
WHITE PAPER
INTERNET OF THINGS AND UEI DATA ACQUISITION
& CONTROL SYSTEMS

www.ueidaq.com

Protocols available for sharing data between data acquisition systems and other
IoT objects and services

UEI IoT White Paper and Tutorial June 2017
Internet of Things and
UEI Data Acquisition & Control Systems

Written by UEI Staff

Internet of Things Overview

The Internet of Things (IoT) is a networked system of interconnected physical objects that have the
capability of sharing data with each other and also with a cloud service for archiving and analysis.
With IoT, data producing devices can easily publish data, and multiple consumer clients can receive
that data from any location in the world.

> Why IoT matters for industrial systems

Statistics for IoT connectivity list the current number of devices connected over the Internet as
somewhere between 6 billion and 17.6 billion.1 The number of connections and interconnections is
expected to exponentially increase in the years to come as IoT evolves beyond consumer-driven
applications that include fitness and entertainment products to industrial-driven solutions that result
in improved efficiencies, customer satisfaction, and profit for corporations.

With the advent of interconnected “things,” devices that have not typically been accessible outside of
a local network can become accessible on a world-wide scale. For commercial and industrial data
acquisition (DAQ) systems, these devices include sensors, controllers, signal conditioning units,
machines for connectivity and processing units. One of the strengths of IoT is that it allows multiple
data producers and multiple data consumers to work concurrently. Once devices are interconnected
and accessible, the opportunities for remote diagnostics, predictive maintenance systems,
automation, and real-time data collection and analysis become broader-based and more globally
viable.2

Predictive modeling, machine learning, and other big-data analysis tools for global industrial systems
require high volumes of data from distributed environments. IoT is being looked upon to solve many
data throughput and delivery concerns associated with industrial data acquisition systems.

> UEI and IoT Enablement

This white paper describes protocols available for sharing data between data acquisition systems
and other IoT objects and services. The first sections of the paper discuss IoT connectivity and
protocols. The last section provides three IoT tutorials using United Electronic Industries (UEI) DAQ
hardware and software.
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 1 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
IoT Connectivity: How it works

IoT works by objects and services connecting and communicating over the Internet. IoT objects must
conform to the Internet Protocol Suite to be considered “things” in terms of the Internet of Things.

> IoT Protocol Overview

The Internet Protocol Suite refers to the set of protocols used on the Internet.
It models Internet communication and can be described in terms of four
stacked protocol layers based on the Open Systems Interconnection (OSI)
model.3

The lowest layer is the link layer, which defines communication locally
between physical devices. The Internet Protocol (IP) layer is next.
The IP layer identifies addressing through IP addresses and packet
structuring. Example protocols of the IP layer are IPv4 and IPv6.

The next layer up is the transport layer. Protocols at the transport layer
ensure host-to-host transmissions occurring over established ports.
Example protocols of this layer are the Transport Control Protocol (TCP) and
the User Datagram Protocol (UDP), where datagrams are another name for packets. The Internet
Protocol Suite is often commonly referred to as TCP/IP, the acronyms for these two lower levels.

At the top of the Internet Protocol Suite stack are application layer protocols, which determine how
applications communicate with each other. These protocols can be associated with distributed
application structures, such as client-server or publish-subscribe applications.4

A popular protocol for industrial IoT (IIoT) applications is Message Queue Telemetry Transport
(MQTT), a lightweight publish-subscribe messaging protocol. MQTT is an open source TCP-based
protocol first authored in 1999 and designed for applications where hosting hardware may have
limited on-board memory and for applications requiring remote communications.

Application Layer

Link Layer

Internet Layer

Transport Layer
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 2 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
> IoT Protocols Supported in UEI Hardware & Software

UEI hardware and software support several application level protocols that enable IoT.

MQTT UEI’s Linux-based programmable
automation controllers (UEIPACs) come
pre-installed with Eclipse Mosquitto, which
implements the MQTT machine-to-machine
(M2M) messaging protocol. UEIPAC runs as a
standalone data acquisition and control system
and supports MQTT applications out-of-the-box.

