
i

PowerDAQ User Manual

PD2/PDXI-MF Series Multifunction DAQ Boards

PD2/PDXI-MFS Series Simultaneous Sampling DAQ Boards

PDL-MF “Lab” Series Multifunction DAQ Boards

April 2006 Edition
PN: PDAQ-MAN-MFX Rev. 6.0.1

© Copyright 1998-2006 United Electronic Industries, Inc. All rights reserved

ii

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any

form by any means, electronic, mechanical, by photocopying, recording, or otherwise without

prior written permission.

March 2006 Printing

Information furnished in this manual is believed to be accurate and reliable. However, no

responsibility is assumed for its use, or for any infringements of patents or other rights of third

parties that may result from its use.

All product names listed are trademarks or trade names of their respective companies.

Contacting United Electronic Industries

Mailing Address:

611 Neponset St

Canton, MA 02021

U.S.A.

Support:

Telephone: (781) 821-2890

Fax: (781) 821-2891

Also see the FAQs and online “Live Help” feature on our web site.

Internet Access:

Support support@ueidaq.com

Web site www.ueidaq.com

FTP site ftp://ftp.ueidaq.com

iii

Table of Contents

1. Introduction ... 1
Who should read this manual?.. 1
Conventions.. 2
Organization of this manual ... 3

2. PowerDAQ MF/MFS Series Features Overview.. 7
Overview .. 7
Features .. 7
PowerDAQ Models .. 8

3. Installation and Configuration... 15
Before you begin .. 15
Installing the software .. 16
Installing PowerDAQ hardware ... 17
Confirming the installation... 18
Configuring a PowerDAQ board.. 19
Connector for PDL-MF .. 31
Connectors for PDXI MF(S) Series boards .. 33
“Simple Test” program... 35
Calibration .. 36

4. PowerDAQ Architecture ... 37
Functional Overview .. 37
Programming Model... 42

5. Analog-Input Subsystem.. 45
Architecture .. 45
Input Ranges... 45
Gain Settings .. 46
Channel List ... 46
Input modes .. 47
Sequential vs simultaneous sampling ... 52
Clocking and Triggering... 56
Clocking/Triggering Examples... 61
The A/D Sample FIFO ... 64
Moving data into the host PC ... 64
Host-based buffer usage ... 69
Data format... 70
Programming Techniques... 73
Method A—Single scan ... 73
Method B—Burst buffered acquisition (1-shot) ... 75
Method C—Continuous acquisition using the Advanced Circular Buffer (ACB)...................... 79

Table of Contents

iv

Method D—Recycled-buffer mode...81
Combining Analog and Digital subsystems ..82
Synchronous stimulus/response ..82

6. Analog-Output Subsystem..84
Architecture...84
Single-value update method..84
Buffered waveform generation methods ...84
Non-buffered waveform generation methods..85
Channel List ..86
Clocking..86
Triggering ...87
Programming Techniques ...87
Method A—Single update...87
Method B—Single-shot waveform generation..88
Method C—Continuous waveform generation ...89
Method D—Repetitive waveform generation ...91
Method E—Autoregeneration ...92
Method F—Event-based waveforms using PCI interrupts..93

7. Digital I/O Subsystem..96
Architecture...96
Programming Techniques ...97
Method A—Polled I/O..97
Method B—Generate an event upon edge detection...99

8. User Counter/Timer Subsystem...102
Architecture...102
PDL-MF..104
Programming Techniques ...105

9. Support Software...108
PowerDAQ Example Programs ..108
Third-Party Software Support ...110

Appendix A: Specifications...112
PD2-MF Multifunction Boards ...113
PD2-MFS Simultaneous Sampling Boards ...117
PDL-MF “Lab” Multifunction Board ...121
PDXI-MF Multifunction Boards...123
PDXI-MFS Simultaneous Sampling Boards...127

Appendix B: PowerDAQ A/D Timing ...132
PD2-MF Series Timing ...133
PD2-MFS Series Timing...133
PDL-MF Series Timing...133
PDXI-MF Series Timing...134
PDXI-MFS Series Timing...134

Table of Contents

v

Appendix C: Accessories .. 136
Screw-Terminal Panels (PD2/PDXI).. 136
Screw Terminal Panels (PDL-MF only)... 136
BNC & Distribution Panels (PD2/PDXI) ... 137
Cables (PD2/PDXI) ... 137
Mating cables, connectors, rack mounts (PD2/PDXI).. 138
Signal Conditioning (all boards)... 139

Appendix D: PowerDAQ SDK Structure.. 140
PowerDAQ Windows device drivers.. 141
PowerDAQ Windows DLLs... 141
PowerDAQ Language Libraries ... 142
PowerDAQ Include Files.. 143
PowerDAQ Linux support.. 145
PowerDAQ QNX Support .. 145

Appendix E: Application Notes.. 146
1. PowerDAQ Advanced Circular Buffer (ACB) ... 146
2. PD-BNC-xx wiring options: ... 149

Appendix F: Warranty ... 150

Appendix G: Glossary... 151

Index ... 163

Reader Feedback ... 168

vi

List of Tables and Figures

Table 2.1—PowerDAQ PD2-MF Series models ..9
Table 2.2—PowerDAQ PD2-MFS Models ..10
Table 2.3—PowerDAQ PDXI-MF Series Models..11
Table 2.4—PowerDAQ PDXI-MFS Models ..12
Table 2.5—MFS Differential Upgrade Options..13
Table 2.6—PD2-/PDXI FIFO upgrade option ..13
Table 2.7—PDL-MF board specifications ..14
Figure 3.1—PowerDAQ Software Installation Startup Screen ...16
Figure 3.2—Control Panel Application ..18
Figure 3.3a—Connector layout for long-slot PD2 Family boards ..19
Figure 3.3b—Connector layout for “sandwich” format PD2 family boards20
Figure 3.4—Connector layout for PDXI-MF(S) Series boards...21
Figure 3.5—Connector layout for PDL-MF board. ..22
Figure 3.6—PDXI Configurator ...23
Figure 3.7—Cable connection diagram for PowerDAQ MF (S) boards...25
Figure 3.8a—Physical layout of J1 / JA1 Connector on PD2 MF(S) Series boards25
Figure 3.8b—Pin assignments on J1 / JA1 Connector on PD2-MF boards,

 in single-ended mode ..26
Figure 3.8c—Pin assignments on J1 / JA1 Connector on PD2-MF boards,

 in differential mode ...27
Figure 3.8d—J1 / JA1 Connector on PD2-MFS boards, single-ended or

 differential modes..28
Figure 3.9a—Physical layout of J2 on PD2 MF/MFS Series boards ...29
Figure 3.9b—Pin assignments for J2 Connector on PD2-MF/MFS boards29
Figure 3.10a—Physical layout of J4 on PD2 MF/MFS Series boards ..30
Figure 3.10b—Pin assignments for J4 Connector on PD2-MF/MFS boards30
Figure 3.11a—Physical layout of J6 on PD2-MF(S) Series boards ..31
Figure 3.11b—Pin assignments for J6 Connector on PD2-MF/MFS boards31
Figure 3.12a—Physical layout of J1 on PDL-MF board..31
Figure 3.12b—Pin assignments for J1 Connector on PDL-MF Series board..................................32
Figure 3.13—Cable connection diagram for PDXI-MF(S) boards ...33
Figure 3.14a—Physical layout of J2 on PDXI-MF/MFS Series boards...33
Figure 3.14b—Pin assignments of J2 Connector on PDXI MF/MFS Series boards.......................34
Figure 3.15—Simple Test application ..35
Figure 4.1—PowerDAQ PD2-MF/MFS Series block diagram...37
Figure 4.2—PowerDAQ PDXI-MF/MFS Series block diagram...38
Figure 4.3—PowerDAQ PDL-MF block diagram..39
Figure 4.4—Communication between a user application and a PowerDAQ

 multifunction board..42
Table 5.1—PowerDAQ analog-input ranges ..45
Table 5.2—Programmable Gains..46
Table 5.3a—Channel List format..47
Table 5.3b—Programmable-gain codes..47

List of Tables and Figures

vii

Figure 5.1—Wiring for single-ended and pseudodifferential inputs .. 49
Figure 5.2—Wiring for differential inputs ... 50
Figure 5.3a—Analog front end of a PowerDAQ MF Series board .. 53
Figure 5.3b—Acquisition sequence for multiplexed inputs on

 MF Series and PDL boards... 53
Figure 5.4a—Analog front end on PowerDAQ MFS simultaneous-sampling

 boards (with both SE and DI modes available) .. 55
Figure 5.4b—Acquisition sequence for simultaneous inputs using

 S/H amplifiers on MFS Series boards... 56
Table 5.4—External trigger modes .. 60
Table 5.5—Possible clocking combinations (the shaded rows at the

 bottom indicate rarely used combinations). .. 63
Table 5.6—Default Bus Mastering parameters for various FIFO sizes.. 67
Figure 5.5—Control Panel applet with typical PowerDAQ board settings 68
Figure 5.6—Advanced Circular Buffer .. 69
Figure 5.7a—PowerDAQ 16-bit data format ... 71
Figure 5.7b—PowerDAQ 14-bit data format ... 71
Figure 5.7c—PowerDAQ 12-bit data format ... 71
Table 5.8—Bit weight by input range .. 71
Table 5.9—Displacement by input range ... 72
Table 5.10—Mode constants for use in analog-input configuration word 73
Figure 6-1—Analog-output data format ... 86
Figure 7.1—Digital-input subsystem hardware block diagram.. 96
Figure 7.2—Digital-input configuration word ... 97
Table 9.1—Third-party software support ... 110
Figure D.1—PowerDAQ Software Structure ... 140
Figure E.1—Advanced Circular Buffer.. 147

viii

1

1. Introduction
This manual describes the features and functions of hardware in the PowerDAQ series of PCI and

PXI multifunction data-acquisition boards. These high-performance systems support functions

including analog input (AI), analog output (AO), digital I/O (DIO), and user counter/timer I/O

(UCT) for either PCI-bus or PXI/CompactPCI-based systems.

