the DMAP timing
mode, all PowerDNA devices within one IO module are read simultaneously and the
resulting data is transferred from the PowerDNA IO module to the host in one operation.

The acquired data is returned as an array containing one sample per channel.
The data to be generated must be passed as an array containing one value for each
channel.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 44 508.921.4600

3.3.4. Edge detection timing mode
Edge detection timing mode configures the hardware to monitor the input lines of one or
more digital port(s) and notify the user application when the specified event occurs. The
edge detection mode is only available for digital input sessions.

The session object’s method ConfigureTimingForEdgeDetection() is called to allow
notification to the user application when an input line changes state.

The lines to monitor are set using a bit mask for each port configured in the session. The
following sample code shows how to do this.

// Configure a digital input session with two input ports 0 and 1
mySession.CreateDIChannel(“pwrdaq://Dev0/DI0,1”);

// Configures the session to detect rising edges
mySession.ConfigureTimingForEdgeDetection(UeiDigita lEdgeRising);

// Select lines 2 and 3 for port 0 and line 0 for p ort 1
(CUeiDIChannel*)(mySession.GetChannel(0))->SetEdgeM ask(0x6);
(CUeiDIChannel*)(mySession.GetChannel(1))->SetEdgeM ask(0x1);

3.3.5. Messaging timing mode

The messaging timing mode is used with message communication devices such as serial
ports CAN bus and ARINC-429 interfaces.

How a message is defined depends on the communication port type:

• On serial ports, messages are simply bytes.
• For CAN, ARINC, and MIL-1553 ports, see subsections below.

The session object’s method ConfigureTimingForMessagingIO() is called to perform
message communication provided that the device allows it.

// Configure the timing object to read and write me ssages
// from/to the communication ports.
// This session will get notified of new messages 1 0 times
// per second or as soon as 100 messages are receiv ed.
mySession.ConfigureTimingForMessagingIO(100, 10.0);

Once the session is configured for messaging IO, you can use reader and writer objects to
simultaneously send and receive messages to and from the communication port.

You will need separate reader and writer objects for each communication port configured
in the port list.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 45 508.921.4600

3.3.5.1. CAN bus data representation

On CAN ports, messages are CAN frames including frame arbitration identifier and
payload data.
CAN frames are represented in C and C++ with the following data type:

typedef struct _tUeiCanFrame
{
 ///< CAN Frame arbitration id
 uInt32 Id;
 ///< Specifies whether this is a data, remote, o r error frame
 tUeiCANFrameType Type;
 ///< The number of significant bytes in the payl oad
 uInt32 DataSize;
 ///< The frame's payload. It can contain up to 8 bytes
 uInt8 Data[8];
} tUeiCANFrame;

3.3.5.2. ARINC 429 bus data representation

On ARINC-429 ports, messages are ARINC words including label, SDI, SSM bits and
payload data.
ARINC words are represented in C/C++ with the following data type:

typedef struct _tUeiARINCWord
{
 /// The label of the word. It is used to determi ne the
 /// data type of the Data field, therefore, the method of
 /// data translation to use.
 uInt32 Label;
 /// Sign/Status Matrix or SSM. This field contai ns
 /// hardware equipment condition, operational mo de,
 /// or validity of data content.
 uInt32 Ssm;
 /// Source/Destination Identifier or SDI.
 /// This is used for multiple receivers to ident ify
 /// the receiver for which the data is destined.
 uInt32 Sdi;
 /// The parity bit.
 uInt32 Parity;
 /// The payload of the word. Its format depends on the label.
 /// Most common formats are BCD (binary-coded-de cimal) encoding,
 /// BNR (binary) encoding or discrete format whe re each
 /// bit represents a Pass/Fail, True/False or
 /// Activated/Non-Activated condition.
 uInt32 Data;
} tUeiARINCWord;

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 46 508.921.4600

3.3.5.3. MIL-1553 bus data representation

On MIL-1553 ports, messages are represented in tUeiMIL1553Frame structure. Please
notice that the same structure is used for different modes of operation – bus monitor, bus
controller and remote terminal depends on the frame type.
MIL-1553 data is represented in C/C++ with the following data type:

typedef struct _tUeiMIL1553Frame
{
 ///< Specifies the type of 1553 frame
 tUeiMIL1553FrameType Type;
 ///< Remote terminal frame belongs to
 uInt16 Rt;
 ///< Sub-address frame belongs to
 uInt16 Sa;
 ///< I/O block terminal frame belongs to
 uInt16 Block;
 ///< Command is required for BC functionality (for
UeiMIL1553FrameTypeTxFifo)
 tUeiMIL1553Command Command;
 ///< The number of bytes in the payload (also size of data from TxFifo
frame)
 uInt32 DataSize;
 ///< The frame, bus monitor and TxFIFO frame payloa d. It can contain up to
36 uInt32s
 uInt32 RxTxData[36];
} tUeiMIL1553Frame;

The <tUeiMIL1553FrameType Type > frame type defines what kind of data is in the
frame. Please remember that when you are passing allocated frames either to
CUeiMIL1553Writer or to CUeiMIL1553Reader you must specify frame type.

Following types are defined:
• UeiMIL1553FrameTypeTxFifo: Data to transmit to output FIFO (used by

CUeiMIL1553Writer only)
• UeiMIL1553FrameTypeBusMon: Data received from the bus monitor in bus

monitor format FIFO (used by CUeiMIL1553Reader only)
• UeiMIL1553FrameTypeRtData: Data to/from remote terminal data area (used by

both CUeiMIL1553Reader and CUeiMIL1553Writer)
• UeiMIL1553FrameTypeRtStatusData: Remote terminal status data (bit mask for

subaddresses that processed Rx and Tx commands from the bus controller) (used
by CUeiMIL1553Reader only)

• UeiMIL1553FrameTypeRtStatusLast: Bus status, last command and last mode
command (data contains three elements in RxTxData array). Used by
CUeiMIL1553Reader only)

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 47 508.921.4600

• UeiMIL1553FrameTypeRtControlBlock: Used by CUeiMIL1553Writer only and
allows to select active data block for remote terminals for both Tx and Rx data
memory

• UeiMIL1553FrameTypeRtControlVector: Used by CUeiMIL1553Writer only
for remote terminal control data - set vector, BIT words and bus for BC (data
contains three elements in RxTxData array).

• UeiMIL1553FrameTypeError: Frame contains error conditions encountered
during operation

The UeiMIL1553FrameTypeTxFifo frame type is used to transmit data on the bus.
Following fields need to be assigned before using it in CUeiMIL1553Writer .Write():
<Rt>: remote terminal to send command to
<Sa>: subaddress to send command to
<Command.Command> :one of the following command types:

UeiMIL1553CmdRx - Remote terminal to receive data from bus controller.
<Command.WordCount> specifies how many data words remote terminal should receive.
<DataSize> contains number of data words in 16-bit format stored in <RxTxData[]>.
Please notice that according to MIL-1553 command specification to send 32 data words
<Command.WordCount> should be zero, while <DataSize> should be equal to 32.

UeiMIL1553CmdTx - Remote terminal to transmit data to bus controller.
<Command.WordCount> specifies how many data words remote terminal should transmit.

UeiMIL1553CmdRxTx- One remote terminal to transmit data to another remote
terminal. <Command.WordCount> specifies how many data words remote terminal should
transmit. Fields <Rt2> and <Sa2> must contain remote terminal and subaddress for the
transmit command of Rt-Rt pair
 UeiMIL1553CmdModeTx - Remote terminal to transmit data and/or status word to
bus controller. See UeiMIL1553CmdTx for parameters
 UeiMIL1553CmdModeRx - Remote terminal to receive data for mode command
from bus controller. See UeiMIL1553CmdRx for parameters
 UeiMIL1553CmdRxBroadcast - Remote terminal to receive broadcast data from bus
controller
 UeiMIL1553CmdRxTxBroadcast - One remote terminal to broadcast data to other
remote terminal
 UeiMIL1553CmdModeTxBroadcast - Mode command without data, remote terminals
should not reply
 UeiMIL1553CmdModeRxBroadcast - Mode command with data, remote terminals
should receive data

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 48 508.921.4600

Frame type UeiMIL1553FrameTypeBusMon is used to receive data from the bus
monitor. Each command and status word on the bus is stored in the separate frame. The
following fields represent data:
<Rt> - remote terminal in the command (unused if status)
<Sa> - subaddress in the command (unused if status)
<Command.Command> - one of the following commands (see description in
tUeiMIL1553CommandType) :

UeiMIL1553CmdTx
UeiMIL1553CmdRx
UeiMIL1553CmdModeTx
UeiMIL1553CmdModeRx
UeiMIL1553CmdModeTxBroadcast
UeiMIL1553CmdModeRxBroadcast

<Command.WC> - word count extracted in the command
UeiMIL1553FrameTypeBusMon frame always contain at least one element of data in
<RxTxData[]> array. The size of data is stored in the <DataSize> field.
Bus monitor data is represented as follows:
First 32-bit word:

bit 31: parity error on the bus, if any
bit 30: set to 1 for command or status
bits 29 thru 16: time in 15.15ns interval since previous command or status.
bits 15 thru 0: command or status as received from the bus.

If there is a data following the command it represented in the following format:
bit 31: parity error on the bus, if any
bit 30: set to 0 for data word
bits 29 thru 16: time in 15.15ns interval since previous command or status.
bits 15 thru 0: data as received from the bus.

If timestamps are enabled using CUeiMIL1553Port::EnableTimestamping() method
(timestamps are enabled by default) the last two words contain 32 bit “absolute”
timestamp of the message in 10us resolution (timestamps are reset when the session
starts) and the various flags defining current bus status and what bus (A or B) the
command was received on. See “PowerDNA API Reference Manual” for further details.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 49 508.921.4600

3.4. Configuring the trigger(s)
The session automatically configures triggers by default to immediately start and stop
operation on software request. You can override this and configure the session to start
and/or stop when an external event occurs.