VxWorks UEIPACs can alternatively run with
Wind River’s standard VxWorks real-time
operating system (RTOS) kernel instead of the
Linux kernel. Wind River offers their own
IoT-enabled product portfolio, Wind River Helix,
for IoT applications.5

OPC-UA Additionally, UEI also offers a UEIPAC
that is compatible with the Open Platforms
Communication (OPC) United Architecture (UA),
a platform independent protocol for industrial
M2M communication. The UEIOPC-UA controller
is a UEIPAC that runs a standard OPC-UA server.
In the spring of 2016, OPC Foundation announced that publish/subscribe functionality was being
added to OPC-UA. UEIOPC-UA’s IoT-enablement will continue to evolve as OPC-UA continues to
develop infrastructure to achieve interoperability for IIoT, IoT, and industrie 4.0 applications and
devices.6

The following sections of this white paper provide an MQTT overview and tutorials.

About the UEIPAC

The UEIPAC is a standalone
embedded controller.

Depending which chassis
type you choose, the
UEIPAC can be configured
with 1 to 12 I/O boards, with
a selection of over 60 I/O
boards to choose from.

The UEIPAC uses a Linux
or VxWorks kernel. The
kernel comes preloaded into
flash memory along with
drivers for each of the I/O boards.

An SD card houses the root file system, which
includes libraries, utilities, initialization scripts,
daemons, as well as example code,
documentation, and an assortment of third-party
software.
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 3 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
MQTT for IoT-Enabled Industrial Communication

UEI provides built-in MQTT support with the UEIPAC data acquisition and control system. A
Mosquitto open-source message broker and C library for publishing and subscribing to MQTT
messages is pre-installed on the PAC.

UEIPAC is also pre-loaded with example C code for connecting the UEIPAC to other MQTT clients.
C code examples can be used as a basis for user code development. Additionally, the UEIPAC
Software Development Kit (SDK) comes with the GNU toolchain compiled to run on a host PC and
build binaries targeting the UEIPAC.

> MQTT connects many DAQs to many consumers

Implementations get interesting when the traditional DAQ signal chain used for industrial applications
is integrated in the MQTT data flow model. For UEI DAQs, our API allows only one supervisory
system to read data from DAQ hardware at a time. This is a serial signal chain from sensor to PC.

One of the strengths of using an MQTT data flow model for IoT is that when a DAQ system publishes
data, multiple data consumers can subscribe to and consume the same data.

Figure 1: Subscriber/Publisher Data Transfers

MQTT Data Flow Model The MQTT publish/subscribe communication model is event driven.
Messages are pushed to clients (as opposed to clients periodically requesting updates).

MQTT works by clients connecting to a broker to publish data messages or subscribe to them. The
broker is the central communication point and mediator in charge of dispatching all messages among
multiple publishers and multiple subscribers.

Clients publish messages with a topic name embedded in the message, and the broker uses that
topic as routing information. Receiving clients register with the broker and subscribe to specific topics.
The broker delivers all messages with matching topics to the clients. All data storage and transfer
control is done by the broker.

Broker

Message A

Message B

Message C

Messages
A & C

Message C

Messages
A, B, & C

Messages sent
real-time to broker

Messages requested from broker and
then pushed out by broker when available

Publisher

Publisher

Publisher

Subscriber

Subscriber

Subscriber
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 4 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
Traditional DAQ Data Flow Model The traditional DAQ data flow model includes sensors and
DAQ signal conditioning hardware co-located at the edge of a network. Sensors detect real-world
physical conditions, which they convert into electrical representations. DAQ hardware samples the
sensor output and produces digitized data through signal conditioning of the sensor samples.
Digitized data is then acquired by computers for data collection, processing, and analysis.

Figure 2: Traditional DAQ Data Flow Model

Sensors are wired to UEI DAQ hardware through 37- or 62-pin D-Sub connectors, and output data
can be stored locally on an SD-card or other removable media or transferred to a host computer via
a Wifi, copper, or fiber optic Ethernet connection.

IoT Data Flow Model For IoT systems, the traditional DAQ data flow model changes such that
DAQ hardware acts as client to a broker instead of transferring data directly to a supervisory system.
DAQ hardware still collects raw data from sensors at the point of creation, but through a
pre-established authenticated instance with a cloud service, the digitized data is transferred to a
broker using the MQTT protocol. Once data is secured by the broker, any authenticated subscriber
can access the data, asynchronously and concurrently with other subscribers.