 Note All PDXI cards support the PXI Trigger Bus, Star Trigger lines and Local Bus on the P2 connector.

Nonetheless, they run without modification in any C-sized CompactPCI backplane except they lose

support for PXI-specific functions.

These boards all fall into one of the following broad classifications:

• PD2/PDXI-MF Series—Multifunction (analog I/O, digital I/O, counter/timer)

• PD2/PDXI MFS Series—Simultaneous Sampling Multifunction

• PDL-MF—“Lab” Series Entry-level Multifunction

This manual uses the word “PowerDAQ” to collectively reference all the models listed above.

Other boards in the PowerDAQ Series (see separate manuals) include the

• PD2/PDXI-AO Series—Analog Output (with digital I/O, counter/timers)

• PD2/PDXI-DIO Series—Digital I/O (with counter/timers)

• PDL-DIO Series—“Lab” Series Entry-level Digital I/O (with counter/timers)

Who should read this manual?

This manual has been written to make the installation, configuration and operation of our

PowerDAQ multifunction boards as straightforward as possible. However, it assumes that the user

has basic PC skills and is familiar with the Microsoft Windows XP/2000/NT/9x, QNX or

Linux/RTLinux/RTAI Linux operating environments.

1. Introduction

2

Conventions

To help you get the most out of this manual and our products, please note that we use the

following conventions:

 Tips are designed to highlight quick ways to get the job done, or reveal good ideas you

might not discover on your own.

 Note Notes alert you to important information.

CAUTION! Caution advises you of precautions to take to avoid injury, data loss, or

system crash.

Text formatted in bold typeface generally represents type that should be entered verbatim. For

instance, it can represent a command, as in the following example: “You can instruct users how to

run setup using a command such as setup.exe.”

TIP

1. Introduction

3

Organization of this manual

Chapter 1: Introduction

The section you are reading now. It explains which products are covered and gives you tips on

how to best use this manual.

Chapter 2: PowerDAQ MF/MFS Series Features Overview

This chapter provides an overview of the key features of the PowerDAQ series and detailed

information on the various PowerDAQ models currently available. It also lists what you need to

get started.

Chapter 3: Installation and Configuration

This chapter explains how to install and configure your PowerDAQ board. Among other things, it

shows where various I/O connectors are located on various boards and also shows their pinout

definitions.

Chapter 4: PowerDAQ Architecture

This chapter discusses the subsystems of your PowerDAQ board, and it gives an overview of the

programming model, showing how various cards and software modules intercommunicate.

Chapter 5: Analog-Input Subsystem

This and the following three chapters are each devoted to one of the PowerDAQ MF/MFS Series

subsystems. Each chapter is divided into two major sections. The first gives a description of the

hardware and gives tips for making best use of these features in a test system. The second section

introduces you to the best way to program this subsystem and reviews the most frequently used

commands and operating methods.

Chapter 6: Analog-Output Subsystem

This chapter contains two major sections: the first describes the hardware and its features; the

second introduces you into techniques for programming this subsystem.

Chapter 7: Digital I/O Subsystem

This chapter contains two major sections: the first describes the hardware and its features; the

second introduces you into techniques for programming this subsystem.

Chapter 8: User Counter/Timer Subsystem

This chapter contains two major sections: the first describes the hardware and its features; the

second introduces you into techniques for programming this subsystem.

Chapter 9: Support Software

1. Introduction

4

This chapter outlines the various example programs supplied with the PowerDAQ Software Suite

CD-ROM. It also describes the third-party software we support with PowerDAQ hardware.

Appendix A: Specifications

This appendix lists the hardware specifications of the PowerDAQ product series.

Appendix B: PowerDAQ A/D Timing

This appendix gives tables that help you determine the fastest acquisition times when using

various options such as Slow Bits.

Appendix C: Accessories

This appendix provides a list of available PowerDAQ accessories.

Appendix D: PowerDAQ SDK Structure

This appendix shows the directories and files that are created when you install the PowerDAQ

Software Developers Kit.

Appendix E: Application Notes

This appendix provides application notes to enhance your understanding of PowerDAQ products.

Appendix F: Warranty

This appendix contains a detailed explanation of PowerDAQ warranty.

Appendix G: Glossary

This is an alphabetical listing of the terms used in this manual along with their definitions.

Index

This is an alphabetical listing of the topics covered in this manual.

1. Introduction

5

Other PowerDAQ Documentation

The PowerDAQ PD2 / PDXI / PDL-MF Manual is one part of the documentation available for the

PowerDAQ system. There are several other manuals you might want to read before programming

your application. They are available either on the PowerDAQ Software Suite CD or can be

downloaded from the UEI web site.

Software:
PowerDAQ Programmer Manual

PowerDAQ for LabVIEW User Manual

Hardware:
PowerDAQ ASTP User Manual

PowerDAQ Thermocouple Rack User Manual.

Feedback

We are interested in any feedback you might have concerning our products and manuals. A Reader

Evaluation form is available on the last page of the manual.

1. Introduction

6

7

2. PowerDAQ MF/MFS Series

Features Overview
This chapter provides an overview of the key features of the PowerDAQ Series and detailed

information on the various PowerDAQ models currently available. It also lists what you need to

get started.

Overview

Thank you for purchasing a PowerDAQ board. These advanced multifunction boards all feature an

onboard DSP that allows simultaneous operation of all I/O subsystems without host intervention.

In addition, the DSP runs a firmware-based command interpreter that makes it easy and

convenient to program these cards from virtually any programming language using the same API.

Features

Key features of PowerDAQ boards include:

• 24-bit Motorola 56301 digital signal processor

• PCI-bus host interface (PCI 2.1 compliant)

• Custom-designed programmable gain amplifier

• Analog inputs—from 16 to 64 channels, 12-, 14- or 16-bit resolution, A/D FIFO buffer

size varies with board and options.

• Analog outputs—2 channels, 12-bit resolution, 2k-sample DSP-based FIFO

• Digital inputs—16 or 24 points

• Digital outputs—16 or 24 points

• Three user counter/timers (8254 based), each with its own Clock In/Gate controls (the

PDL-MF uses the three 24-bit counters on the DSP)

• Auto calibration

• Extensive triggering and clocking of analog inputs

• Extensive triggering and clocking of analog outputs

• Simultaneous operation of all subsystems (Analog In, Analog Out, Digital In, Digital Out

and Counter/Timer).

 Note For the full list of specifications, see Appendix A: Specifications.

2. PowerDAQ MF/MFS Series Features Overview

8

PowerDAQ Models

PowerDAQ model numbers are based on the following conventions:

[Family] - [Type of Board] - [Channels] - [Speed] / [Resolution][Gain]

Family:

• PD2 PowerDAQ PCI-bus boards

• PDXI PowerDAQ PXI/CompactPCI boards

The types of boards currently available include the following:

• MF Multifunction

• MFS Multifunction with simultaneous sampling

• AO Analog Output (details supplied in separate PD2-AO manual)

• DIO Digital Input/Output (details supplied in separate PD2-DIO manual)

In the gain position, you sometimes find one of these two types:

• “L”—intended for low-level signals that might need considerable amplification, so gains

are typically 1, 10, 100 and 1000

• “H”—intended for higher-level signals that need less amplification, so gains are typically

1, 2, 4 and 8 or 1, 2, 5 and 10 depending on the model.

PowerDAQ PD2-MF Series

Model Analog features

PD2-MF-16-2M/14H 2.2M samples/sec, 14-bit A/D, 16 SE / 8 DI inputs, Gains: 1,

2, 4, 8; two 12-bit D/As

PD2-MF-64-2M/14H 2.2M samples/sec, 14-bit A/D, 64 SE / 32 DI inputs, Gains: 1,

2, 4, 8; two 12-bit D/As

PD2-MF-16-500/16L 500k samples/sec, 16-bit A/D, 16 SE / 8 DI inputs, Gains: 1,

10, 100, 1000; two 12-bit D/As

PD2-MF-16-500/16H 500k samples/sec, 16-bit A/D, 16 SE / 8 DI inputs, Gains: 1, 2,

4, 8; two 12-bit D/A

PD2-MF-64-500/16L 500k samples/sec, 16-bit A/D, 64 SE / 32 DI inputs, Gains: 1,

10, 100, 1000; two 12-bit D/As

PD2-MF-64-500/16H 500k samples/sec, 16-bit A/D, 64 SE / 32 DI inputs, Gains: 1,

2, 4, 8; two 12-bit D/A

PD2-MF-16-400/14L 400k samples/sec, 14-bit A/D, 16 SE / 8 DI inputs, Gains: 1,

10, 100, 1000; two 12-bit D/As

PD2-MF-16-400/14H 400k samples/sec, 14-bit A/D, 16 SE / 8 DI inputs, Gains: 1, 2,

4, 8; two 12-bit D/As

2. PowerDAQ MF/MFS Series Features Overview

9

PD2-MF-64-400/14L 400k samples/sec, 14-bit A/D, 64 SE / 32 DI inputs, Gains:

1,10,100,1000; two 12-bit D/As

PD2-MF-64-400/14H 400k samples/sec, 14-bit A/D, 64 SE / 32 DI inputs, Gains: 1,

2, 4, 8; two 12-bit D/A

PD2-MF-16-333/16L 333k samples/sec, 16-bit A/D, 16 SE / 8 DI inputs, Gains: 1,

10, 100, 1000; two 12-bit D/As

PD2-MF-16-333/16H 333k samples/sec, 16-bit A/D, 16 SE / 8 DI inputs, Gains: 1, 2,

4, 8; two 12-bit D/A

PD2-MF-64-333/16L 333k samples/sec, 16-bit A/D, 64 SE / 32 DI inputs, Gains: 1,

10, 100, 1000; two 12-bit D/As

PD2-MF-64-333/16H 333k samples/sec, 16-bit A/D, 64 SE / 32 DI inputs, Gains: 1,

2, 4, 8; two 12-bit D/A

PD2-MF-16-150/16L 150k samples/sec, 16-bit A/D, 16 SE / 8 DI inputs, Gains: 1,

10, 100, 1000; two 12-bit D/As

PD2-MF-16-150/16H 150k samples/sec, 16-bit A/D, 16 SE / 8 DI inputs, Gains: 1, 2,

4, 8; two 12-bit D/A

Table 2.1—PowerDAQ PD2-MF Series models

 Note All PD2-MF Series models also include three counter/timers and 32 digital I/O lines.