Digital, Analog, and Internal triggers are described in the subsections below.

Refer to Chapter 5 for more information about synchronizing triggers on multiple I/O
devices and I/O modules.

3.4.1. Digital trigger
Digital triggers are used when you need to start or stop one device upon an external
digital event. This is a per-device trigger; however, you can also use it to synchronize
multiple devices by configuring each device to use its external trigger and connect the
same external signal to every device.

The session object’s method ConfigureStartDigitalTrigger() is called to start the
session when an external digital event occurs.

// Configure the session to start operation when th e rising
// edge of a TTL signal is applied on the external trigger input
// of the device.
mySession.ConfigureStartDigitalTrigger(UeiTriggerSo urceExternal,
UeiDigitalEdgeRising);

Call the session object’s method ConfigureStopDigitalTrigger() to stop the session
when an external digital event occurs.

// Configure the session to stop operation when the falling
// edge of a TTL signal is applied on the external trigger input
// of the device.
mySession.ConfigureStopDigitalTrigger(UeiTriggerSou rceExternal,
UeiDigitalEdgeFalling);

3.4.2. Analog software trigger

The analog software trigger looks at every sample acquired on the specified channel until
the trigger condition is met. Once the trigger condition is met, the application can read
the acquired scans in a buffer. The trigger level and hysteresis are specified in the same
unit as the measurements.

Note that the acquisition starts immediately and runs in the background until the trigger
condition is met or a timeout expires.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 50 508.921.4600

The session object’s method ConfigureAnalogSoftwareTrigger() is called to start the
session when the specified condition is met.

// Configure the session to only read data when the acquired signal
// meets the following condition: signal connected to the first
// channel in the channel list must rise over 1.0V within an
// hysteresis window of 0.5V. Keep 100 scans before the trigger
// condition
mySession.ConfigureAnalogSoftwareTrigger(UeiTrigger ActionStartSession
, UeiTriggerConditionRising, 0, 1.0, 0.5, 100);

3.4.3. Internal signal trigger

Signal triggers are used to synchronize multiple devices connected to each other via a bus
or backplane with synchronization capabilities.

• PDXI PowerDAQ boards can use any of the 8 PXI trigger lines as a trigger signal.
• PowerDNA layers can use any of the 4 Synchronization lines available on the

PowerDNA bus as a trigger signal.
• PowerDNA IO modules can use their “SyncIn/SyncOut ” external signal as a

trigger signal.

The session object’s method ConfigureSignalTrigger() is called to start the session
when the specified signal event occurs.

// Configure the session to start operation when an event is received
// at the SyncIn connector.
mySession.ConfigureSignalTrigger(UeiTriggerActionSt artSession,
“SyncIn”)

The trigger signal is specified using a string. Available trigger signals are:

• “SyncIn ”: event occurs when a rising edge is detected on the SynIn input pin.
• “Sync0 ” to ”Sync3 ”: event occurs when a rising edge is detected on one of the

PowerDNA backplane synchronization lines.
• “PXI0 ” to”PXI7 ”: event occurs when a rising edge is detected on one of the 8 PXI

backplane trigger lines.

Refer to Chapter 5 for more information about synchronizing internal triggers.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 51 508.921.4600

3.5. Starting the session
You can start the session by calling the session object’s method Start() :

// Start the session
mySession.Start();

Note that if you don’t explicitly start the session, it will be automatically started the first
time you try to transfer data.

3.6. Reading/Writing data from/to the device
The UeiDaq framework uses helper objects called readers and writers to transfer data to
and from the device.

You can use various implementations of the reader/writer objects depending on the
format of data you want to read/write.

You can even implement your own reader object by deriving one of the existing one to
implement some post-processing.

Readers and writers for each type of session are listed below:

• Analog input sessions can use either of the following:
� an “AnalogRawReader” object to retrieve raw binary codes (straight from

the A/D converter)
� an “AnalogScaledReader” object to retrieve data scaled to a physical unit

(V, degrees, mV/V).
• Analog Output sessions can use “AnalogRawWriter” or “AnalogScaledWriter”

objects.
• Digital input and output sessions use “DigitalReader” and “DigitalWriter” objects.
• Counter input and output sessions use “CounterReader” and “CounterWriter”

objects.
• Variable reluctance sessions use “VRReader” objects. Each reader returns a

structure (a cluster in LabVIEW) containing the measured velocity, position and
total teeth count since the session started.

• Serial port sessions use “SerialReader” and “SerialWriter” objects.
• HDLC serial port sessions use “HDLCReader” and “HDLCWriter” objects.
• CSDB serial port sessions use “CSDBReader” and “CSDBWriter” objects; CSDB

data is represented by the tUeiCSDBMessage structure, which contains an address
byte, a status byte, payload datasize, and payload data bytes.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 52 508.921.4600

• SSI serial port sessions use “SSIReader” and “SSIWriter” objects; users can
program how many bytes to receive or transmit and whether or not to enable gray
encoding.

• Serial port sessions use “SerialReader” and “SerialWriter” objects.
• CAN bus sessions use “CANReader” and “CANWriter” objects.
• ARINC-429 input sessions use “ARINCReader” and “ARINCRawReader”

objects.
• ARINC-429 output session use “ARINCWriter” and “ARINCRawReader”

objects.
• MIL-1553 port sessions use “MIL1553Reader” and “MIL1553Writer” objects.
• IRIG channel sessions use “IRIGReader” objects.

All reader or writer objects are programmed in the same manner: you first create the
object and then connect it to the session:

// Create the read object
UeiDaq::CUeiAnalogScaledReader reader;

// Connect it to the session
reader.SetDataStream(mySession.GetDataStream())

You can now read data through the reader object:

// Read 1000 scans in the specified buffer
reader.ReadMultipleScans(1000, buffer);

The default behavior of reader and writer objects is to block until the specified number of
scans is ready to be transferred. You can also configure those objects to work
asynchronously. The method used to program readers and writers asynchronously is
highly dependent on the programming language; you can find more information on how
to do this in the Reference manual for each development environment.

Note that when the session is configured for messaging IO, each channel configured in
the channel list must be accessed separately. Therefore you need to create reader and
writer objects dedicated to each configured communication port.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 53 508.921.4600

3.7. Stopping the session
You can stop the session by calling the session object’s Stop() method:

// Stop the session
mySession.Stop();

Note that if you don’t explicitly stop the session, it will be automatically stopped when
the session object is destroyed or goes out of scope.

3.8. Destroying the session
In C++, if you created the session object on stack, it will automatically free its resources
when it goes out of scope. Alternatively, you can force it to free its resources by calling
the CleanUp() method:

// Clean-up session
mySession.CleanUp();

If you dynamically created the session object, you need to destroy it to free all resources:

// Destroy session
delete(pMySession);

In C, you need to call UeiDaqCloseSession() to free all resources:

UeiDaqCloseSession(mySession);

With .NET managed languages, the garbage collector will take care of freeing resources
once the session object is not referenced anymore. You can also force the session to
release its resources by calling the “Dispose” method.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 54 508.921.4600

4. Programming the UeiDaq framework

4.1. UeiDaq framework C++ API
The UeiDaq framework ships with header files and import libraries for Visual Studio 6.0,
Visual Studio.NET 2003, Visual Studio.NET 2005, Visual Studio.NET 2008 and Visual
Studio.NET 2010.

Header files are located in the include directory:

<Program Files>\UEI\Framework\CPP\include
The import library is located in the lib directory:

<Program Files>\UEI\Framework\CPP\lib
Examples of MFC and console applications are located in the examples directory:

<Program Files>\UEI\Framework\CPP\examples

The UeiDaq framework installer creates an environment variable “UEIDAQROOT”, which
is set to the root directory of the framework.

You only need to include one header file, “UeiDaq.h”, in your program to get access to
the UeiDaq framework classes. It is recommended to include “UeiDaq.h” last, after any C
and C++ standard headers you include. To help the compiler find this file, add the
directory $(UEIDAQROOT)\CPP\include to the list of additional include directories in
your project settings.

The header file contains directives to automatically link with the import library matching
your compiler version so you only need to modify your linker settings to add the UeiDaq
framework lib directory path.

You can link your program with the UeiDaq framework libraries statically or
dynamically (see below).

All the UeiDaq framework classes are defined within their own “UeiDaq” namespace.
You either need to insert the “using namespace UeiDaq; ” directive in your program or
use the prefix “UeiDaq:: ” when you reference the UeiDaq framework classes and types.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 55 508.921.4600

4.1.1. Shared library

When creating a new project, make sure that the Runtime Library setting in your
project’s “Code Generation” property page is set to “Multi-threaded DLL” for the
Release configuration and “Multi- threaded Debug DLL” for the Debug configuration.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 56 508.921.4600

4.1.2. Static library

The static libraries in the UeiDaq framework are built to use the static version of
Microsoft’s C++ runtime.
Using the static library requires a few extra steps detailed below:

• Make sure Runtime Library setting of your project is set to Multi-threaded for
Release configuration or Multi-threaded debug for Debug configuration

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 57 508.921.4600

• Add UEIDAQSTATIC to the preprocessor definitions.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 58 508.921.4600

• Add the following libraries to Additional dependencies: winmm.lib, version.lib,
ws2_32.lib,ueidaqvc*SD.lib

Visual Studio 2005: use UeiDaqVC8S.lib for release and UeiDaqVC8SD.lib for debug
Visual Studio 2008: use UeiDaqVC9S.lib for release and UeiDaqVC9SD.lib for debug
Visual Studio 2010: use UeiDaqVC10S.lib for release and UeiDaqVC10SD.lib for debug

• Finally, add a call the API UeiDaqInitLib() at the beginning of your program
(before calling any other UeiDaq API).