Figure 3: Example of Enabling IoT Implementations with UEIPAC

Sensors
(sense phenomenon)

DAQ HW/SW
(sample and convert

to usable data)

Supervisory
Control System
(collect & analyze data)

-0.70713
-0.25884
 0.25887

 0.96592
 0.70715

-0.96591

Sensors
(sense phenomenon)

DAQ HW/SW
(sample and convert

to usable data)

Supervisory
Control System
(collect & analyze data)

-0.70713
-0.25884
 0.25887

 0.96592
 0.70715

-0.96591

UEIPAC
IoT

Subscribers

Sensors

Sensors

Sensors

Sensors

...

IoT
Broker

0.02916
0.09911
0.03402

0.08002
-0.02211

Subscribe

Subscribe

Subscribe

Publish
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 5 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
UEI IoT Connectivity Tutorials

The tutorials in the following sections are based on running UEI example code on a UEIPAC and
using the pre-installed Mosquitto sub/pub/broker software. Other configurations are supported;
however, all configurations require an MQTT broker, either running on a network accessible host or
running the Mosquitto broker on the UEIPAC itself.

This tutorial includes the following information:

• A Quick Overview of Example Code and Formatting (page 6)

• Setting Up UEIPAC for MQTT Publishing (page 8)

• Using the Local Mosquitto MQTT Service on the UEIPAC (page 8)

• Using the Local MQTT Publisher & Broker and Remote MQTT Subscribe Service (page 10)

• Using the Local MQTT Publisher, a Remote Cloud Broker, & Remote MQTT Subscription
Applications (page 13)

> A Quick Overview of Example Code and Formatting

Example Code Overview

The sample program, “SampleDMAP_MQTT,” comes pre-loaded on the UEIPAC and is available
with the UEIPAC SDK download. Sample code runs directly on the UEIPAC and acquires and
publishes data from specified analog input, digital input, or counter/timer DAQ channels. The
example can also subscribe to external data and transfer it to analog output and digital output DAQ
channels.

Formatting Overview

Text formatting Text formatted in fixed typeface generally represents source code or other
text that should be entered verbatim at the command line or into the source code, initialization, or
other file. These commands should be typed exactly as shown.

Topic formatting MQTT clients publish messages with a topic name embedded in the message,
and the broker uses that topic as routing information. One MQTT topic is mapped to each specified
UEIPAC channel.

Topic names in this tutorial consist of three topic levels with each level separated by a forward slash:
<Channel type>/<Device position>/<Channel number>.

• Channel type is the type of I/O board being referenced. For example, AI is an analog input
board, DI is a digital input board, and CT is a counter board.

• Device position is the board position in the chassis. For example, Dev0 is the first or top DAQ
I/O board installed in the UEIPAC chassis, Dev1 is the second board, Dev2 is the third, etc.

• Channel number is the channel number of the board. For example, the DIO-449 board is a 48
channel digital input board. The topic name can reference any channel from “Ch0” to “Ch47” to
specify the input.

• Wild cards are also permitted in the topic name: # is the multi-level wildcard, and + is the single
level wildcard.
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 6 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
The following are examples of topic names for UEIPAC devices:

• AI/Dev0/Ch0: Channel 0 of the analog input board in the first chassis position

• AI/Dev1/Ch0: Channel 0 of the analog input board in the second chassis position

• DI/Dev2/Ch1: Channel 1 of the digital input board in the third chassis position

• AI/#: All channels of all analog input boards in any chassis position

Sample code parameter formatting The SampleDMAP_MQTT example code collects input
samples from the specified channels and publishes those samples to the specified host/broker.

The following are supported command line parameters:

Parameter Description

-d <device list> The list of devices (or board positions) to include in the
data acquisition (DMAP)
(e.g., -d 0,1 will include I/O boards in the chassis at
positions 0 and 1)

-c <channel per device> The list of channels to configure for each device
(e.g., -c 4,8 configures 4 channels on device 0 (chan-
nels 0 thru 3), and 8 channels on device 1 (channels 0
thru 7)

-f <refresh rate> The rate at which data is published (in hertz)

-h <MQTT host> The IP address of the MQTT broker. If using DHCP, this
can be the hostname

-p <MQTT port> The IP port used to connect to the MQTT broker

-u <username> The user name for brokers that require authentication

-P <password> The password for brokers that require authentication
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 7 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
> Setting Up UEIPAC for MQTT Publishing

1. Access the Linux command line prompt on the UEIPAC

To access the Linux command line prompt, install a serial cable between your host PC and the
UEIPAC to connect to the PAC file system via the serial port (57600/8/1/no parity).