2. PowerDAQ MF/MFS Series Features Overview

10

PowerDAQ PD2-MFS Series:

Model Analog features

PD2-MFS-4-2M/14 2M samples/sec, 14-bit A/D, 4 SE simultaneous inputs;

two 12-bit D/As

PD2-MFS-8-2M/14 2M samples/sec, 14-bit A/D, 8 SE simultaneous inputs;

two 12-bit D/As

PD2-MFS-4-1M/12 1M samples/sec, 12-bit A/D, 4 SE simultaneous inputs;

two 12-bit D/As

PD2-MFS-8-1M/12 1M samples/sec, 12-bit A/D, 8 SE simultaneous inputs;

two 12-bit D/As

PD2-MFS-4-800/14 800k samples/sec, 14-bit A/D, 4 SE simultaneous inputs;

two 12-bit D/As

PD2-MFS-8-800/14 800k samples/sec, 14-bit A/D, 8 SE simultaneous inputs;

two 12-bit D/As

PD2-MFS-4-500/16 500k samples/sec, 16-bit A/D, 4 SE simultaneous inputs;

two 12-bit D/As

PD2-MFS-8-500/16 500k samples/sec, 16-bit A/D, 8 SE simultaneous inputs;

two 12-bit D/As

PD2-MFS-4-500/14 500k samples/sec, 14-bit A/D, 4 SE simultaneous inputs;

two 12-bit D/As

PD2-MFS-8-500/14 500k samples/sec, 14-bit A/D, 8 SE simultaneous inputs;

two 12-bit D/As

PD2-MFS-4-300/16 300k samples/sec, 16-bit A/D, 4 SE simultaneous inputs;

two 12-bit D/As

PD2-MFS-8-300/16 300k samples/sec, 16-bit, 8 SE simultaneous inputs;

two 12-bit D/As

Table 2.2—PowerDAQ PD2-MFS Models

 Note All PD2-MFS Series models also include three counter/timers and 32 digital I/O lines.

 Note PD2-MFS Series boards provide a dedicated sample/hold amplifier (S/H) for each analog-input

channel. These S/Hs are integrated into the board’s hardware design and do not require any user

software programming to enable their operation.

 Note All PD2-MFS Series models come standard only with G = 1; for other gains, you can purchase the

DG option outlined in Table 2.5

2. PowerDAQ MF/MFS Series Features Overview

11

PowerDAQ PDXI-MF Series

Model Analog features

PDXI-MF-16-2M/14H 2.2M samples/sec, 14-bit A/D, 16 SE / 8 DI inputs,

Gains: 1, 2, 4, 8; two 12-bit D/As

PDXI-MF-64-2M/14H 2.2M samples/sec, 14-bit A/D, 64 SE / 32 DI inputs,

Gains: 1, 2, 4, 8; two 12-bit D/As

PDXI-MF-16-1M/12L 1.25M samples/sec, 12-bit A/D, 16 SE / 8 DI inputs,

Gains: 1, 10, 100, 1000; two 12-bit D/As

PDXI-MF-16-1M/12H 1.25M samples/sec, 12-bit A/D, 16 SE / 8 DI inputs,

Gains: 1, 2, 4, 8; two 12-bit D/A

PDXI-MF-64-1M/12L 1.25M samples/sec, 12-bit A/D, 64 SE / 32 DI inputs, Gains: 1, 10,

100, 1000; two 12-bit D/As

PDXI-MF-64-1M/12H 1.25M samples/sec, 12-bit A/D, 64 SE / 32 DI inputs, Gains: 1, 2,

4, 8; two 12-bit D/As

PDXI-MF-16-500/16L 500k samples/sec, 16-bit A/D, 16 SE / 8 DI inputs,

Gains: 1, 10, 100, 1000; two 12-bit D/As

PDXI-MF-16-500/16H 500k samples/sec, 16-bit A/D, 16 SE / 8 DI inputs,

Gains: 1, 2, 4, 8; two 12-bit D/As

PDXI-MF-64-500/16L 500k samples/sec, 16-bit A/D, 64 SE / 32 DI inputs,

Gains: 1, 10, 100, 1000; two 12-bit D/As

PDXI-MF-64-500/16H 500k samples/sec, 16-bit A/D, 64 SE / 32 DI inputs,

Gains: 1, 2, 4, 8; two 12-bit D/As

PDXI-MF-16-400/14L 400k samples/sec, 14-bit A/D, 16 SE / 8 DI inputs,

Gains: 1, 10, 100, 1000; two 12-bit D/As

PDXI-MF-16-400/14H 400k samples/sec, 14-bit A/D, 16 SE / 8DI inputs,

Gains: 1, 2, 4, 8; two 12-bit D/As

PDXI-MF-64-400/14L 400k samples/sec, 14-bit A/D, 64 SE / 32 DI inputs,

Gains: 1, 10, 100, 1000; two 12-bit D/As

PDXI-MF-64-400/14H 400k samples/sec, 14-bit A/D, 64 SE / 32 DI inputs,

Gains: 1, 2, 4, 8; two 12-bit D/As

PDXI-MF-16-333/16L 333k samples/sec, 16-bit A/D, 16 SE / 8 DI inputs,

Gains: 1, 10, 100, 1000; two 12-bit D/As

PDXI-MF-16-333/16H 333k samples/sec, 16-bit A/D, 16 SE / 8 DI inputs,

Gains: 1, 2, 4, 8; two 12-bit D/As

PDXI-MF-64-333/16L 333k samples/sec, 16-bit A/D, 64 SE / 32 DI inputs,

Gains: 1, 10, 100, 1000; two 12-bit D/As

PDXI-MF-64-333/16H 333k samples/sec, 16-bit A/D, 64 SE / 32 DI inputs,

Gains: 1, 2, 4, 8; two 12-bit D/A

PDXI-MF-16-150/16L 150k samples/sec, 16-bit A/D, 16 SE / 8 DI inputs,

Gains: 1, 10, 100, 1000; two 12-bit D/As

PDXI-MF-16-150/16H 150k samples/sec, 16-bit A/D, 16 SE / 8 DI inputs,

Gains: 1, 2, 4, 8; two 12-bit D/As

Table 2.3—PowerDAQ PDXI-MF Series Models

 Note All PDXI-MF Series models also include three counter/timers and 32 digital I/O lines.

2. PowerDAQ MF/MFS Series Features Overview

12

PowerDAQ PDXI-MFS Series

 Model Analog features

PDXI-MFS-4-2M/14 2M samples/sec, 14-bit A/D, 4 SE simultaneous

inputs, G = 1; two 12-bit D/As

PDXI-MFS-8-2M/14 2M samples/sec, 14-bit A/D, 8 SE simultaneous

inputs, G = 1; two 12-bit D/As, G = 1

PDXI-MFS-4-1M/12 1M samples/sec, 12-bit A/D, 4 SE simultaneous

inputs, G = 1; two 12-bit D/As

PDXI-MFS-8-1M/12 1M samples/sec, 12-bit A/D, 8 SE simultaneous

inputs, G = 1; two 12-bit D/As

PDXI-MFS-4-800/14 800k samples/sec, 14-bit A/D, 4 SE simultaneous inputs, G =

1; two 12-bit D/As, G = 1

PDXI-MFS-8-800/14 800k samples/sec, 14-bit A/D, 8 SE simultaneous inputs, G =

1; two 12-bit D/As,

PDXI-MFS-4-500/16 500k samples/sec, 16-bit A/D, 4 SE simultaneous inputs, G =

1; two 12-bit D/As

PDXI-MFS-8-500/16 500k samples/sec, 16-bit A/D, 8 SE simultaneous inputs, G =

1; two 12-bit D/As

PDXI-MFS-4-500/14 500k samples/sec, 14-bit A/D, 4 SE simultaneous inputs, G =

1; two 12-bit D/As

PDXI-MFS-8-500/14 500k samples/sec, 14-bit A/D, 8 SE simultaneous inputs, G =

1; two 12-bit D/As

PDXI-MFS-4-300/16 300k samples/sec, 16-bit A/D, 4 SE simultaneous inputs, G =

1; two 12-bit D/As

PDXI-MFS-8-300/16 300k samples/sec, 16-bit A/D, 8 SE simultaneous inputs, G =

1; two 12-bit D/As

Table 2.4—PowerDAQ PDXI-MFS Models

 Note All PDXI-MFS Series models also include three counter/timers and 32 digital I/O lines.

 Note PDXI-MFS Series boards provide a dedicated sample/hold amplifier (S/H) for each analog-input

channel. These S/Hs are integrated into the board’s hardware design and do not require any user

software programming to enable their operation.