UeiDaqInitLib();

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 59 508.921.4600

4.1.3. Step-by-step tutorial – Ms Visual C++ 6.0
The fastest path to creating new working code is to use existing example code as a base.
Open up the existing examples from the Start Menu:

All examples in the example directory are “ready out of
the box,” and will compile in the example directory. They
already contain the relevant directory references to the
UeiDaq framework.

We will want to work outside the example directory.
Copy one example to a project directory or desktop to
work on it. Start Visual C++ 6.0 and open the .dsp project
file in the copied directory.

The header and library files will need to be re-referenced under Project > Settings.
For the include files: C/C++ > Preprocessor > Additional include directories:
For the linker files: Link > Input >Additional library path:

You may choose to make the header and library files available to all projects by going to:
Tools > Options > Directories > Show Directories for > Include files or Library files.

Compile the project to test that it works. If you receive a compiler error message stating
that you are missing files, check the include directory; if you are missing .lib files, check
the library directory. Otherwise, you are now ready to enhance or rewrite the existing
code to suit your needs.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 60 508.921.4600

4.2. UeiDaq framework C API
In addition to the C++ class library, the UeiDaq framework headers and import library
also export a C API. This API can be programmed from Visual Studio, Borland C++,
LabWindows/CVI and any other environment that can call external C code.

Header files are located in the include directory:

<Program Files>\UEI\Framework\CPP\include
The import library is located in the lib directory:

<Program Files>\UEI\Framework\CPP\lib
Examples of console application are located in the examples directory:

<Program Files>\UEI\Framework\CPP\examples

You only need to include one header file, “UeiDaq.h”, in your program to get access to
the UeiDaq framework classes. It is recommended to include “UeiDaq.h” last, after any C
and C++ standard headers you include. To help the compiler find this file, add the
directory $(UEIDAQROOT)\CPP\include to the list of additional include directories in
your project settings.

The header file contains directives to automatically link with the import library matching
your compiler version so you only need to modify your linker settings to add the UeiDaq
framework lib directory path.

4.3. UeiDaq framework .Net API
The UeiDaq framework implements an assembly for the .NET 2.0 framework that can be
programmed from Visual Studio.NET 2005/2008/2010/2012/2013/2015/2017/2019 or
any development environment that can interface with .NET assemblies.
The Ueidaq .Net framework API is now the recommended interface to program UEI
hardware with Matlab.

The UeiDaq framework .NET assembly is called UeiDaqDNet.dll.

The 32-bit version is located in the following directory:

<Program Files>\UEI\Framework\DotNet
The 64-bit version is located in the x64 directory:

<Program Files>\UEI\Framework\DotNet\x64
Examples for VB.NET and C# are located in the examples directory:

<Program Files>\UEI\Framework\DotNet\examples

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 61 508.921.4600

4.3.1. Using the UeiDaq .Net assembly in Visual studio

In order to use the UeiDaq .Net assembly, you first
need to reference it in your project. Right-click on the
references item in your project’s view and select
“Add References…”

The “Add Reference” dialog box will pop-up:

Scroll down and click the UeiDaqDNet assembly, click “Select” and then click “OK”.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 62 508.921.4600

The UeiDaqDNet assembly should now be in your project references:

You are now ready to start programming with the UeiDaq framework!

All of the UeiDaq framework classes are defined within their own namespace “UeiDaq”.
You either need to insert the “using UeiDaq; ” directive in your program or use the
prefix “UeiDaq .” when you reference the UeiDaq framework classes and types.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 63 508.921.4600

4.3.2. Using the UeiDaq .Net assembly in Matlab

4.3.2.1. Loading the assembly
The UeiDaq assembly path depends on the bitness of the operating system.

The code below queries the registry to detect where the assembly is located:

% Get location of UEIDAQ .NET assembly from registr y
ueidaqPath = '' ;
try
 % this will only work on 64-bit PC
 ueidaqPath = winqueryreg('HKEY_LOCAL_MACHINE',' Software\Wow6432Node\UEI\OOP',
'InstallDir');
 ueidaqPath = [ueidaqPath '\DotNet\x64\UeiDaqDNet.dll'];
catch e
 try
 % if not, maybe it is a 32-bit PC
 ueidaqPath = winqueryreg('HKEY_LOCAL_MACHINE', 'Software\UEI\OOP' , 'InstallDir');
 ueidaqPath = [ueidaqPath '\DotNet\UeiDaqDNet.dll'];
 catch e
 % no registry, ueidaq software is not installed
 error('UeiDaq software is not installed');
 end
end

Loading the assembly and importing ueidaq namespace:

try
 NET.addAssembly(ueidaqPath);
 import UeiDaq.* ;

Setting-up a session and reading/writing some data is done similarly to other object-
oriented languages:

 % Create and configure UeiDaq framework session
 aiss = UeiDaq.Session();
 aiss.CreateAIChannel('simu://Dev0/Ai0:3' , -10.0, 10.0,
 UeiDaq.AIChannelInputMode. Differential);
 aiss.ConfigureTimingForBufferedIO(numScans, Uei Daq.TimingClockSource.Internal,
 scanRate, Uei Daq.DigitalEdge.Rising,
 UeiDaq.Timing Duration.Continuous);

 % Create a reader object to read data synchronously .
 reader = UeiDaq.AnalogScaledReader(aiss.GetData Stream());

 % Start session and read first buffer
 aiss.Start();

 netData = reader.ReadMultipleScans(numScans);

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 64 508.921.4600

The data is returned as a .NET array. It needs to be converted to a matlab vector before
doing anything useful with it:

 % Convert .NET array to matlab array and plot
 mlData = double(netData);
 plot(mlData);

Finally, close the session. The API handles errors by throwing exceptions. The exception
handler catches them and display the error message.

aiss.Dispose();
catch e
 error(e.message);
end

4.4. UeiDaq framework Python interface
The UeiDaq python module encapsulates the Framework C++ API. It supports Python
3.x version under Windows and Linux.

4.4.1. Installation under Windows
The UeiDaq python module is not installed by default. Navigate to C:\Program Files
(x86)\UEI\Framework\Python and run the win32 or x64 installer.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 65 508.921.4600

The UeiDaq python module depends on the numpy module being installed.
You can install numpy with the command pip install numpy.
You can also download and install numpy from https://numpy.org/

4.4.2. Installation under Linux
The ueidaq python module comes as source code and needs to be compiled.

1. Install the C++ wrapper generator "SWIG"
> sudo apt-get install swig

2. Install python packages numpy and distutils
> sudo apt-get install python3-pip
> sudo apt-get install python3-distutils
> pip3 install numpy

3. Navigate to the Framework's Python folder and execute the script "build.sh"
> cd Framework/Python
> ./build.sh

4. Install the Python support module
> sudo tar xvfz dist/UeiDaq-<version>.linux-<cpu>.tar.gz -C /

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 66 508.921.4600

4.4.3. Verify installation
Run any of the examples provided in C:\Program Files
(x86)\UEI\Framework\Python\Examples:

> python3 Examples/SingleAI.py

4.4.4. Framework API in python
The UeiDaq Python module uses the same classes than the C++ API. Most C++
examples can easily be translated to Python.

4.4.1. Data buffer management
UeiDaq python module uses numpy arrays to store incoming and outgoing data.
Using numpy makes it very easy to process acquired data using numpy’s numerous
mathematical algorithms.

You need to allocate the numpy array before reading data. The example below shows
how to use a numpy 1D array to read single scans from an AI device:

import UeiDaq

import numpy

try:
 session = UeiDaq.CUeiSession()

 session.CreateAIChannel("simu://dev0/AI0:7", -10.0, 10.0,

UeiDaq.UeiAIChannelInputModeSingleEnded)
 session.ConfigureTimingForSimpleIO()

 reader = UeiDaq.CUeiAnalogScaledReader(session.GetDataStream())

 session.Start()

 data = numpy.zeros(8)

 for i in range(0, 100):

 reader.ReadSingleScan(data)

 for ch in range(0,8):

 val = data[ch]

 print ("ch%d=%f" % (ch, val))

 session.Stop()

except Exception as e:

 print (e.GetErrorMessage())

Use a numpy 2D array to read multiple scans in buffered IO mode:

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 67 508.921.4600

import UeiDaq

import numpy

numScans = 512

scanRate = 10000.0

try:

 session = UeiDaq.CUeiSession()

 session.CreateAIChannel("simu://dev0/AI0:7", -10.0, 10.0,

UeiDaq.UeiAIChannelInputModeSingleEnded)

 session.ConfigureTimingForBufferedIO(numScans,
UeiDaq.UeiTimingClockSourceInternal, scanRate, UeiDaq.UeiDigitalEdgeRising,

UeiDaq.UeiTimingDurationContinuous)

 reader = UeiDaq.CUeiAnalogScaledReader(session.GetDataStream())

 session.Start()

 data = numpy.zeros((numScans, session.GetNumberOfChannels()))

 for i in range(0, 100):
 reader.ReadMultipleScans(data)

 # calculate FFT on each channel

 for ch in range(0, session.GetNumberOfChannels()):

 freqs = numpy.abs(numpy.fft.rfft(data[:, ch]))

 print("%d: channel %d peak frequency = %f\n" % (i, ch,

numpy.argmax(freqs)*(scanRate/numScans)))

 session.Stop()

except KeyboardInterrupt:

 session.Stop()

except UeiDaq.CUeiException as e:

 print(e.GetErrorMessage())

4.5. UeiDaq framework ActiveX interface
The UeiDaq framework ships with a COM server that implements a set of COM
interfaces. They can be programmed from Visual Basic 6, Borland Delphi or any
development environment that can interface with COM/ActiveX interfaces.