Alternatively, you can remote shell (ssh, telnet, etc.) into the UEIPAC from a PC running
Linux OS, from a PuTTY telnet or SSH session from a Windows PC, or from a Cygwin shell.

The default IP address on NIC 1 of the UEIPAC is 192.168.100.2.

2. Add “mosquitto” as a user

Before using the Mosquitto service, “mosquitto” must be added as a user.

Type the following at the UEIPAC Linux prompt (~#), and then enter and reenter the password
(the default password is powerdna):

• ~# adduser mosquitto

3. Start the Mosquitto service on the UEIPAC

Type the following command at the UEIPAC Linux prompt to start the Mosquitto service:

• ~# mosquitto –c /etc/mosquitto/mosquitto.conf &

> Using the Local Mosquitto MQTT Service on the UEIPAC

The following tutorial is an introduction to using the MQTT
protocol on the UEIPAC. This example uses the local Mosquitto
MQTT service that is pre-installed on the UEIPAC.

The tutorial starts the sample code running on the UEIPAC, which
acquires and publishes data from an analog input board. Then the
local MQTT command line subscriber is used to request the
analog input data from the on-board Mosquitto broker.

If the Mosquitto service hasn’t already been started, follow the steps in “Setting Up UEIPAC for MQTT
Publishing” above.

1. Start the sample code on the UEIPAC

Type the following command at the UEIPAC Linux prompt:

• ~# /usr/local/examples/SampleDMAP_MQTT –d 0,1 –c 4,8 –f 10 –h
127.0.0.1 –p 1883

This command starts the sample running on the UEIPAC. The publisher publishes analog input
samples acquired from the first 4 channels on board 0 (Dev0) and the first 8 channels on board
1 (Dev1) to the broker local on the UEIPAC at a frequency of 10 Hz.

In this example, the host IP address of the broker is the loopback IP address (127.0.0.1),
and the port is 1883.

UEIPAC

Publish

Subscribe
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 8 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
2. Verify MQTT connectivity with the Mosquitto subscriber on the UEIPAC

Open a second Linux terminal window to run mosquitto_sub while the sample code is still
running in the first Linux terminal window to verify that MQTT messages are published.

NOTE The mosquitto_sub command invokes a simple MQTT client that will
subscribe to a single topic and print all messages it receives.

Type the following command at the UEIPAC Linux prompt to see subscribed data messages:

• ~# mosquitto_sub -h 127.0.0.1 -p 1883 -t AI/Dev0/# -v

Figure 4: Analog Input Values Pushed to Local Subscriber from Local Broker

The subscriber requests AI/Dev0/# topics. The -t option specifies which topics are
requested, and -v specifies verbose printing.

In this example, the mosquitto_sub service subscribes to receive all channels from the first
analog input board in the UEIPAC chassis. The analog input board in this example has even
channels tied to +7.5 volts and odd channels tied to -7.5 volts.
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 9 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
> Using the Local MQTT Publisher & Broker and Remote MQTT Subscribe Service

The following tutorial uses a remote MQTT
subscription service to request and view
topics from the local Mosquitto broker on the
UEIPAC.

This tutorial sets up running sample code on
the UEIPAC the same way as in the previous
example; however, the MQTT subscriber is
provided by the Chrome application, MQTTLens.

If the Mosquitto service hasn’t already been started, follow the steps in “Setting Up UEIPAC for MQTT
Publishing” on page 8.

1. Start the sample code on the UEIPAC

Type the following command at the UEIPAC Linux prompt:

• ~# /usr/local/examples/SampleDMAP_MQTT –d 0,1 –c 4,8 –f 10 –h
127.0.0.1 –p 1883

As in the previous example, the sample is running on the UEIPAC, and the publisher is
publishing analog input samples acquired from the first 4 channels on board 0 (Dev0) and the
first 8 channels on board 1 (Dev1) to the Mosquitto broker local on the UEIPAC at a frequency
of 10 Hz.