 Note All PDXI-MFS Series models come standard only with G = 1; for other gains, you can purchase the

DG option outlined in Table 2.5

2. PowerDAQ MF/MFS Series Features Overview

13

PowerDAQ PD2/PDXI MFS Series differential upgrade

with gains (DG option)

The PD2/PDXI-MFS (simultaneous-sampling) Series can be upgraded from single-ended to

differential inputs with gains for each channel. One programmable-gain amplifier (PGA) per

channel is installed on the board.

Upgrade Part Number Additional features added

PD2-MFS-4-DG4 Upgrade any PD2-MFS board from 4 SE to 4 DI and add Gains =

1, 2, 5, 10

PD2-MFS-8-DG8 Upgrade any PD2-MFS board from 8 SE to 8 DI and add Gains =

1, 2, 5, 10

PDXI-MFS-4-DG4 Upgrade any PDXI-MFS board from 4 SE to 4 DI and add Gains =

1, 2, 5, 10

PDXI-MFS-8-DG8 Upgrade any PDXI-MFS board from 8 SE to 8 DI and add Gain =

1, 2, 5, 10

Table 2.5—MFS Differential Upgrade Options

 Note PowerDAQ MFS boards with the -DGx option installed have the same number of single-ended or

differential channels.

PowerDAQ MF/MFS FIFO upgrade options:

You can upgrade the analog-input FIFOs on PD2/PDXI PowerDAQ multifunction boards. Below

is a list of currently available upgrade options:

Upgrade part number Additional features added

 PD-16KFIFO Upgrade onboard analog-input FIFO buffer to 16k samples

 PD-32KFIFO Upgrade onboard analog-input FIFO buffer to 32k samples

 PD-64KFIFO Upgrade onboard analog-input FIFO buffer to 64k samples

Table 2.6—PD2-/PDXI FIFO upgrade option

2. PowerDAQ MF/MFS Series Features Overview

14

PowerDAQ PDL-MF Lab Board:

This budget-priced “Lab” Series board features the following:

 PDL-MF/PDL-MF-50 50k samples/sec, 16-bit A/D, 16 SE / 16 PDI / 8 DI inputs.

 PDL-MF-333 333k samples/sec, 16-bit A/D, 16 SE / 16 PDI / 8 DI inputs.

Table 2.7—PDL-MF board specifications

The PDL-MF board has the following additional features:

• Analog Outputs Two 12-bit 100-kHz D/As

• Digital Inputs 24 lines

• Digital Outputs 24 lines

• Counter Timers Three 24-bit counters (run at 16.5-MHz from external clock or

33-MHz from internal clock)

15

3. Installation and Configuration

Before you begin

Before installing your PowerDAQ board, be sure to read and understand the following

information.

System requirements

To install and run a PowerDAQ board, you need the following:

• A PCI-bus system, a PXI-bus system or a CompactPCI-bus system with a free slot, a

Pentium-class processor, and a BIOS compliant with PCI Local Bus Specification Rev 2.1

or greater

• Windows 95, 98, NT 4.0, 2000/XP, Linux, Realtime Linux or QNX

Packing list

In your PowerDAQ package, you should have received the following:

• a PowerDAQ board

• a calibration certificate

• this User Manual

• a CD containing the PowerDAQ Software Suite, including the full Software

Development Kit (SDK) and documentation

 Note The CD label shows the version number of the SDK.

Precautions

PowerDAQ boards contain sensitive electronic components. When handling your PowerDAQ

board, you should:

• ensure that you are properly grounded.

• discharge any static electricity by touching the metal part of your PC while holding the

board in its antistatic bag.

3. Installation and Configuration

16

Installing the software

 Note All third-party software must be installed prior to installing the PowerDAQ SDK.

 Note The PowerDAQ SDK must be installed before you plug in a PowerDAQ board to ensure that the

driver properly detects the board.

To install the PowerDAQ SDK:

1. Start your PC and, if running Windows NT, 2000 or XP, log in as an administrator.

2. Insert the PowerDAQ Software Suite CD into your CD-ROM drive. Windows

should automatically start the PowerDAQ Setup program. If you see the UEI logo

and then the PowerDAQ Welcome screen, go to Step 6.

3. If the Setup program does not start automatically, select Run from the Start menu.

4. Enter D:\Setup.exe in the Open: textbox (substitute the correct letter if D is not the

drive letter for your CD-ROM drive.)

5. Click OK.

Figure 3.1—PowerDAQ Software Installation Startup Screen

6. As the Setup program runs, you will be asked to enter information about your

PowerDAQ configuration. Unless you are an expert user and have specific

3. Installation and Configuration

17

requirements, you should select a Typical installation and accept the default

configuration.

7. If the Setup program asks for information about third-party software packages that

you do not have installed on your PC, leave the text box blank and click the Next

button.

8. When the installation is complete, restart your PC when prompted.

Installing PowerDAQ hardware

To install your PowerDAQ board:

1. Turn off your PC and remove its cover.

2. Locate an empty PCI slot and remove the slot cover on the back panel of the chassis.

Save the screw.

3. Insert the board into the PCI slot.

 Note If you plan to work only with analog I/O, the connector on the board’s mounting bracket that shows

through the chassis slot carries all necessary signals. However, if you plan to use digital I/O or the

counter/timer features, in most cases (depending on model) you must attach a second cable to a

header on the board; that cable requires a second empty chassis slot as detailed in the following

section. It is also recommended that you use this second cable for external clocking and triggering

signals. It is advisable to plug in all headers and closely examine the board in relationship to free PCI

slots before actually inserting the board and going any further.

1. Inspect the board and ensure that you have inserted it properly into the slot.

2. Fasten the board’s mounting bracket to your PC’s back panel with the screw that

held the slot cover.

3. Replace the PC’s cover and turn on the power.

 Note The PowerDAQ PCI interface must be set to 32-bit, 5V power and signaling (the default setting for

most PCs).

 To limit noise interference, install the board as far as possible from other devices and

hardware.

TIP

3. Installation and Configuration

18

Confirming the installation

Once you have installed the PowerDAQ board and software on your PC, you should confirm the

installation:

• Select Programs � PowerDAQ ���� Control Panel: from the Start menu (see Fig 3.2). If

the Control Panel applet is displayed and correctly identifies your PowerDAQ board, the

installation is correct.

Figure 3.2—Control Panel Application

3. Installation and Configuration

19

Configuring a PowerDAQ board

Figure 3.3a—Connector layout for long-slot PD2 Family boards

The layout in Fig 3.3a is used for old “legacy” PD2-MF boards and legacy PD2-MFS boards,

which have since been converted to a “sandwich” design (Fig 3.3b). This diagram points out any

on-board connectors or headers of interest to end-users; all others are reserved for factory use.

3. Installation and Configuration

20

Figure 3.3b—Connector layout for “sandwich” format PD2 family boards

The Sandwich format (Fig 3.3b) is used for all MFS Series boards and MF Series boards. Note

that you make external connections to the analog I/O section with the JA1 Connector; the J1

Connector serves to make electrical connections between the motherboard and the daughtercard.

This diagram points out all available on-board connectors or headers of interest to end-users; all

others are reserved for factory use.

 Note PowerDAQ MF(S) cards using the “sandwich” form factor add support for the RTSI intercard

communications bus on J10.

3. Installation and Configuration

21

 Note Some PD2 Family boards now ship in the alternate short-slot “sandwich” form factor in Fig 3-3b. At

the time of this writing, they include all PD2-MFS Series boards as well as the PD2-MF-xx-2M

Series boards. We anticipate that other boards will use this form factor in the future. The location of

the headers might change from the previous long-card format, but the connector pinouts remain the

same.

Figure 3.4—Connector layout for PDXI-MF(S) Series boards.

When working with PDXI-MF(S) boards, note that you make external connections to the analog

I/O section with the JA1 Connector; the J1 Connector serves to make electrical connections

between the motherboard and the daughtercard. This diagram points out any on-board connectors

or headers of interest to end-users; all others are reserved for factory use.

3. Installation and Configuration

22

Figure 3.5—Connector layout for PDL-MF board.

The PDL-MF layout diagram in Fig 3.5 points out any on-board connectors or headers of interest

to end users; all others are reserved for factory use.

Installing, synchronizing multiple boards

Some systems require more channels than are available on a single board. Even so, it’s possible to

configure a system in which you coordinate the actions of channels from multiple boards. To

synchronize a multiboard acquisition run, program the master board’s Burst clock (the CL clock)

or its Pacer clock (the CV clock) to use the internal timebase, an external clock or software

clocking. Then set the slave boards to use an external CL or CV clock. The best way to set up

multiboard operation is to launch separate execution threads for each board. Start the slave boards

threads first, and then execute the master board’s thread.

To route these clock signals among multiple boards you need a special synchronization cable (the

PD-CBL-SYNC4, see Appendix C). This cable has one connector for a master board and three

connectors for slaves. (Synchronization cables for more than four boards are available from your

distributor or the factory.)

3. Installation and Configuration

23

 Note You synchronize a PDL-MF board to a system that also uses MF/MFS Series boards through clock

connections you make on an external screw-terminal panel. If the PDL-MF is the master, connect CL

Out or CV Out to CL In or CV In of the slave boards. If the PDL-MF is a slave, connect the CL Out

or CV Out of the master to EXTCLK.

 Note To use more than four PCI slots (the configuration in a standard PC) under control of one Master

requires a PCI bridge chip. While these chips support additional PCI slots, they also reduce PCI-bus

throughput and thus reduce the boards’ maximum sampling rate. The reduction depends on the PC

configuration, but a typical value is near 10% per board.

For PDXI boards, you must make all synchronization settings over the PXI backplane with the

PDXI Configurator software (see Fig 3.6). By clicking on the lines you wish to connect, you

instruct the software to write the new configuration to an EEPROM that stores these connections.