The UeiDaq framework .COM server is called UeiDaqAx.dll and is located in the
following directory:

<Program Files>\UEI\Framework\ActiveX
Examples for VB 6 are located in the examples directory:

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 68 508.921.4600

<Program Files>\UEI\Framework\ActiveX\examples\VB6

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 69 508.921.4600

To use the UeiDaq ActiveX interface from VB6 you first need to reference it in your
project. Select the “references…” item in the “Project” menu; the following dialog box
will pop-up:

Scroll down and select the ueidaqax type library. You can now start programming the
UeiDaq framework from VB6.

4.5.1. Step by step tutorial - Ms Visual Basic 6.0
Create a new project: Standard EXE.

Add the UeiDaq Framework ActiveX control: Project > References... > ueidaqax.dll

Before starting with an example, familiarize yourself with the framework by using the
View menu’s Object Browser, and selecting ueidaqaxLib instead of <All Libraries> .
Many of the components of the UeiDaqAxLib you have already seen in Section 2.3.
Section 3 (above) outlines how to use those objects to create meaningful applications.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 70 508.921.4600

The following is an example of how to read and display data in using the simulator
device. The example creates a session, configures it for analog input, and then configures
the timing, no triggers.

Dim session As UeiSession
Set session = New UeiSession ' 3.1 Create session

' Configure session – sim, device 0, -10 to 10 V, a nalog in ch. 0
session.CreateAIChannel “simu://Dev0/Ai0”, -10#, 10 #,
UeiAIChannelInputModeDifferential

session.ConfigureTimingForSimpleIO ' ‘ 3.3 Configure timing

The device is configured to look for data on the analog line. When the data acquisition
process begins, gather it with a reader object and print it to a message box:

' Create reader
Dim reader As UeiAnalogScaledReader
Set reader = New UeiAnalogScaledReader
' Configure Reader
reader.SetDataStream session.GetDataStream

' Create an array with one element to store the sca led voltage from ch 0
Dim acquired_data() As Double

session.Start ' 3.5 Start acquiring data
acquired_data = reader.ReadSingleScan ' 3.6 Read data into the array
session.Stop ' 3.7 Stop acquiring data

Msgbox aquired_data(0) & “ Volts” ' Print acquired data to screen
Unload Form1 ' and close the window on OK.

To perform the test on real hardware, change the simu device to a pwrdaq or pdna . This
is a most trivial example of how to read one single value; the Visual Basic 6 Examples
packaged with the framework contain more elaborate samples; with ten more lines, the
examples show how to add a simple Ms-Graph.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 71 508.921.4600

4.5.2. Step by Step tutorial - Borland Delphi
The fastest path to creating new working code is to use existing example code as a base.
Existing examples can be opened from the Start Menu:

Programs/UEI/Framework/Examples/Borland Delphi examples

The support for programming the UeiDaq framework with Delphi is done through our
ActiveX interface.
You first need to import the ueidaq activex library before running the sample program or
you will get an error message “File not found: ‘ueidaqaxLib_TLb.pas’”.
The file ueidaqaxLib_TLB.pas is automatically generated by Delphi during the import
process.

Under Delphi select the following menu: “Project/Import Type Library”.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 72 508.921.4600

In the dialog box, select the item “ueidaqax 1.0 Type Library” and click the “Create
Unit” button.

Version 5 of Delphi has a bug when importing type libraries containing asynchronous
event interfaces. If you get the error “’}’ unexpected but identifier ‘OleVariant’ found”,
you need to modify the file ueidaqaxLib_TLb.pas. For each line where the error occurs
remove the part between brackets.
For example:

FOnDataReady16(Self, Params[0] {out {??PSafeArray} OleVariant});

becomes:
FOnDataReady16(Self, Params[0]);

You can now run any of the examples.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 73 508.921.4600

4.5.3. Step by Step tutorial - Borland C++ Builder
The fastest path to creating new working code is to use existing example code as a base.
Existing examples can be opened from the Start Menu:
 Programs/UEI/Framework/Examples/Borland C++ Builder examples

The support for programming the UeiDaq framework with C++ builder is done through
our ActiveX interface.

You first need to import the ueidaq activex library before running the sample program or
you will get an error message “File not found: ‘ueidaqaxLib_TLb.cpp’”.
The files ueidaqaxLib_TLB.cpp and ueidaqax_OCX.cpp are automatically generated by
C++ builder during the import process.

Under C++ builder select the following menu: “Project/Import Type Library”.

In the dialog box, select the item “ueidaqax 1.0 Type Library” and click the “Create
Unit” button.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 74 508.921.4600

Open the project options. In the "Directories/Conditionals" make sure
that $(BCB)\Imports is listed in "Include Path" and "Library Path"

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 75 508.921.4600

Open the project manager and add the following files to the project:
$(BCB)\Imports\ueidaqax_OCX.cpp, $(BCB)\Imports\ueidaqax_TLB.cpp

Version 6 of C++ builder has a bug when importing type libraries containing
asynchronous event interfaces. If you get the error: “[C++ Error]
ueidaqaxLib_OCX.cpp(187): E2034 Cannot convert 'TVariant' to 'tagSAFEARRAY * *'”,

You need to edit the file $(BCB)\Imports\ueidaqaxLib_OCX.cpp and comment out the
content of each InvokeEvent method. For example:

void __fastcall TUeiAnalogRawReader::InvokeEvent(in t id,
Oleserver::TVariantArray& params)
{
 /*switch(id)
 {
 case 1: {
 if (OnDataReady16) {
 (OnDataReady16)(this, TVariant(params[0]));
 }
 break;
 }
 case 2: {
 if (OnDataReady32) {
 (OnDataReady32)(this, TVariant(params[0]));
 }
 break;
 }
 case 3: {
 if (OnError) {
 (OnError)(this, TVariant(params[0]), TVaria nt(params[1]));
 }
 break;
 }
 default:
 break;
 }*/
}

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 76 508.921.4600

4.6. UeiDaq Framework Java API
The UeiDaq framework implements a java API that gives you access to the UeiDaq class
library from the Java programming language.

The UeiDaq framework Java classes are contained in a Jar file named ueidaq.jar, which is
located in the following directory:

<Program Files>\UEI\Framework\Java
The java examples are located in the examples directory:

<Program Files>\UEI\Framework\Java\examples

The UeiDaq framework classes for Java matches the C++ classes one to one. Please refer
to the C++ reference manual to find information about each class.

In order to use the UeiDaq framework Java classes in your program, you need to import
the package “com.ueidaq.framework.*”, you also need to load the UeiDaq JNI wrapper at
the beginning of your program:

import com.ueidaq.framework.*;

public class DeviceInfo
{
 static
 {
 // The UeiDaq framework class library is impl emented using JNI
 // Load the JNI wrapper DLL that does the int erface between
 // Java and the framework
 System.loadLibrary("UeiDaqJava");
 }

 public static void main(String argv[])
 {
 // Create a Session
 CueiSession mySession = new CueiSession();
 MySession.CreateAIChannel(…);
 …
 }

You can then build your program from the command line with the following:

javac –cp ueidaq.jar MyProgram.java

If you use an IDE such as Eclipse or Jbuilder, make sure that “ueidaq.jar” is present in
the list of libraries to use when building your project.

You can run your test program with the following command:

Java –cp ueidaq.jar MyProgram

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 77 508.921.4600

4.7. UeiDaq framework LabVIEW library
The framework concept and class hierarchy explained in chapter 2 are still valid in
LabVIEW. The session object is represented by a session refnum that is used by the
UeiDaq VIs to reference a given session.
The session child objects, such as channels, device, timing and triggers, don’t have a
dedicated refnum but their properties can be accessed through a property node:

Please refer to the manual UeiDaq Framework LabVIEW User Manual for a detailed
description of the UeiDaq LabVIEW VIs.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 78 508.921.4600

4.7.1. Step-by-step tutorial – Trivial Analog Input example – LabVIEW
To create a simple analog input ranging between -10 to 10 V to render on-screen, begin
by creating a new VI in LabVIEW. Window > Show Block View Mode.

The process of operating a session in chapter 3 applies to LabVIEW: create a session,
configure session, configure timing, configure triggers, start session operation, read or
write (once or repeatedly), and end acquisition.

Create a session using the UeiDaqCreateSession.vi:
The relevant inputs for our VI are the minimum and maximum
voltages as floating-point numbers and a resource to set as a string.

Configure the session:
Create a string constant, “simu://dev0/Ai0”,
and connect the string to the resource port.
Create two numeric constants, “-10” and
“10”, and connect them to the minimum
and maximum range, respectively.
Create a UeiDaqConfigureTiming.vi and configure the timing for Simple IO.
No triggering is required for this simple continuous analog input sampling.

The UeiDaq LabVIEW VIs only provide the most commonly
used functions. Less common functions are only available as
generic Property Node blocks. To access these functions,
create a Property Node as seen on the right.

Attach the refnum and error lines in from the session’s Timing block; this will change the
generic “App” Property Node to a “UeiDaq” Property Node.

Left-click on Property, select Timing > Timeout.

This property is an input; by default Property Node
properties are set to output. Set the UeiDaq Property Node to
input by right-clicking the block and selecting Change to
Write. Finally, to create the constant: right-click Timing.Timeout > Create > Constant.
Set the constant to 2000 milliseconds.

Note: to see more variables that can be changed (after the tutorial is finished) drag the
edge of the UeiDaq Product Node down to resize it.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 79 508.921.4600

To read the data, create a UeiDaqRead.vi node. Set the node to “Analog Single Scaled
Scan 1D DBL”, and connect the refnum and error lines.