The host IP address of the broker is the loopback IP address (127.0.0.1), and the port is
1883.

2. Install an MQTT client on your PC

This tutorial uses MQTTLens, a free Google Chrome App. MQTTLens connects to any MQTT
broker and can subscribe to MQTT topics.

Launch MQTTLens:

Figure 5: Launch MQTTLens Subscription Client

UEIPAC

Publish -7.50421
7.75402

7.74999
-7.75211

MQTTLens

Subscribe
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 10 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
3. Identify the broker connection for MQTT subscription client

In this example, the broker is the local Mosquitto broker on the UEIPAC. The broker IP address
is the default IP address of the UEIPAC, which is the 198.168.100.2, and the port is 1883. Note
that port 1883 is an assigned MQTT TCP port.

Click Connections + to add a connection, and then enter a connection name in the
Connection name field and the UEIPAC IP address under Hostname:

Figure 6: Enter Broker Connection Information for MQTTLens Subscription Client

Click Create Connection to save changes.
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 11 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
4. Subscribe to topics using the MQTT subscription client

Enter AI/Dev0/# in the Subscribe field to acquire data messages from all channels on the
analog input board at device 0, and then click SUBSCRIBE.

Figure 7: MQTTLens Displays Subscription Topics

Topics print in the GUI display.
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 12 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
> Using the Local MQTT Publisher, a Remote Cloud Broker, & Remote MQTT
Subscription Applications

The following tutorial uses the local Mosquitto publisher
on the UEIPAC, a remote MQTT broker cloud service,
and remote MQTT subscription services (a Chrome app
and a hand-held device app).

Several companies offer hosted MQTT services as part
of their cloud offerings, and a variety of MQTT client
apps exist. This white paper uses cloudmqtt.com
because it offers a free plan (with limited bandwidth) and
uses MQTTLens and ICPDAS MQTT because they are
free applications available for the Chrome browser and
iPhone, respectively.

This example goes through the steps of creating an
account on cloudmqtt.com, creating an MQTT instance,

and setting up MQTTLens and the hand-held MQTT app to simultaneously view samples on both.

This example also provides the steps to set up the UEIPAC to use a DHCP assigned IP address.
Using DHCP will configure the gateway and DNS properly, so the “cloudmqtt.com” hostname can be
entered instead of a semi-static IP address. The dynamically allocated IP address for the UEIPAC
will be needed when we setup the MQTT instance.

If the Mosquitto service hasn’t already been started, follow the steps in “Setting Up UEIPAC for MQTT
Publishing” on page 8.

1. Setup the UEIPAC to use a dynamically hosted IP address with DHCP

Connect to the UEIPAC over the serial port
(57600/8/1/no parity).

Edit the /etc/network.conf file, and
change “DHCP=no” to “DHCP=yes”.

Restart the UEIPAC.

In the serial terminal window, type
ifconfig to see the dynamically assigned
IP address (the assigned DHCP address shows as 192.168.0.91 in the following):

~ # ifconfig
eth0

Link encap:Ethernet HWaddr 00:0C:94:00:D0:D0
inet addr:192.168.0.91 Bcast:192.168.0.255

Mask:255.255.255.0

Note this IP address for later reference.

IoT Broker
mqttcloud.com

Publish Subscribe
Subscribe

-7.50421
7.75402

7.74999
-7.75211

UEIPAC

-7.50421
7.75402

7.74999
-7.75211

MQTTLens
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 13 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
2. Create an account with the cloud broker

In this example, we are using cloudmqtt.com as our hosted broker. Follow the instructions on
the site to set up a login ID and password for the account.

3. Create an instance with the cloud broker

Enter an instance name, and click Create:

Figure 8: Create an Instance on the hosted broker

The instance we created is “UEIPAC-Demo”.
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 14 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
4. Note host information for the instance

Click Details to access the Instance Info page:

Figure 9: Instance details on the hosted broker

The CloudMQTT Console will open.