Figure 3.6—PDXI Configurator

Base address, DMA and interrupt settings

When you power up your PC, the PCI bus automatically configures any PowerDAQ boards that

are installed. You don’t have to set any base address, DMA channels or interrupt levels. Be aware,

though, that performance problems can arise when the system has insufficient interrupts and can’t

assign a unique one to each peripheral so that a PowerDAQ board must share an interrupt with

some other device. One solution is to decide which system resources you do not need—candidates

being serial ports, the parallel port, USB ports or network interfaces—and disable their interrupts,

thereby freeing those lines up for assignment to other devices. This can lead to the optimal case

where a PowerDAQ board is assigned a dedicated IRQ line.

3. Installation and Configuration

24

 Note A data-acq card’s interrupt is generally assigned by the PC BIOS, and some PC systems even let you

reassign it during the boot process. If your motherboard has an Advanced Interrupt Controller, simply

enable it in the BIOS. This allows you to use more than 16 generic interrupt lines. If you don’t have

this facility, use manual settings to assign the interrupt to the PCI slot where PowerDAQ board is

installed

 Note Modern motherboards can easily contain four, five or even more PCI slots plus integrated PCI

devices such as networking modules and a video driver. Usually only three of these slots are

independent and don’t share interrupts with these host system peripherals. Please refer to your

motherboard manual to find out which slots share interrupts and cannot be used for fast data

acquisition.

 Note PowerDAQ boards are designed to share interrupts, but we do not recommend that they share

interrupts with devices such as video drivers, network cards or hard disks. These devices tie up

interrupt lines extensively and can significantly delay responding to an interrupt from a data-

acquisition board. Although Windows 9x/NT/2000 are not realtime operating systems, your

PowerDAQ board is a real-time system within the PC thanks to its own DSP and realtime kernel.

Many motherboard manufacturers allow you to set an IRQ level to a particular PCI slot. If you do not

use your PC’s serial or parallel ports, you can disable them and use IRQ 3, 4, 5 or 7 for your data-

acquisition boards.

Connectors for PD2 MF/MFS Series boards

PowerDAQ PD2 Series multifunction boards have four connectors:

• A main bracket connector for analog I/O signals (J1)—A 96-contact pinless male board-

edge connector manufactured by Fujitsu (PN# FCN-245P096-G/U, see details for this

connector on the datasheet for the corresponding PowerDAQ boards on the UEI website).

The pin assignments on this connector differ depending on whether you configure the

analog inputs as single-ended or differential, and whether you are dealing with MF or

MFS Series boards.

• On-card connector for digital I/O and counter/timer signals as well as external clocks and

triggering lines (J2)—A 36-pin flat cable to pc-board connector, male IDC header,

manufactured by Thomas and Betts (PN# 609-3627, see details for this connector on the

datasheet for the corresponding PowerDAQ boards on the UEI website).

• On-card connector for additional digital I/O signals (J4)—A 36-pin flat cable to pc-board

connector, male IDC header, manufactured by Thomas and Betts (PN# 609-3627, see

details for this connector on the datasheet for the corresponding PowerDAQ boards on

the UEI website).

• On-card connector for intraboard synchronization clock signals (J6)—An 8-pin flat cable

to pc-board connector, male IDC header, manufactured by Methode / Adam Tech (PN#

PH2-08-TA-SMT, see details for this connector on the datasheet for the corresponding

PowerDAQ boards on the UEI website).

3. Installation and Configuration

25

Figure 3.7—Cable connection diagram for PowerDAQ MF (S) boards

Figure 3.8a—Physical layout of J1 / JA1 Connector on PD2 MF(S) Series boards

Fig 3.8a gives a view looking at the connector as mounted on the board.

3. Installation and Configuration

26

2

1

50

49

3 51

4 52

5 53

6 54

7 55

8 56

57

10 58

11 59

12 60

13 61

62

15 63

16 64

17 65

18 66

19 67

20 68

21 69

22 70

23 71

24 72

25 73

26 74

27 75

28 76

29 77

30 78

31 79

32 80

33 81

34 82

35 83

36 84

37 85

38 86

39 87

40 88

41 89

42 90

43 91

44 92

45 93

46 94

47 95

48 96

AGND

AGND

AGND

AGND

DGND

AGND

AIN55

AIN53

AIN51

AIN49

AGND

AIN38

AIN36

AIN34

AIN33

AIN23

AIN21

AGND

AIN18

AIN16

AIN6

AIN5

AIN3

AIN1

AGND

DSP Trigger Input/ AO External Clock

*ADC Conversion Start Out/ Pacer clock out

N/ C

AGND

ADC Channel List Start Input / Burst Clock

AIN62

AIN60

AIN59

AIN57

AIN47

AGND

AIN44

AIN42

AIN40

AGND

AIN29

AIN27

AIN25

AIN24

AIN14

AIN12

AGND

AIN9

AGND

AOUT0

AGND

AOUT1

AGND

AGND

AIN54

AIN52

AIN50

AIN48

AIN39

AIN37

AIN35

AGND

AIN32

AIN22

AIN20

AIN19

AIN17

AIN7

AGND

AIN4

AIN2

AIN0

AGND

+5V (100 mA max)

ADC Conversion Start Input / Pacer clock

AGND

N/ C

AIN63

AIN61

AGND

AIN58

AIN56

AIN46

AIN45

AIN43

AIN41

AIN31

AIN30

AIN28

AIN26

AGND

AIN15

AIN13

AIN11

AIN10

AIN8

Figure 3.8b—Pin assignments on J1 / JA1 Connector on PD2-MF boards, in single-ended mode

In Fig 3.8b, the * symbol means that the line is disconnected by default, consult factory if you

need this clock on the J1 connector.

3. Installation and Configuration

27

2

1

50

49

3 51

4 52

5 53

6 54

7 55

8 56

57

10 58

11 59

12 60

13 61

62

15 63

16 64

17 65

18 66

19 67

20 68

21 69

22 70

23 71

24 72

25 73

26 74

27 75

28 76

29 77

30 78

31 79

32 80

33 81

34 82

35 83

36 84

37 85

38 86

39 87

40 88

41 89

42 90

43 91

44 92

45 93

46 94

47 95

48 96

AGND

AGND

AGND

AGND

DGND

AGND

AIN55

AIN53

AIN51

AIN49

AGND

AIN38

AIN36

AIN34

AIN33

AIN23

AIN21

AGND

AIN18

AIN16

AIN6

AIN5

AIN3

AIN1

AGND

DSP Trigger Input/ AO External Clock

ADC Conversion Start Out/ Pacer clock out

N/ C

AGND

ADC Channel List Start Input / Burst Clock

AIN54 Return

AIN52 Return

AIN51 Return

AIN49 Return

AIN39 Return

AGND

AIN36 Return

AIN34 Return

AIN32 Return

AGND

AIN21 Return

AIN19 Return

AIN17 Return

AIN16 Return

AIN6 Return

AIN4 Return

AGND

AIN1 Return

AGND

AOUT0

AGND

AOUT1

AGND

AGND

AIN54

AIN52

AIN50

AIN48

AIN39

AIN37

AIN35

AGND

AIN32

AIN22

AIN20

AIN19

AIN17

AIN7

AGND

AIN4

AIN2

AIN0

AGND

+5V (100 mA max)

ADC Conversion Start Input / Pacer clock

AGND

N/ C

AIN55 Return

AIN53 Return

AGND

AIN50 Return

AIN48 Return

AIN38 Return

AIN37 Return

AIN35 Return

AIN33 Return

AIN23 Return

AIN22 Return

AIN20 Return

AIN18 Return

AGND

AIN7 Return

AIN5 return

AIN3 Return

AIN2 Return

AIN0 Return

Figure 3.8c—Pin assignments on J1 / JA1 Connector on PD2-MF boards, in differential mode

3. Installation and Configuration

28

2

1

50

49

3 51

4 52

5 53

6 54

7 55

8 56

57

10 58

11 59

12 60

13 61

62

15 63

16 64

17 65

18 66

19 67

20 68

21 69

22 70

23 71

24 72

25 73

26 74

27 75

28 76

29 77

30 78

31 79

32 80

33 81

34 82

35 83

36 84

37 85

38 86

39 87

40 88

41 89

42 90

43 91

44 92

45 93

46 94

47 95

48 96

AGND

AGND

AGND

AGND

DGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AIN6

AIN5

AIN3

AIN1

AGND

DSP Trigger Input/ AO External Clock

ADC Conversion Start Out/ Pacer clock out

-12V

AGND

ADC Channel List Start Input / Burst Clock

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AIN6 Return

AIN4 Return

AGND

AIN1 Return

AGND

AOUT0

AGND

AOUT1

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AIN7

AGND

AIN4

AIN2

AIN0

AGND

ADC Conversion Start Input / Pacer clock

AGND

+12V

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AIN7 Return

+5V (100 mA max)

AIN5 Return

AIN3 Return

AIN2 Return

AIN0 Return

Figure 3.8d—J1 / JA1 Connector on PD2-MFS boards, single-ended or differential modes

3. Installation and Configuration

29

Connector pin assignments for J2

The J2 digital internal connector handles eight digital input and eight digital output lines, the

counter/timers, and an external A/D pacer clock.

Figure 3.9a—Physical layout of J2 on PD2 MF/MFS Series boards

Fig 3.9a gives a view looking into the connector socket mounted on the board.