On the front panel, create a numeric indicator.
On the back panel, move the numeric display
close to the UeiDaqRead node. The UeiDaqRead
node generates an array of scaled doubles; each
index of the array is the channel (for example,
channel 0 is index 0). To output only this index,
create an Index Array node. Connect the output
from the UeiDaqRead to the “Array” input of the
Index Array node. Connect the output of the Index array to the Numeric Indicator node.
To define the channel for this operation, create an index. Right-click the index connector
on the Index Array node and Create > Constant; set the index to the channel number, 0.

To stop the session cleanly, create a UeiDaqCloseSession.vi to close the session. Connect
the refnum and error wires to the Reader node. Optionally, you may also want to add a
UeiDaqShowError.vi to translate errors into meaningful text (if any); connect the final Error
Out wire to this VI. The final diagram should resemble this one:

Congratulations – you have built a trivial analog input reader that takes a single reading.
On the front-panel, click “Run” to try it.
This VI is ready to be used with an analog-input capable device; substitute the simu
driver with pwrdaq or pdna device to get a value from your attached hardware.

Instead of using a numeric indicator, a chart can be used (just replace the indicator) –
open “Charting Acquire & Chart PointByPoint.vi” to use as an excellent example of simple
software analog input. The “Charting Acquire & Chart Continuous.vi” provides an excellent
example of hardware analog input; you will notice the use of the UeiDaqStart.vi node and
the UeiDaqStop.vi node. These nodes are used to explicitly start and stop data acquisition;
and should be used in normal acquisition once you are more familiar with the framework.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 80 508.921.4600

4.8. UeiDaq framework Excel Add-In
The UeiDaq framework comes with an Excel add-in allowing you to acquire data directly
into an excel spreadsheet.
To use the add-in you first need to activate it. In Excel go to the tools/Add-ins… menu
option and make sure that the UeiDaq add-in is activated:

After clicking OK, a new menu and toolbar should appear:

The “Configure Session…” option lets you configure the device and session parameters
to use (see section about the session configurator).

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 81 508.921.4600

The “Run Session…” option runs the last configured session and copy the acquired data
in the active spreadsheet starting at the selected cell.

Session parameters are automatically saved so you don’t have to reconfigure the session
each time you open Excel.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 82 508.921.4600

4.9. UeiDaq Framework OPC server
4.9.1. Configuring OPC items

The UeiDaq Framework’s OPC server allows you to acquire data from any software
package that can be an OPC client. Most of the HMI and Supervisory software packages
such as Wonderware Intouch, RSView or iFix are OPC clients and will be able to access
data acquired from the UeiDaq Framework’s OPC server.

You first need to run the UeiDaq OPC Configurator to configure which devices and
channels will be visible from an OPC client. You can run it from the
Start/Programs/UEI/Framework/OPC menu.

If it is the first time you run the OPC configurator, the list of sessions will be empty and
you first need to create one. Clicking on the “Create Session” button opens up a dialog
box to configure the new session’s parameters.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 83 508.921.4600

Here is a typical session configuration sequence:

• Select the session type by clicking on the left side session types list control.
• Select the device by clicking on the “Browse devices…” button.
• Select the channels in the channel list control.
• Configure channels parameters. The channel configuration parameters pertain to

the selected channel(s) in the channel list. You can select multiple channels by
holding down the CTRL key while clicking on each channel.

Click Ok to validate the new session or Cancel to go back to the session configurator
without creating any new session. You can also click on the “Test…” button to open up
the session test panel and verify that you can read or write data from or to the device.

Each configured channel will be accessible through a dedicated OPC item. The OPC item
is named by default using the following pattern: device class/device id/subsystem
name/channel id
You can use an arbitrary name instead by setting the Session Name and Channel Name
fields. The OPC item will then be named <Session Name>/<Channel Name>

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 84 508.921.4600

The device selection dialog only lists available PowerDAQ and Simulator devices. To
select PowerDNA devices, you need to select the “PowerDNA” item and click on the
“Add Device…” to enter the IP address of the PowerDNA cube you wish to use. After
entering the IP address, the PowerDNA devices will show-up in the device selection
dialog as follows:

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 85 508.921.4600

4.9.2. Selecting the UeiDaq OPC server in your client
When browsing for available servers on a remote machine or your local computer select
the OPC server “UeiDaq.OPC-exe”.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 86 508.921.4600

Then browse through the OPC items provided by the server and you should see list of
items corresponding to the channels you configured in the “UeiDaq OPC Session
manager”.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 87 508.921.4600

The heartbeat item is a software counter that starts incrementing once the server is
started. It will stop incrementing immediately if for some reason the server can’t read
new values from the device.

The UeiDaq OPC server automatically sets the OPC item quality to “bad” if the
connection is lost with Ethernet based devices. This can take a few seconds which is why
it is important to monitor the heartbeat tag.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 88 508.921.4600

The OPC server automatically reconnects with devices once they are back online.

Once the UeiDaq OPC server is started it creates an icon in your Windows’s system tray.
Right-click on the icon and a menu appears allowing you to force the server to shut down
or launch the “UeiDaq OPC Session manager” to re-configure the items exported by the
server.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 89 508.921.4600

5. Synchronization using the UeiDaq framework

This chapter provides instructions for synchronizing multiple layers in multiple I/O
modules using the framework API.

The following synchronization use cases are described in subsequent sections:

• Starting I/O layers simultaneously within one IO module with a software trigger.
• Synchronizing multiple I/O modules using an external clock connected to the

Sync connector (the clock can optionally be provided by one of the I/O modules).
• Synchronizing multiple I/O modules using a 1PPS timing signal or the

IEEE-1588/PTP standard.

5.1. Starting I/O layers simultaneously with a software
trigger

This method of synchronization only applies to I/O layers located in the same cube or
rack. The I/O layers derive their clock from the same timebase so it is enough to start
them simultaneously to ensure that they remain synchronized over time.

There are four software trigger signals. Each trigger is selected using its name:
“softwaretrigger0”, “softwaretrigger1”, “softwaretrigger2”, “softwaretrigger3”.

Each session must be configured to start upon a software trigger.

C++:
pSession->CreateAIChannel("pdna://192.168.100.2/dev0/ai0:3", -10.0,10.0,

UeiAIChannelInputModeDifferential);

pSession->ConfigureTimingForBufferedIO(1000, UeiTimingClockSourceInternal,100.0,

UeiDigitalEdgeRising,

UeiTimingDurationContinuous);

pSession->ConfigureSignalTrigger(UeiTriggerActionStartSession,

 "SoftwareTrigger0");

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 90 508.921.4600

LabVIEW:

Any of the triggered sessions can emit the trigger signal that will start all sessions
simultaneously.

C++:
pSession->Start();

pSession->GetStartTrigger()->Fire();

LabVIEW:

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 91 508.921.4600

5.2. Synchronizing I/O modules with external clock
connected to sync connector

This method uses an external clock connected to the sync input connector. The external
clock can come from some external equipment or can be generated by one of the I/O
modules using phase-locked loop (PLL) circuitry on the CPU board.

The CPU layer is equipped with a digital PLL that can produce a user-specified
frequency signal. The PLL signal can be routed to the I/O layers using one of the four
synchronization lines available on the backplane.
The PLL signal can also be shared with other IO modules via the sync connector to
synchronize I/O layers across multiple racks or cubes.

I/O layers on the master IOM (the one generating the external clock with its PLL) must
set the scan clock signal to “PLLx” where x is 0, 1, 2 or 3 to specify the synchronization
line used to connect the PLL output to each I/O layer. When omitted, the default sync line
is 0.

I/O layers on the slave IOMs must set the scan clock signal to “SYNCINx” where x is 0,
1, 2 or 3 to specify the synchronization line used to connect the Sync connector clock
input to each I/O layer. When omitted, the default sync line is 0.

C++:
pMasterSession->CreateAIChannel("pdna://192.168.100.2/dev0/ai0:3", -10.0,10.0,

UeiAIChannelInputModeDifferential);

pMasterSession->ConfigureTimingForBufferedIO(1000,
 UeiTimingClockSourceExternal,100.0,

UeiDigitalEdgeRising,

UeiTimingDurationContinuous);
pMasterSession->GetTiming()->SetScanClockSourceSignal("PLL2");

pSlaveSession->CreateAIChannel("pdna://192.168.100.3/dev0/ai0:3", -10.0,10.0,
UeiAIChannelInputModeDifferential);

pSlaveSession->ConfigureTimingForBufferedIO(1000,

 UeiTimingClockSourceExternal,100.0,

UeiDigitalEdgeRising,

UeiTimingDurationContinuous);

pMasterSession->GetTiming()->SetScanClockSourceSignal("SYNCIN2");

// start slave session first

pSlaveSession->Start();

pMasterSession->Start();

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 92 508.921.4600

LabVIEW:

An inconvenience of this method is that the frequency of the clock signal limits the
length of the sync cable between IO modules to a few feet.

Some I/O layers are over-clocking their ADC and need an external scan clock that runs
faster (usually 8x) than the rate configured by the user. You can’t use this method
synchronize over-clocked and non over-clocked I/O layers.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 93 508.921.4600

5.3. Synchronizing I/O modules with 1PPS timing signal
or IEEE-1588 PTP standard

This section describes multi-chassis synchronization:
• using a pulse-per-second (PPS) timing signal connected via the sync input

connector
• using the IEEE-1588 Precision Time Protocol (PTP) standard over Ethernet

For PPS synchronization, the timing signal can come from external equipment or can be
generated by one of the I/O modules using 1PPS generation circuitry on the CPU board.

For PTP synchronization, a PTP master sends Sync timing packets over Ethernet.
Firmware on the CPU of each PTP slave chassis processes the PTP Sync packets, which
are used by CPU circuitry to generate a local PPS timing signal for internal I/O board
clock generation and synchronized triggers.

The PPS timing signal is usually a one pulse per second (1PPS) signal, but it doesn’t have
to be. I/O modules can work with any nPPS timing signal, where n is a positive integer.