Note the Server and Port information. These will be used later to connect the Mosquitto
publication service on the UEIPAC to the cloudMQTT broker:

Figure 10: Note the Server hostname and Port on the hosted broker
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 15 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
5. Set up credentials for users of the instance

Enter a username and password under the Manage Users section, and click Save:

Figure 11: Enter authentication credentials on the hosted broker

For this example, we set up two usernames: one for the UEIPAC as a publisher
(ueipac-publisher), and one for the subscriber (ueipac).
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 16 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
6. Set up Access Control List rules for publishing messages

Create a new Access Control List with a rule allowing the UEIPAC to publish all samples from
analog input boards (AI/#) to this broker:

Figure 12: Enter ACL rules for publisher

In this example, we set the User to the credentials set up for the UEIPAC as a publisher
(ueipac-publisher) and specify published topics from the UEIPAC will be the Topic AI/#.
Publishers must have Write Access checked, and subscribers must have Read Access
checked.
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 17 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
7. Start the sample code on the UEIPAC

Type the following command at the UEIPAC Linux prompt:

~# /usr/local/examples/SampleDMAP_MQTT –d 0,1 –c 8,8 –f 10 –h
m13.cloudmqtt.com –p 10384 -u ueipac-publisher -P ueipac:

Figure 13: Launch MQTTLens Subscription Client

In this example, the host is the mqttcloud broker. The hostname is “m13.cloudmqtt.com” as
noted when the instance was created in Step 4 on page 12. The port and credentials are also
what were setup in the previous two steps.

Once we start the SampleDMAP_MQTT code running, the local Mosquitto publisher will
publish analog input samples acquired from the first 8 channels on board 0 (Dev0) and the first
8 channels on board 1 (Dev1) this time to the cloud based MQTT broker.
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 18 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
8. Verify the cloud broker is receiving published data

Look on the cloud broker website to verify published data is being received. To check on
cloudmqtt, click Websocket UI in the CloudMQTT Console window:

Figure 14: Verify the broker is receiving published messages

In this example, we have an analog input board (AI) as the first board in the UEIPAC chassis
(Dev0), and we are publishing data from channels 0 through 7.

At this point, any MQTT client from any location in the world can subscribe to this data.

The following steps set up Google Chrome’s MQTTLens (used in the previous tutorial) and the
iPhone app, ICPDAS MQTT, to subscribe to the mqttcloud.com broker and view samples.
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 19 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
9. Launch MQTT Lens

If MQTTLens is not already installed, follow set up instructions in the previous tutorial.

10.Setup mqttcloud as the broker connection for MQTTLens subscription

Click Connections + to add a connection to the cloud broker, and enter Connection name,
Port, and Username and Password credentials:

Figure 15: Enter Broker Connection Information for MQTTLens Subscription Client

Click Save Changes to save setup.

The broker is the mqttcloud service. Refer to the instance setup in previous steps for the
Server, Port, and user credentials.
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 20 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
11.Subscribe to topics using the MQTT subscription client

Enter AI/# in the Subscribe field to acquire data messages from all channels on all analog
input boards, and then click SUBSCRIBE.

Figure 16: MQTTLens Displays Subscription Topics

Topics print in the GUI display.
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 21 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
12.Open an MQTT client on your hand-held device

The following steps use the free iOS MQTT client app, ICPDAS MQTT.

13.Setup mqttcloud as the broker connection for the MQTT client on the hand-held device

Enter connection information for the cloud broker: Host, Port, User ID and Password
credentials, and Topic settings can be found in step 4 through step 6:

Figure 17: Enter Broker Credentials into iOS Subscription Client

Click Done to finish setup. The hand-held device will connect to the broker.
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 22 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
14.View real-time messages

For the app in this example, press the Messages button in the lower right corner to view
real-time updates of the analog input sample data.