1 2

3 4

5 6

7 8

9 10

11 12

13 14

16

17 18

19 20

21 22

23 24

26

27 28

29 30

31 32

33 34

35 36

CTR0-IN

CTR0-OUT

CTR0-GATE

CTR1-IN

CTR1-OUT

DIN0

DIN1

DIN2

DIN3

DIN4

DIN5

DIN6

DIN7

Burst Clock / ADC Channel List Start Input

Pacer Clock / ADC Conversion Start Input

DGND

Burst Clock / ADC Channel List Start Output

CTR2-IN

CTR2-OUT

CTR2-GATE

CTR1-GATE

+5V (100 mA max)

DGND

DOUT0

DOUT1

DOUT2

DOUT3

DOUT4

DOUT5

DOUT6

DOUT7

DGND

ADC Conversion Start Output / Pacer Clock Output

DGND

NC

Figure 3.9b—Pin assignments for J2 Connector on PD2-MF/MFS boards

3. Installation and Configuration

30

Connector pin assignments for J4

The J4 Connector handles an additional eight digital-input and eight digital-output lines on boards

with these extra DIO features.

Figure 3.10a—Physical layout of J4 on PD2 MF/MFS Series boards

Fig 3.10a gives a view looking into the connector socket mounted on the board.

1 2

3 4

5 6

7 8

9 10

11 12

13 14

16

17 18

19 20

21 22

23 24

26

27 28

29 30

31 32

33 34

35 36

DGND

DGND

DGND

DGND

DGND

DIN8

DIN9

DIN10

DIN11

DIN12

DIN13

DIN14

DIN15

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

+5V (100 mA max)

DGND

DOUT8

DOUT9

DOUT10

DOUT11

DOUT12

DOUT13

DOUT14

DOUT15

DGND

DGND

DGND

DGND

Figure 3.10b—Pin assignments for J4 Connector on PD2-MF/MFS boards

3. Installation and Configuration

31

Connector pin assignments for J6

The J6 intraboard-synchronization connector contains two pairs of clock signal lines:

• The CV Clock (the conversion clock, also known as the Pacer clock)

• The CL Clock (the Channel List clock, also known as the Scan clock or Burst clock).

Figure 3.11a—Physical layout of J6 on PD2-MF(S) Series boards

Fig 3.11a gives a view looking into the connector socket mounted on the board.

 Note The J6 connector on full-slot MF(S) boards uses an 8-pin connector for J6, whereas the newer

“sandwich boards” generally use a 10-pin connector. Furthermore, the PD-CBL-SYNC

synchronization cable is equipped with 10-position connectors. When using this 10-pin cable on an 8-

pin connector, leave the two lowest holes (pins 9 and 10) free.

1 2

3 4

5 6

7 8

CV_START_OUT

CL_START_OUT

CV_START_ IN

CL_START_ IN

DGND

DGND

DGND

DGND

Figure 3.11b—Pin assignments for J6 Connector on PD2-MF/MFS boards

Connector for PDL-MF-X

PowerDAQ PDL Series multifunction boards have one connector: a main bracket connector (J1)—

100-pin male pinless connector manufactured by Fujitsu (PN# TYCO-787169-9, see details for

this connector on the datasheet for the corresponding PowerDAQ boards on the UEI website).

Figure 3.12a—Physical layout of J1 on PDL-MF-X board

Fig 3.12a shows the view looking into the connector socket mounted on the board.

3. Installation and Configuration

32

AIN8

AGND

AIN9

AGND

AIN10

AGND

AIN11

AGND

AIN12

AGND

AIN13

AGND

AIN14

AGND

AIN15

AGND

AOUT0

AGND

DIN1

DIN3

DIN5

DIN7

DIN9

DIN11

DIN13

DIN15

DGND

DIN17

DIN19

DIN2 1

DIN23

DOUT1

DOUT3

DOUT5

DOUT7

DGND

DOUT9

DOUT11

DOUT13

DOUT15

DOUT17

DOUT19

DOUT2 1

DOUT23

DGND

EXT_TRIG_ IN

CV_OUT

EXT_ TRIG_OUT

CL_OUT

EXT_CLOCK

AIN0

AGND

AIN1

AGND

AIN2

AGND

AIN3

AGND

AIN4

AGND

AIN5

AGND

AIN6

AGND

AIN7

EXT_ GND

AOUT1

AGND

DIN0

DIN2

DIN4

DIN6

DIN8

DIN10

DIN12

DIN14

DGND

DIN16

DIN18

DIN20

DIN22

DOUT0

DOUT2

DOUT4

DOUT6

+ 5VPJ2

DOUT8

DOUT10

DOUT12

DOUT14

DOUT16

DOUT18

DOUT20

DOUT22

DGND

TMR2

DGND

TMR1

DGND

TMR0

10

20

30

40

2

1

3

4

5

6

7

8

9

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

31

32

33

34

35

36

37

38

39

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Figure 3.12b—Pin assignments for J1 Connector on PDL-MF-X Series board

3. Installation and Configuration

33

Connectors for PDXI MF(S) Series boards

PowerDAQ PDXI-MF(S) Series multifunction boards have two connectors:

• A main bracket connector for analog I/O signals (J1)—A 96-contact pinless male

connector manufactured by Fujitsu (PN# FCN-245P096-G/U, see details for this

connector on the datasheet for the corresponding PowerDAQ boards on the UEI website).

 Note The connector pinout for J1 on the PDXI MF/MFS Series is identical to the pinouts on the PD2-

MF/MFS Series. See Figures 3.8a-d

• On-card connector for digital I/O and counter/timer signals (J2)—An 80-pin flat cable to

pc-board connector, male IDC header, manufactured by Methode/Adam Tech (PN#

HBMR-A-80-VSG, see details for this connector on the datasheet for the corresponding

PowerDAQ boards on the UEI website).

Figure 3.13—Cable connection diagram for PDXI-MF(S) boards

Figure 3.14a—Physical layout of J2 on PDXI-MF/MFS Series boards

Fig 3.14a gives a view looking into the connector socket mounted on the board.

3. Installation and Configuration

34

DOUT11

DIN13

DOUT12

DIN14

DOUT13

DIN15

DOUT14

DOUT15

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

DGND

UCT0_CLK_ IN

UCT2_CLK_ IN

UCT0_OUT

UCT2_OUT

UCT0_GATE

UCT2_GATE

UCT1_ CLK_ IN

DIN12

DOUT10

DIN11

DOUT9

DIN10

DOUT8

DIN9

DGND

DIN8

+5VPJ2

DGND

CL_DONE_OUT

CL_START_OUT_BACK

DGND

DGND

CL_START_OUT

CL_START_ IN_BACK

DGND

TRIG_ IN_BACK

DOUT7

CL_START_ IN_BACK

DOUT6

DIN7

DOUT5

DIN6

DOUT4

DIN5

DOUT3

DIN4

DOUT2

DIN3

DOUT1

DIN2

DOUT0

DIN1

DGND

DIN0

+5VPJ2

UCT1_OUT

UCT1_GATE

3

1

5

7

9

11

13

15

19

21

23

25

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

Figure 3.14b—Pin assignments of J2 Connector on PDXI MF/MFS Series boards

The PXI_TRIG 0…7 and PXI_STAR lines on the PXI system backplane (located on Connector

P2, above Connector P1) can be used for interboard synchronization.

3. Installation and Configuration

35

“Simple Test” program

After wiring external signals to your PowerDAQ board, run the PowerDAQ Simple Test program

to verify that all subsystems are operating properly.

From the Start menu, select Programs � PowerDAQ � Simple Test, and the utility’s dialog

box appears.

Figure 3.15—Simple Test application

Use the Analog In, Analog Out, Digital In, Digital Out and Counters tabs to observe your

application running on the board. From these pages you can control the mode (single-ended or

differential), range, gain, number of channels activated and the channel whose value appears on

the screen.

It’s often helpful to run an analog I/O loopback test with the help of this utility. First wire AOut0

to all even-numbered AIn channels and then wire AOut1 to all odd-numbered AIn lines. Be sure to

increase the number of active channels in the AnalogIn tab to the maximum, and click Start. Now

go to the AnalogOut tab, select two different waveforms for the two active channels and click

Start. Return to the AnalogIn tab and scroll through various channels to verify the operation of

each.

You can similarly run a digital I/O loopback test. Wire Dout channels to corresponding Din

channels. Click Start on the DigitalOut tab, then return to the DigitalIn tab and verify the operation

of each line.

3. Installation and Configuration

36

Calibration

All PowerDAQ hardware ships fully calibrated and do not require additional calibration on the

part of the user. The boards store calibration values for each range and each gain in EEPROM.

When you initially load the PowerDAQ board driver and configure the analog-input subsystem,

that process loads the calibration values from EEPROM.

However, to ensure peak performance from your PowerDAQ hardware, we suggest that a

PowerDAQ board be recalibrated every 12 months.

37

4. PowerDAQ

Architecture

Functional Overview

The PowerDAQ MF/MFS Series features extensive input modes, clocking and triggering

capabilities. It also provides simultaneous subsystem operation.

+

-

E
x
te
rn
a
l
A
n
a
lo
g
 I
/
O
 C
o
n
n
e
ct
o
r

(64)

DAC0

DAC1

Voltage
Reference

AOut Calibration
DACs

Analog
Output

Amplif iers

Ext. Aln Conv Clock

Ext. Aln Scan Clock

Ext. Trigger

Aln Clock Out

Aln Control

Bus Master PCI Interface

Motorola 66MHz DSP 56301

E
S
S
I

A
O
u
t
F
IF
O

A
O
u
t
C
lo
c
k

6
 C
h
a
n
n
e
l

D
M
A

12
k
 P
ro
g
ra
m

R
A
M

12
k
 D
a
ta
 R
A
M

B
o
o
ts
tr
a
p

R
O
M

A
ln
 C
o
n
v

C
lo
c
k

A
ln
 S
c
a
n

C
lo
ck

Voltage
Reference

Aln Calibration
DACs

Custom
PGIA Gain
Amp.