PPS/PTP synchronization uses an adaptive digital phase-locked loop (ADPLL) circuit
and an event module to produce a clock at a user-programmable rate that stays
synchronized with the 1PPS input timing signal.

Multiple racks can easily be synchronized when using the same 1PPS synchronization
clock or, for PTP synchronization, a PPS synchronization clock derived internally from
PTP packets from the same PTP master.

The ADPLL and event module on each IOM produce synchronized scan clocks.

The following describe 1PPS synchronization mechanics:

• The source of the 1PPS sync clock can be an internally or externally generated
1PPS or derived from PTP packets

• The raw 1PPS clock is routed via one of the four internal sync lines to the ADPLL
• The ADPLL locks on the raw 1PPS and outputs its own 1PPS that is an average

of the original 1PPS clock
• The ADPLL can maintain its 1PPS output even if the original 1PPS clock gets

disconnected
• The ADPLL 1PPS output provides a synchronized reference signal to the event

module

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 94 508.921.4600

• The ADPLL 1PPS output can also be routed to one of the four internal sync lines
• The event module produces a user selectable number of pulses upon every 1PPS

pulse coming from the ADPLL to be used as a synchronized clock source
• The event module clock output is routed to the I/O boards via one of the

remaining sync lines

5.3.1. Creating a 1PPS or PTP Synchronization session

5.3.1.1. 1PPS Synchronization session
Synchronization to a 1PPS pulse uses a specialized session to configure the ADPLL and
event module of each I/O module.

A session for synchronization must be created on each IO module. The resource string
must point to the CPU device (device 14).

The following are examples of supported resource strings:

• pdna://192.168.100.2/dev14/sync0
• pdna://192.168.100.2/cpu/sync0

The following are 1PPS synchronization session parameters (also used for PTP
synchronization as described in section 5.3.1.2):

Parameter Description

Mode The method used to obtain the 1PPS signal
• Clock uses a 1PPS signal produced internally or

received from an external source
• NTP derives the 1PPS from an NTP server
• 1588 derives the 1PPS from a 1588 time master
• IRIG uses the 1PPS produced by an IRIG-650

Source The source of the 1PPS clock in SyncClock mode:
• Internal when 1PPS is generated internally
• Input0 when external 1PPS is connected to input 0 of

sync connector (clock input)
• Input1 when external 1PPS is connected to input 1 of

sync connector (trigger input)

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 95 508.921.4600

Parameter Description

Output The pin used to output the 1PPS sync clock
• Output0 when 1PPS is emitted out of output 0 of sync

connector (clock output)
• Output1 when 1PPS is emitted out of output 1 of sync

connector (trigger output)

NumPPS The number of pulses per second used by the
synchronization clock signal

PPSAccuracyUs The required accuracy in microseconds of the 1PPS timing
signal. Timing signals that are out of range are ignored

ADPLLSyncLine The internal sync line connecting the internal or external
1PPS clock to the ADPLL

ADPLLOutputSyncLine The ADPLL locked 1PPS output can optionally be routed to
a sync line for debug purposes

EMOutputSyncLine The internal sync line connecting the event module output
to the I/O layers

TriggerOutputSyncLine The sync line connecting the synchronized trigger to the I/O
layers. The CPU is capable of emitting a trigger signal
simultaneously with the next 1PPS pulse

EMOutputRate The rate (Hz) of the clock produced by the event module

The example below creates a 1PPS synchronization session for a master:

C++ (PPS master):
// Create session using internal 1PPS synchronizati on signal
CUeiSync1PPSPort* pMasterSyncPort =
 pMasterSyncSession->CreateSync1PPSPort(
 "pdna://192.168.100.2/cpu/syn c0",
 UeiSyncClock,
 UeiSync1PPSInternal,
 1000.0);

// Output 1PPS out of sync connector
pMasterSyncPort->Set1PPSOutput(UeiSync1PPSOutput0);

// Configure trigger to start session on a 1PPS edg e
pMasterSyncSession->GetStartTrigger()->
 SetTriggerSource(UeiTriggerSour ceNext1PPS);

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 96 508.921.4600

LabVIEW (PPS master):

The example code below creates a 1PPS synchronization session for a slave:

C++ (PPS slave):
// Create session using external 1PPS synchronizati on signal
CUeiSync1PPSPort* pSlaveSyncPort =

pSlaveSyncSession->CreateSync1PPSPort(
 "pdna://192.168.100.3/cpu /sync0",
 UeiSyncClock,
 UeiSync1PPSInput0,
 1000.0);

// Configure trigger to start session on a 1PPS edg e
pSlaveSyncSession->GetStartTrigger()->
 SetTriggerSource(UeiTrigg erSourceNext1PPS);

LabVIEW (PPS slave):

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 97 508.921.4600

5.3.1.2. PTP Synchronization session
Synchronization to the PTP standard uses the same specialized session as synchronization
to a 1PPS, with several additional PTP-specific parameters to be configured.

The session for synchronization must be created on each IO module. The resource string
must point to the CPU device (device 14).

The following are examples of supported resource strings:

• pdna://192.168.100.2/dev14/sync0
• pdna://192.168.100.2/cpu/sync0

To determine which device in the system will be the master, firmware on the CPU board
of each I/O chassis uses the IEEE-1588 best master clock algorithm (BMCA) to compare
PTP clock parameters of all announced masters. If only UEI chassis are the master-
capable devices in a system, the master is determined by the Priority value: the chassis
assigned the lowest Priority value will be the master (see PTPPriority1/2 in table below).

The session parameters listed in the previous 1PPS synchronization session section also
apply to PTP synchronization sessions. The following table lists PTP-specific parameters:

PTP-only Parameters Description

PTPEthernetPort The Ethernet port used to send and receive PTP packets:
• 0 for NIC1 (default)
• 1 for NIC2

PTPSubdomain The PTP subdomain (0 default)

PTPPriority1 The first order pre-emptive PTP priority: used in BMCA to
determine slave/master. (Smaller numbers indicate higher
priority. Set to 255 to configure a chassis in slave only
mode)

PTPPriority2 The second order PTP priority: used in BMCA to determine
slave/master. (Smaller numbers indicate higher priority)

PTPLogSyncInterval log2(period of sync messages)
How often the PTP master clock sends Sync messages

PTPLogMinDelayRequest
Interval

log2(minimum space between delay requests)
Minimum interval allowed between PTP delay-request
messages

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 98 508.921.4600

PTP-only Parameters Description

PTPLogAnnounceInterval log2(period of announce messages)
How often the PTP master clock sends Announce
messages

PTPAnnounceTimeout Number of announce intervals allowed to transpire
without the slave receiving an Announce message. After
this delay, the slave will timeout and return to the state of
listening for a new master PTP source

PTPUTCOffset The UTC offset

The example below creates a PTP synchronization session for a master:

C++ (PTP master):

// Create master session using PTP synchronization
ptpMasterSession = new CUeiSession ();
CUeiSync1PPSPort* masterPort =
 ptpMasterSession->CreateSync1PPSPort(
 "pdna://192.168.100.2/cpu /sync0",
 UeiSync1588,
 UeiSync1PPSInternal,
 100.0);

// configure port to output 1PPS signal out of
// sync connector output 0 (clock out)
masterPort->Set1PPSOutput(UeiSync1PPSOutput0);

// Configure PTP master parameters
// In this example, the master is Priority 128-3 an d
// the slave is Priority 128+3
masterPort->SetPTPEthernetPort(0);
masterPort->SetPTPSubdomain(0);
masterPort->SetPTPPriority1(128 - 3);
masterPort->SetPTPPriority2(128 - 3);
masterPort->SetPTPLogSyncInterval(0);
masterPort->SetPTPLogMinDelayRequestInterval(1);
masterPort->SetPTPLogAnnounceInterval(4);
masterPort->SetPTPAnnounceTimeout(3);
masterPort->SetPTPUTCOffset(37);

// Configure trigger to start session on a 1PPS edg e
ptpMasterSession->GetStartTrigger()->
 SetTriggerSource(UeiTriggerSourceNext1PPS);

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 99 508.921.4600

LabVIEW (PTP master):

The example code below creates a PTP synchronization session for a slave:

C++ (PTP slave):

// Create session using PTP synchronization
ptpSlaveSession = new CUeiSession ();
CUeiSync1PPSPort* slavePort =
 ptpSlaveSession->CreateSync1PPSPort(
 "pdna://192.168.100.3/cpu /sync0",
 UeiSync1588,
 UeiSync1PPSInternal, 100. 0);

// Configure PTP slave parameters (configure slave as higher priority)
slavePort->SetPTPEthernetPort(0);
slavePort->SetPTPSubdomain(0);
slavePort->SetPTPPriority1(128 + 3);
slavePort->SetPTPPriority2(128 + 3);
slavePort->SetPTPLogSyncInterval(0);
slavePort->SetPTPLogMinDelayRequestInterval(1);
slavePort->SetPTPLogAnnounceInterval(4);
slavePort->SetPTPAnnounceTimeout(3);
slavePort->SetPTPUTCOffset(37);
// Configure trigger to start session on a 1PPS edg e
ptpSlaveSession->GetStartTrigger()->
 SetTriggerSource(UeiTriggerSourceNext1PPS);

LabVIEW (PTP slave):

Refer to the LabVIEW (PTP master) example above. In this example, the properties that
distinguish a master from a slave are PTPPriority1/2. The slave will have a numerically
higher Priority value than the master (e.g. the slave will have Priority 131 instead of 125).

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 100 508.921.4600

5.3.2. Creating I/O sessions
The I/O layer sessions must be configured to use an external clock provided by the 1PPS
circuitry. This is done setting the scan clock signal to “PPSx” where x is 0, 1, 2 or 3 to
specify the synchronization line used to connect the event module output to each I/O
layer. When omitted, the default sync line is 2.