Figure 18: Hand-held Display of Analog Input Data

Topics print in the GUI display.
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 23 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
In summary

As industries progress to streamlining or automating operations, interconnected “things” that are able
to communicate in real-time with data processing equipment become increasingly important. As an
example, one big-data analytic scenario for the airline industry estimates the considerable amount of
flight operation data from onboard sensors that will need to be transferred to processing stations on
the ground for collection, storage and processing of data may be in the terabyte range.7

UEI provides rugged and flexible solutions that support IoT applications, with IoT hardware and
software configurations offered through our programmable automation controllers (UEIPACs).
UEIPACs are installed with any combination of UEI’s extensive selection of input/output boards to
meet the needs of an application, providing a modular design that facilitates communication and
interoperability with other devices, networks, and systems.
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 24 - info@ueidaq.com

UEI IoT White Paper and Tutorial June 2017
Endnotes

1. Source: IEEE Spectrum.
Nordrum, Amy, “Popular Internet of Things Forecast of 50 Billion Devices by 2020 Is Outdated”
(Tech Talk, Aug 2016), spectrum.ieee.org/tech-talk/telecom/internet.

2. Source: Industrial Internet Consortium.
Industrial Internet Consortium, Manufacturing & Smart Factory, www.iiconsortium.org/verti-
cal-markets/manufacturing.htm.

3. Source: LinkedIn article.
Stansberry, James, “The IoT communication protocols” (October 2015), www.linke-
din.com/pulse/iot-communication-protocols-james-stansberry.

4. Source: SlideShare.
Patierno, Paolo, “IoT protocols landscape” (June 2014), www.slideshare.net/paolopat/io-t-proto-
cols-landscape.

5. Source: Wind River Press Release.
Wind River, “Wind River Unveils IoT-Enabled Product Portfoilio” (February 2015),
https://www.windriver.com/news/press/pr.html?ID=13288.

6. Source: OPC Foundation Press Release.
OPC Foundation, “OPC Foundation Announces support of Publish / Subscribe for OPC UA” (May
2016), opcfoundation.org/news/opc-foundation-news.

7. Source: Sampathkumar, Arun Kumar, “Commercial Aviation, Big Data and What I Think About
Them” (September 2014),
www.linkedin.com/pulse/20140923105538-238203970-commercial-aviation-big-data-and-what-i
-think-about-them?trk=pulse_spock-articles.

Evans, Dave, “How the Next Evolution of the Internet Is Changing Everything” (April 2011),
www.cisco.com/c/dam/en_us/about/ac79/docs/innov.

Heimes,Felix, “Fleet Health Monitoring and Machine Learning Technology for CBM+” (October
2009), www.phmsociety.org/sites/phmsociety.org/files/FieldedSystems_Dresch.pdf.

Keranen, Ari and Bormann, Carsten, “Internet of Things: Standards and Guidance from the IETF”
(April 2016). www.internetsociety.org/publications/ietf-journal-april-2016.

Schneider, Stan, “Understanding the Protocols Behind the Internet of Things” (Oct 2013),
electronicdesign.com/iot/understanding-protocols-behind-internet-things

About United Electronic Industries United Electronic Industries (UEI) is a leader in the data
acquisition and control, data logging, and embedded automation controller markets. Our cube, rack
and military chassis provide a rugged and powerful platform that is ideal for many applications in the
industrial, aerospace, military, and simulation fields – plus many more! Our chassis are uniquely
flexible, capable of being deployed as a remote Ethernet I/O node, a standalone data logger, or an
embedded controller. We offer incredible I/O flexibility with over 60 I/O boards available which include
analog/digital I/O, avionics (including 1553, 429, AFDX™, 664, 708/453, 825), speed/freq input,
CAN-bus, serial I/O and more. UEI supports all popular OSs such as Windows, Linux, VxWorks, QNX
and other RTOSs as well as all programming languages. We also offer complete and seamless
support of all major application packages, including LabVIEW™, MATLAB® and Simulink™.
© 2016 United Electronic Industries, Inc. All Rights Reserved. (508) 921-4600

www.ueidaq.com - 25 - info@ueidaq.com

	> Why IoT matters for industrial systems
	> UEI and IoT Enablement
	IoT Connectivity: How it works
	> IoT Protocol Overview
	> IoT Protocols Supported in UEI Hardware & Software

	MQTT for IoT-Enabled Industrial Communication
	> MQTT connects many DAQs to many consumers

	UEI IoT Connectivity Tutorials
	> A Quick Overview of Example Code and Formatting
	Example Code Overview
	Formatting Overview

	> Using the Local Mosquitto MQTT Service on the UEIPAC
	> Using the Local MQTT Publisher & Broker and Remote MQTT Subscribe Service

	In summary
	Endnotes