12,14,
16-bit

Sampling
A/ D

Converter

Upgradable
1k Sample
ADC
FIFO

Channel/
Gain
Control
Logic

Channel
List
FIFO

Aln Power
Conditioner

16 or 64
Channel
Analog

Multiplexer

Digital
Output
(Driver)

Conf iguration
& Calibration
EEPROM

32 Bit PCI Bus

C
o
n
tr
o
l

A
d
d
re
ss

D
a
ta

(16)

In
te
rn
a
l
D
ig
it
a
l
I/
O
 C
o
n
n
e
c
to
rs

J2
,J
4

(16)

In
te
rb
o
a
rd
 S
y
n
c
h
ro
n
iz
a
ti
o
n

Digital
Input

Buf fer

Latch

Interrupt

(4)

UCT Control

DIn Control

DOut Control

AIn Clocking & Triggering

A
d
d
re
ss

Ext. Aln Conv Clock

Ext. Aln Scan Clock

Ext. Trigger

Aln Clock Out

Clock

Gate

Out

3

3

3

User
Counter
Timer

(82C54)

Local Data Bus

Figure 4.1—PowerDAQ PD2-MF/MFS Series block diagram

4. PowerDAQ Architecture

38

+

-

Ex
te
rn
a
l
A
n
al
o
g
I/
O
 C
o
nn
ec
to
r

(64)

PowerDAQ II

Data Acquisit ion
Control and

Timing Logic

DAC0

DAC1

Voltage

Refere nce

AOut Calib rat ion

DACs

Analog

Output
Amplif iers

Ext. Aln Conv Clock

Ext. Aln Scan Clock

Ext. Trigger

A ln Clock Out

Aln Con t rol

Bus Mast er PCI Int erface

Motorola 66MHz DSP 56301

ES
SI

A
O
u
t
FI
FO

A
O
u
t
C
lo
c
k

6
 C
h
a
n
n
el

D
M
A

12
k
 P
ro
g
ra
m

R
A
M

12
k
D
at
a
R
A
M

B
o
o
ts
tr
a
p

R
O
M

A
ln
 C
on
v

C
lo
ck

A
ln
 S
ca
n

C
lo
ck

Volt age
Ref e rence

Aln Calibration

DACs

Cust om
PGIA Gain
Amp.

12,14 ,
16-bit

Sampling

A/ D
Convert er

Upgradable
1k Sample

ADC
FIFO

Channel/
Gain

Control
Logic

Channel
Li st
FIFO

Aln Power
Cond itioner

16 or 64
Channel
Analog

Mult iplexer

Digit al

Outp ut
(Drive r)

Con f igurat ion
& Calibrat ion
EEPROM

PXI
Control
Logic

32 Bit CompactPCI Bus PXI

(16)

In
te
rn
a
l
D
ig
ita
l
I/
O
 C
o
nn
e
ct
o
r
 J
2

(16)

Digit al
Input

Buf f e r

Latch

Int erru pt

UCT Contro l

DI n Control

DOut Cont rol

Clock ing & Tr ig gering Lin es

A
d
d
re
ss

Ext. Aln Conv Clock

Ext. Aln Scan Clock

Ext. Trigger

A ln Clock Out

Clock

Gate

Out

3

3

3

Use r
Count er
Timer

(82C54)

Local Da ta Bus

C
o
n
tr
ol

A
d
d
re
ss

D
at
a

Figure 4.2—PowerDAQ PDXI-MF/MFS Series block diagram

4. PowerDAQ Architecture

39

+

-

PowerDAQ II
Dat a Acquisit ion
Control and

Timing Logic

DAC0

DAC1

Volt age
Referen ce

AOut Calibrat ion
DACs

Analog
Output

Amplif iers

E
x
t. A

ln
 C
o
n
v
 C
lo
c
k

E
x
t. T

rig
g
e
r

R
e
m
o
u
te
 G
ro
u
n
d

A
ln
 C
lo
c
k
 O
u
t

Aln Con t rol

External Analo g/ Digital I/ O Connector

Volt age
Refe rence

Aln Calibration
DACs

PGIA
Gain
Amp.

16-bit
Sampling

A/ D
Converter

Upgradable
1k Sample

ADC
FIFO

Ch annel/
Gain

Control
Logic

Aln Power
Cond itioner

(3)

(2
4
)

(
16
)

(2
4
)

16 Channel
Analog

Mu ltiplexer

Conf iguration
& Calibrat io n
EEPROM

32 Bit PCI Bus

UCT Contro l

DIn Con t rol

DOut Cont rol

DSP
Cou nter
Ti mer

C
o
n
tr
o
l

A
d
d
re
ss

D
at
a

DSP
Channel List

FIFO

Local Da ta Bus

A
d
dr
es
s

Digit al
Input

Buf f er

Latch

Bus Mast er PCI Int erf ace

Motorola 66MHz DSP 56301

ES
SI

A
O
u
t
FI
FO

A
O
u
t
C
lo
ck

6
 C
h
a
n
n
el

D
M
A

12
k
 P
ro
g
ra
m

R
A
M

12
k
D
at
a
R
A
M

B
oo
ts
tr
a
p

R
O
M

A
ln
 C
o
n
v

C
lo
ck

A
ln
 S
ca

n
C
lo
ck

Digit al

Out put
(Driver)

Figure 4.3—PowerDAQ PDL-MF block diagram

The heart of each board in the MF/MFS Series is a Motorola 56301, a 66-MHz DSP. That device

ensures a highly efficient interface with the PCI/PXI bus, and it also provides control over all

board subsystems.

The Analog Input subsystem includes:

• An input multiplexer (Mux) selects which channels to acquire. The Channel List FIFO

contains a list of each channel to be acquired along with its gain; the subsystem reads this

data and sets up the input mux accordingly. PD2-MFS boards have per-channel sample/

hold amplifiers (S/Hs) preceding the mux. The S/Hs acquire a signal from all input

channels simultaneously and then hold the acquired voltages while the A/D digitizes

them channel-by-channel.

• A Programmable Gain Amplifier (PGA) increases the level of an input signal in order to

provide an adequate voltage to the A/D. The PGA’s level of amplification depends on the

board model and can be software selected on a per-channel basis. Models in the MF

4. PowerDAQ Architecture

40

Series come with one of two sets of amplification levels. For low-level signals that need

considerable boosting, select the /L option (G = 1, 10, 100 or 1000); for high-level

signals that don’t require as much amplification, select the /H option (G = 1, 2, 4 or 8).

The PDL-MF board ships two versions, both with G = 1, 2, 5 or 10. MFS Series boards

ship standard only with unity gain; for other gains (G = 1, 2, 5 or 10 you must purchase

the –DG option).

• An A/D FIFO holds digitized samples until the DSP transfers them into host memory

over the PCI/PXI bus. The default A/D FIFO size starts at 1k samples and depending on

the board model can be as large as 4k samples. You can upgrade the FIFO to 16k, 32k or

64k samples depending on application requirements. Note that while larger FIFOs

achieve smoother operation, especially at high acquisition rates, there is a tradeoff in

terms of response time. Specifically, the driver normally transfers data from the buffer

only when the FIFO is half full, so a larger buffer means you wait longer for a transfer.

This extra time can degrade system response in closed-loop control applications.

• A calibration D/A generates voltages to adjust the offset and gain settings on the analog-

input section to ensure accurate performance. As noted in the previous section, all boards

are factory calibrated for each input range and mode.

• The timing, triggering and clocking controls allow you to select the timebase, clock and

triggering sources, a “slow bit” and other options.

• An interrupt mechanism notifies the DSP of special conditions on this subsystem so the

user application can take appropriate action.

The Analog Output subsystem includes:

• A DSP-based FIFO that holds as many as 2k samples of digitized waveform values to

feed to the output D/A.

• A 12-bit D/A that converts digitized waveform values into analog output voltages.

• A calibration D/A that provides voltages to adjust offset and gain on the analog output to

ensure accurate performance.

• Timing, triggering and clocking controls that allow you to select the analog-output rate

and clock source.

• An interrupt mechanism that notifies the DSP of special conditions on this subsystem so

the user application can take appropriate action.

The Digital Input/Output subsystem includes:

• A 16-bit register to read logic levels on digital input lines (24-bit register on PDL-MF).

• An 8-bit Schmidt trigger to catch logic-level changes on digital input lines (not present on

PDL-MF).

4. PowerDAQ Architecture

41

• A 16-bit register to hold logic levels on digital output lines once the program has written

data to the outputs (24-bit register on PDL-MF).

• An interrupt mechanism notifies the DSP of special conditions on this subsystem so the

user application can take appropriate action.

The User Counter/Timer subsystem includes:

• Three 16-bit Intel 82C54 counter timers, fully accessible by the user (the counter/timers

on the PDL-MF are shared with the 24-bit DSP 56301).

• Clock-source selection and control logic.

• Gate-source selection and control logic.

• An interrupt mechanism notifies the DSP of special conditions on this subsystem so the

user application can take appropriate action.

4. PowerDAQ Architecture

42

Programming Model

No matter which subsystem you choose to work with, the way you initialize and set up the board

is very much the same, so before digging into details of individual subsystems it makes sense to

review these general procedures.

An onboard DSP controls all subsystems. User applications communicate with the board via the

PowerDAQ API, which is integrated into the PowerDAQ dynamic-link library (DLL). To inform

an application about hardware events, the driver creates kernel events. Data is transferred from the

board through the PCI bus and stored in the user-level buffer. The PowerDAQ API includes a set

of information functions that allow user applications to get board-specific information, such as

model, serial number and IRQ line.