The start trigger signal must also be configured using a similar scheme.

C++:

pIOSession -> CreateAIChannel("pdna://192.168.100.2/dev0/ai0:3" ,

-10.0,10.0,
UeiAIChannelInputModeDifferential);

pIOSession -> ConfigureTimingForBufferedIO(1000,
 UeiTimingClockSourceExternal ,100.0,

UeiDigitalEdgeRising ,
UeiTimingDurationContinuous);

pIOSession -> GetTiming()->SetScanClockSourceSignal("PPS2");

// Configure timebase divisor, this is necessary to allow
// non-over-clocked layers to be synchronized with over-clocked layers.
pIOSession -> GetTiming()->SetScanClockTimebaseDivisor(0);

// Configure AI layers to wait for 1PPS trigger sig nal on sync line 3
pIOSession ->

ConfigureSignalTrigger(UeiTriggerActionStartSession , "pps3");

LabVIEW:

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 101 508.921.4600

5.3.3. Starting sessions
The IO sessions must start first: this will initialize and start the I/O layers hardware that
will be waiting for the trigger signal.

C++:
pIOSession -> Start();
pIOSession2 -> Start();
…

The synchronization sessions are started next:

C++ (1PPS example):
// Start sync sessions
pMasterSyncSession -> Start();
pSlaveSyncSession -> Start();
…

C++ (PTP example):
// Start sync sessions
ptpMasterSession ->Start();
ptpSlaveSession ->Start();
…

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 102 508.921.4600

5.3.1. Checking PTP status
On startup, each master-capable device in your system will announce its clock properties,
and each device will compare these properties to determine which has the best properties
and will be master. This process takes a few seconds to several minutes to complete,
depending on the number of devices in your system.

You can use a controller object to read the PTP status, which includes the PTP state
(Listening, Slave, Master, etc.), MasterClockID and more. Refer to the UeiDaq
Framework Reference Manual for more information about the UeiSync1PPSPTPStatus
structure members.

The code below shows how to check the PTP status on the slave sync session (checking
status on the master session is identical).

C++:
CUeiSync1PPSController* ptpSlaveController =

new CUeiSync1PPSController(ptpSlaveSession->GetData Stream())

tUeiSync1PPSPTPStatus status;
ptpSlaveController->ReadPTPStatus(&status);

std::cout << "PTP slave state = " << status.State < < std::endl;

std::cout << "Master clock ID = " << std::hex << st atus.MasterClockID
<< std::endl;

std::cout << "Mean path delay = " << status.MeanPat hDelay << std::endl;

LabVIEW:

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 103 508.921.4600

5.3.2. Reading UTC time
You can read the UTC time on IO devices using a controller object. Slave devices derive
their time from the synchronization packets from the PTP master.

The code below shows how to read the UTC time on the slave sync session (checking
time on the master session is identical).

C++:
CUeiSync1PPSController* ptpSlaveController =

new CUeiSync1PPSController(ptpSlaveSession->GetData Stream())

tUeiPTPTime slaveTime;
ptpSlaveController->ReadPTPUTCTime(&slaveTime);

std::cout << "PTP UTC Time = " << slaveTime.sec << "s / ";
std::cout << " slaveTime.nsec << "ns" << std::endl;

LabVIEW:

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 104 508.921.4600

5.3.3. Checking ADPLL status
The ADPLL and event module will take a few seconds to become stable. You can use a
controller object to read the ADPLL status.

The code below shows how to check the status on the master sync session (checking
status on the slave session is identical).

C++:
CUeiSync1PPSController* pMasterSyncController =

new CUeiSync1PPSController (pMasterSyncSession -> GetDataStream())
int lockCount = 0;
int loopCount = 0;

while (lockCount < 10 && loopCount < 30)
{
 bool locked;
 pMasterSyncController -> ReadLockedStatus(&locked);
 if (locked)
 {
 lockCount++;
 }
 UeiPalSleep(500);
}
if (lockCount < 10)
{
 std::out << "could not lock master 1PPS" << std::endl;
 return -1 ;
}

LabVIEW:

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 105 508.921.4600

5.3.4. Sending trigger on next PPS
Once all IO modules are locked on the 1PPS timing signal (either from an external source
or derived from internal / PTP circuitry), the host can broadcast a “trigger on next PPS”
command to all configured IO modules (slaves and/or master).

After receiving the command, the trigger circuitry on the CPU boards of each IO module
waits for the next PPS edge to assert the trigger sync line, leaving one full second for all
IO modules to receive and process the command and ensuring that all I/O layers across
the multiple IO modules are started simultaneously.

C++:
// Send trigger signal to start clocking the AI layers on the next 1PPS pulse

pMasterSyncController->TriggerDevices(UeiSync1PPSTriggerOnNextPPSBroadCast, true);

LabVIEW:

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 106 508.921.4600

Appendix A: Error Codes

C/C++ Constant
(.NET Constant) Code Description

UEIDAQ_SUCCESS
(UeiDaq.Error.Success)

0 Success

UEIDAQ_ATTRIBUTE_INVALID_ERROR
(UeiDaq.Error.AttributeInvalid)

0x80290001 The specified attribute doesn't exist

UEIDAQ_ATTRIBUTE_BAD_TYPE_ERROR
(UeiDaq.Error.AttributeBadType)

0x80290002 The specified attribute exists but
the type is wrong

UEIDAQ_TIMEOUT_ERROR
(UeiDaq.Error.Timeout)

0x80290003 Timeout occurred

UEIDAQ_BAD_PARAMETER_ERROR

(UeiDaq.Error.BadParameter)
0x80290004 One of the specified parameter(s) is

invalid

UEIDAQ_DEVICE_INVALID_ERROR
(UeiDaq.Error.DeviceInvalid)

0x80290005 The specified device doesn't exist

UEIDAQ_CHANNEL_INVALID_ERROR
(UeiDaq.Error.ChannelInvalid)

0x80290006 The specified channel doesn't exist

UEIDAQ_ATTRIBUTE_OUT_OF_RANGE_ERR
OR

(UeiDaq.Error.AttribureOutOfRange)

0x80290007 The specified attribute's value is out
of range

UEIDAQ_DEVICE_CAPABILITY_ERROR
(UeiDaq.Error.DeviceCapability)

0x80290008 The device is not capable of such
an operation

UEIDAQ_BAD_RESOURCE_STRING_ERROR

(UeiDaq.Error.BadResourceString)
0x80290009 The resource string is incorrectly

formatted

UEIDAQ_DRIVER_INVALID_ERROR
(UeiDaq.Error.DriverInvalid)

0x8029000A The specified driver doesn't exist

UEIDAQ_SESSION_INVALID_ERROR
(UeiDaq.Error.SessionInvalid)

0x8029000B The session is invalid

UEIDAQ_SUBSYSTEM_ALREADY_USED_ERR
OR

(UeiDaq.Error.SubSystemAlreadyUsed)

0x8029000C The subsystem is already reserved
by another session

UEIDAQ_INVALID_STATE_ERROR
(UeiDaq.Error.InvalidState)

0x8029000D The session is not in a state
allowing this operation

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 107 508.921.4600

C/C++ Constant
(.NET Constant) Code Description

UEIDAQ_BUFFER_OVERRUN_ERROR

(UeiDaq.Error.BufferOverrun)
0x8029000E Data was lost because it was not

read fast enough

UEIDAQ_BUFFER_UNDERRUN_ERROR

(UeiDaq.Error.BufferUnderrun)
0x8029000F Not enough data was available to

keep the generation running

UEIDAQ_SUBSYSTEM_BUSY_ERROR

(UeiDaq.Error.SubSystemBusy)
0x80290010 The subsystem associated with this

session is already used by another
session

UEIDAQ_SUBSYSTEM_INTERNAL_ERROR
(UeiDaq.Error.SubSystemInternalError)

0x80290011 An unknown error occurred in the
plugin

UEIDAQ_BUFFER_ERROR

(UeiDaq.Error.BufferError)
0x80290012 An error occurred while

reading/writing the buffer

UEIDAQ_DEVICE_ERROR
(UeiDaq.Error.DeviceError)

0x80290013 An error occurred while accessing
the device

UEIDAQ_SUBSYSTEM_NOT_BUFFERED_ERR
OR

(UeiDaq.Error.SubsystemNotBuffered)

0x80290014 This subsystem doesn't support
buffered IO

UEIDAQ_NOT_ENOUGH_MEMORY_ERROR

(UeiDaq.Error.NotEnoughMemory)
0x80290015 There was not enough memory to

complete this operation

UEIDAQ_WRONG_DATA_TYPE_ERROR

(UeiDaq.Error.WrongDataType)
0x80290016 The specified data type doesn't

match the device capability

UEIDAQ_NO_MORE_ITEMS_ERROR

(UeiDaq.Error.NoMoreItems)
0x80290017 There is no more data available

UEIDAQ_OPERATION_INVALID_ERROR
(UeiDaq.Error.OperationInvalid)

0x80290018 The operation is incompatible with
the current session

UEIDAQ_NOT_ENOUGH_DATA_ERROR

(UeiDaq.Error.NotEnoughData)
0x80290019 There were not enough data passed

to complete the operation

UEIDAQ_INVALID_TC_TYPE_ERROR
(UeiDaq.Error.ThermocoupleTypeInvalid)

0x8029001A The thermocouple type is invalid

UEIDAQ_INVALID_TEMP_SCALE_ERROR
(UeiDaq.Error.TemperatureScaleInvalid)

0x8029001B The temperature scale is invalid

UEIDAQ_INVALID_BRIDGE_CONFIG_ERRO
R

(UeiDaq.Error.BridgeConfigurationInvalid)

0x8029001C The strain gauge bridge
configuration is invalid

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 108 508.921.4600

C/C++ Constant
(.NET Constant) Code Description

UEIDAQ_INVALID_RTD_CONV_ERROR

(UeiDaq.Error.RTDConversionInvalid)
0x8029001D The RTD conversion is invalid

UEIDAQ_DIVIDE_BY_ZERO_ERROR
(UeiDaq.Error.DivideByZero)

0x8029001E Division by zero

UEIDAQ_CONVERSION_ERROR

(UeiDaq.Error.Conversion)
0x8029001F An error happened while converting

units

UEIDAQ_INVALID_RATE_ERROR
(UeiDaq.Error.RateInvalid)

0x80290020 The specified rate is above the
device maximum rate or violates
the settling time

UEIDAQ_CTR_TMR_MODE_INVALID_ERROR

(UeiDaq.Error.CounterTimeModeInvalid)
0x80290021 The counter/timer does not support

the specified mode

UEIDAQ_CTR_TMR_IN_USE_ERROR

(UeiDaq.Error.CounterTimeModeInUse)
0x80290022 The counter/timer is already used

by another session

UEIDAQ_CAN_NOT_REGENERATE_ERROR

(UeiDaq.Error.CanNotRegenerate)
0x80290023 The device doesn't support

regeneration

UEIDAQ_CHANNEL_LIST_POWER_OF_2_ER
ROR
(UeiDaq.Error.ChannelListPowerOf2)

0x80290024 The Channel list size must be a
power of 2

UEIDAQ_SESSION_XML_ERROR

(UeiDaq.Error.SessionXMLError)
0x80290025 The XML session string is invalid

UEIDAQ_DIGITAL_PORT_IN_USE_ERROR
(UeiDaq.Error.DigitalPortAlreadyInUse)

0x80290026 The digital port is already used by
another session

UEIDAQ_INVALID_TIMING_MODE_ERROR
(UeiDaq.Error.TimingModeInvalid)

0x80290027 The device associated with the
session doesn't support the
specified timing mode

UEIDAQ_ASYNC_IN_PROGRESS_ERROR
(UeiDaq.Error.AsyncOperationInProgress)

0x80290028 An asynchronous operation is
already in progress

UEIDAQ_NOT_IMPLEMENTED_ERROR

(UeiDaq.Error.NotImplemented)
0x80290029 The feature is not yet implemented

UEIDAQ_CONFIG_INVALID_ERROR
(UeiDaq.Error.ConfigurationInvalid)

0x8029002A The current configuration settings
were rejected by the device

UEIDAQ_DEVICE_NOT_RESPONDING_ERRO
R

(UeiDaq.Error.DeviceNotResponding)

0x8029002B The device is not responding, check
the connection and the device's
status

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 109 508.921.4600

C/C++ Constant
(.NET Constant) Code Description

UEIDAQ_INVALID_TRIGGER_SIGNAL_ERR
OR

(UeiDaq.Error.InvalidTriggerSignal)

0x8029002C The specified trigger signal is not
compatible with the device
associated to this session

UEIDAQ_SIGNAL_BUSY_ERROR
(UeiDaq.Error.SignalIsBusy)

0x8029002D The specified trigger or clock can't
be routed to the device

UEIDAQ_INVALID_INPUT_MODE_ERROR
(UeiDaq.Error.InvalidInputMode)

0x8029002E The device doesn't support the
specified input mode

UEIDAQ_CALIBRATION_ERROR
(UeiDaq.Error.CalibrationError)

0x8029002F An error occurred while performing
calibration, verify your wiring

UEIDAQ_INVALID_CLOCK_SIGNAL_ERROR
(UeiDaq.Error.InvalidClockSignal)

0x80290030 The specified clock signal is not
compatible with the device
associated to this session

UEIDAQ_CHANNEL_IN_USE_ERROR

(UeiDaq.Error.ChannelAlreadyInUse)
0x80290031 The channel is already used by

another session

UEIDAQ_CAN_COMM_ERROR

(UeiDaq.Error.CANCommError)
0x80290032 The CAN bus switched to bus off

state. There is a faulty node or cable

UEIDAQ_OFFSET_NULLING_ERROR

(UeiDaq.Error.OffsetNulling)
0x80290033 The offset is too high to be nulled

UEIDAQ_UNEXPECTED_RESULT_ERROR

(UeiDaq.Error.UnexpectedResult)
0x80290034 Unexpected result

UEIDAQ_PARITY_ERROR
(UeiDaq.Error.Parity)

0x80290035 A parity error has been detected

UEIDAQ_FRAMING_ERROR

(UeiDaq.Error.Framing)
0x80290036 A framing error has been detected

UEIDAQ_NOT_SUPPORTED_ERROR

(UeiDaq.Error.NotSupported)
0x80290037 Operation is not supported on this

sub-system or device

UEIDAQ_BUFFER_TOO_SMALL_ERROR

(UeiDaq.Error.BufferTooSmall)
0x80290038 The buffer is too small to hold all

received data

UEIDAQ_DEVICE_LOCKED_ERROR

(UeiDaq.Error.Locked)
0x80290039 Device is already locked by another

session

UEIDAQ_GPS_ANTENNA_ERROR

(UeiDaq.Error.GPSAntenna)
0x8029003A GPS antenna is disconnected

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 110 508.921.4600

C/C++ Constant
(.NET Constant) Code Description

UEIDAQ_GPS_LOCK_ERROR

(UeiDaq.Error.GPSLock)
0x8029003B Could not lock on GPS signal

UEIDAQ_DATA_NOT_READY_WARNING

(UeiDaq.Error.DataNotReady)
0x8029003C Device reports that no data is ready

yet

UEIDAQ_IOMODULE_REBOOTED_ERROR

(UeiDaq.Error.Rebooted)
0x8029003D IO module was rebooted

UEIDAQ_PPS_LOCK_ERROR

(UeiDaq.Error.PPSLock)
0x8029003E Could not lock on 1PPS signal

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 111 508.921.4600

Appendix B: Custom Properties
Some PowerDNA devices have features that are not directly accessible through the
standard framework API.
It might be because those features are unique, and we didn’t want to bloat the
Framework’s API or because they are so new that we haven’t had a chance to integrate
them in the API yet.

Custom Properties are used to operate those features; they can be accessed using the
Session object’s methods “SetCustomProperty” and “GetCustomProperty”.

A custom property has a unique name and a value whose type must be an array of integer
or floating point elements.

Here is an example showing how to access custom properties in C++:

// Set the floating point property “dbl_property_na me” to 102.90
double fValue = 102.90;
MySession.SetCustomProperty(“dbl_property_name”, si zeof(double),
&fValue);

// Get the value of the integer property “int_prope rty_name”
int iValue[64];
MySession.GetCustomProperty(“int_property_name”, 64 *sizeof(int),
iValue);

Here is an example showing how to access custom properties in ANSI-C:

// Set the floating point property “dbl_property_na me” to 102.90
double fValue = 102.90;
UeiDaqSetSessionCustomProperty(sessionHandle, “dbl_ property_name”,
&fValue, sizeof(double));

// Get the value of the string property “int_proper ty_name”
int iValue[64];
UeiDaqGetSessionCustomProperty(sessionHandle, “int_ property_name”,
iValue, 64*sizeof(char));

You can also access custom properties from LabVIEW using the polymorphic VI
“UeiDaqCustomAttribute.vi”. This VI has four instance VIs to access scalar or arrays of
integer or floating point values.

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 112 508.921.4600

B-1 PowerDNA AI-205 custom properties:
Each AI-205 analog input channel is equipped with a three-stage FIR filter and
decimators.

FIR filters are disabled by default. You can enable and control FIR filters using the
following custom properties (each property must be written in the sequence described
below):

• “channel”: An integer representing the channel for which you want to configure
the FIR filter.

• “stage”: An integer set to 0, 1 or 2 representing the stage to configure for the
selected channel.

• “decimation”: An integer representing the decimation for the selected stage.
• “tap”: An array of floating-point values representing the taps for the selected

stage. The maximum number of taps is 128.

To disable FIR filters, set decimation to 1 and program one tap with coefficient “1.0” on
each stage.

Note that setting a decimation value greater than 1 will slow down the rate at which your
application will receive data from the AI-205: you need to adjust the session timeout
parameter accordingly.

The following sample code shows how to program the first stage of the FIR filter on
channel 0:

int firChannel = 0;
int firStage = 0;
int decimation = 1;
double taps[8]= {…};
MySession.SetCustomProperty(“channel”, sizeof(int), &firChannel);

 UeiDaq Framework User Manual

© Copyright 2018 www.ueidaq.com

United Electronic Industries, Inc. 113 508.921.4600

MySession.SetCustomProperty(“stage”, sizeof(int), & firStage);
MySession.SetCustomProperty(“decimation”, sizeof(in t), &decimation);
MySession.SetCustomProperty(“tap”, 8*sizeof(double) , taps);

B-2 PowerDNA AO-302/308 custom properties:
It is possible to program the initial level of the AO-302 analog output channels after
powering-up the PowerDNA and the levels before shutting it down.

• “startupvalues”: An array of 8 floating-point elements representing the level on
each analog output channel when the cube is starting-up.

• “shutdownvalues”: An array of 8 floating-point elements representing the level on
each analog output channel when the cube is shutting down.

B-3 PowerDNA DIO-401/402/404/405/406 custom properties:
The PowerDNA DIO-40x layers are equipped with a hysteresis circuitry whose low and
high threshold levels can be programmed using custom properties.

• “lowhysteresis”:A floating-point value representing the low hysteresis voltage as
a percentage of the power supply voltage (Vcc).

• “highhysteresis”: A floating-point value representing the high hysteresis voltage
as a percentage of the power supply voltage (Vcc).