Figure 4.4—Communication between a user application and a PowerDAQ multifunction board

4. PowerDAQ Architecture

43

Programming subsystems

All PowerDAQ subsystems have two modes of operation:

• Polled

• Event-based

In Polled mode, the user application queries the board about the status of various subsystems as

needed. This method is preferred when the application does not need to be notified about hardware

events. In Event-based mode, the board notifies the user application of certain predefined

subsystem events using Win32 calls. With this mode you can write truly asynchronous

applications.

Opening a subsystem

Before starting any board operations whatsoever, you must first open the driver, open the adapter

(another term that refers to a specific board), and acquire the subsystem. After completion of a

specific task the user application can release the subsystem, and when the application has

completed its work make sure it closes the adapter and driver.

This manual explains the general procedures for creating a program and important API calls. The

following calls outline the sequence you must make when programming under Win32; in

particular, the calls to open/close the driver and open/close the adapter are specific to Windows.

The remaining calls are valid for any OS.

For details on various functions and their calling parameters, see the PowerDAQ Programmer

Manual. The specific calls and their names might vary with other operating systems, so once again

you might want to refer to that manual.

API calls required for opening/closing a subsystem

• _PdDriverOpen(…)

Open the driver

• _PdAdapterOpen(…)

Open the adapter; only one process can open a given adapter at a time. This

function returns phAdapter, a handle for the adapter, and you will need this

variable in many later functions.

• _PdAcquireSubsystem(…)

Acquire the named subsystem for use (if you set dwAcquire = 1), and the

parameter dwSubsystem can be one of the following (as defined in typedef enum

4. PowerDAQ Architecture

44

_PD_SUBSYSTEM): AnalogIn, AnalogOut, DigitalIn, DigitalOut,

CounterTimer.

… let the user app work with the subsystem, then …

• _PdAcquireSubsystem(…)

Release the subsystem from use (if you set dwAcquire = 0)

• _PdAdapterClose(…)

Close the adapter

• _PdDriverClose(…)

Close the drive

45

5. Analog-Input

Subsystem

Architecture

The analog-input subsystem consists of an A/D converter, signal-conditioning circuitry and

control of other front-end devices such as a multiplexer or multiple sample/hold amplifiers. The

subsystem’s first stage multiplexes raw signals from the input channels into a successive-

approximation A/D with a resolution of 12, 14 or 16 bits. The A/D subsystem also includes

selection of input mode (single-ended or differential), polarity, gain settings, range settings, set up

of the Channel List, trigger and clocking control.

The multiplexer on MF boards is located at the signal inputs and can be switched to function either

in single ended (SE) or differential (DI) mode (Fig 5.1). The selected mode is applied to all input

channels. The output of the mux feeds an instrumentation amplifier and then the signal goes into a

custom programmable gain amplifier (PGA). Channel numbers, along with their gains, are stored

in a Channel List. With this mechanism you can select the order in which the channels are read as

well as set different gains on a per-channel basis.

Input Ranges

The majority of PowerDAQ boards feature four possible input ranges, which are applied globally

across all input channels and are applied to all signals. You select the input mode (SE/DI) and

range from Table 5.1 with the _PdAInSetCfg() command.

Unipolar Bipolar

0-10V ±10V

0-5V ±5V

Table 5.1—PowerDAQ analog-input ranges

 Note The only exception to this table is the PDL-MF, which does not offer the 0-5V range.

5. Analog-Input Subsystem

46

Gain Settings

You can set a gain for each channel on an MF/MFS Series board prior to acquisition, and you do

so by setting up a Channel List as described in the next section. There are three gain ranges. In

Table 5-2 below, the “L” or “H” appears at the end of the model number as appropriate (such as

PD2-MF-64-2M/14L) and applies to the MF Series boards only. An “L” indicates that a board is

appropriate for working with low-level signals that need a large gain. An “H” indicates that a

board is appropriate for high-level signals that need less gain. The PDL-MF boards and the

standard MFS Series are available only with one set of gains.

MF Series “L” Suffix

MF Series “H” Suffix Preselected gains on

PDL-MF or options

for MFS Series cards

G = 1, 10, 100, 1000 G = 1, 2, 4, 8 G = 1, 2, 5, 10

Table 5.2—Programmable Gains

Channel List

Often you want to sample only over a certain subset of channels, sample them in various orders or

apply different gains to each channel. These options are all possible with an A/D Channel List,

which you create with the _PdAInSetChList() command. It is mandatory that you create a channel

list, otherwise the board will not collect the correct data.

The Channel List is resident in the on-card memory known as the Channel List FIFO and thus

must be programmed every time you power up the card. It contains from one to 256 entries (64

entries maximum on the PDL-MF). Each reading of the full list is called a scan. Configuration

data for each entry includes the channel number, gain, and Slow Bit setting. A Channel List

remains active until you overwrite it with a new set of entries. Writing a Channel List with 0

entries clears the list

 To effectively change the sampling rate of just one channel, make multiple entries for it

in the Channel List instead of reading it just once per scan.

 You can use averaging over several scans to increase the effective resolution and reduce

noise. For applications where the dc value is crucial, consider using a software filter that

consists of an averaging window over an array of averages. Each time you calculate the

average value of a channel you put it into an array, and if that array is already full you

replace the oldest one. Then your program calculates the average value of the array of

averages and uses it as a final value.

Giving you added flexibility in setting up a Channel List is the Slow Bit feature. It is a special

marker you can activate in every channel, and it instructs the analog front end to insert a delay in

the acquisition sequence, thus allowing the input amplifier to settle before it clocks the A/D to

make a conversion. This feature is useful if you are applying a high gain (100 or 1000) to a signal.

TIP

TIP

5. Analog-Input Subsystem

47

With a Slow Bit you can give that channel extra time without slowing down all the others. Be

aware, though, that turning on the Slow Bits can result in a reduction in a board’s maximum

throughput rate.

The amount of delay due to a Slow Bit varies with each PowerDAQ model. A table giving the

minimum time between conversions you can expect with any particular model with the Slow Bit

active appears in Appendix B.

The Channel List has the following format:

Bit 8 Bits 7, 6 Bits 5-0

Slow bit

(0 = Off

1 = On)

Gain

(see Table 5.3b)

Channel to acquire

(000000 = Ch 0

 111111 = Ch 63)

Table 5.3a—Channel List format

Gain coding

(Bits 7, 6)

“L” Gains

(MF Series)

“H” Gains

(MF Series)

Gains for MFS

and PDL-MF

boards

00 1 1 1

01 10 2 2

10 100 4 5

11 1000 8 10

Table 5.3b—Programmable-gain codes

Input modes

The analog-input section on all PowerDAQ boards multiplexes the active input channels into a

single 12-, 14- or 16-bit successive approximation A/D. The boards can be configured to work

with either single-ended (16 to 64) or differential (8 to 32) inputs, and the selected mode must be

the same for all channels.

This selection of input mode can lead to some confusion. No matter what the underlying test-

system configuration, all voltage measurements are made between two points and thus are

inherently differential. One node is at a potential as compared to the level on the other input

terminal, and that level can be at a ground reference or at an elevated voltage level. On a PC-based

data-acq card, one line of the input amplifier is always connected to the signal of interest. To what

level the second (referenced) line on the input amp is connected determines in which of three

possible input modes the amp is operating.

• Single-ended channels refer all their inputs to a common ground that is also connected to

the computer ground.

• Pseudodifferential channels refer all their inputs to a common ground—but this ground

is not connected to the computer ground.

5. Analog-Input Subsystem

48

• Differential inputs use an independent reference for each channel, and these references

are not connected to the computer ground (and instead are generally a return path directly

to the source of the signal being digitized).

Each mode has its strengths and weaknesses, so you should pay close attention to the connection

on the input’s reference terminal.

 Note No matter whether you choose single-ended, pseudodifferential or differential mode, be sure to short

unused channels to ground using a 1 kΩ to 10-kΩ resistor.

Signal Source Type

Floating Signal Source
(Not connected to ground)

Grounded Signal Source

Input
configuration

Examples

• Thermocouples

• Signal Conditioning
with Isolated Outputs

• Battery Devices

Examples

• Plug-in instruments with
Non-isolated Inputs

Differential

Two resistors (10kΩ < R < 100kΩ)
provide return paths to ground for

bias currents;
 In most cases R* is optional

Single-Ended
Ground

Referenced

Table 5.3c—Analog Input Configurations

5. Analog-Input Subsystem

49

Single-ended

A PowerDAQ card operating in single-ended mode (Fig 5.1) digitizes across as many as 64

channels. For single-ended inputs you connect one wire from each signal source to the High input

of the data-acq system’s input amplifier, and all signals share a common return path connected to

analog ground (AGND). You should connect this common return path to both a ground near the

signal source and also to the ground on the PC, which in this way gets set at the same level as the

signal ground.

Pseudodifferential

The PDL-MF card allows operation in pseudodifferential mode (Fig 5.1). For pseudodifferential

inputs you connect one wire from each signal source to the High input of the data-acq system’s

input amplifier, and all signals again share a common return path to AGND. However, this ground

signal is typically referenced to a remote source and it is separated from the PC ground; thus it can

float at a different level. The maximum difference between common ground and PC ground

should never exceed 10V. You can remove the effect of this voltage offset from measurement

results by subtracting the difference between AGND and COM from the measured result. Because

the AGND line in a pseudodifferential setup is not connected to the computer ground, it is not

subject to the associated digital noise within the PC.

Figure 5.1—Wiring for single-ended and pseudodifferential inputs

Differential

A PowerDAQ card operating in differential mode digitizes across as many as 32 channels. Each

channel uses two lines on the data-acquisition system’s input amplifier (Fig 5.2)—you connect

one lead from the signal source to the channel’s High input (the positive input of the amp) and

5. Analog-Input Subsystem

50

connect the other signal lead to the channel’s Low input (the amp’s negative input). Each signal

floats at its own level without any reference to ground or other inputs.

For example, when working with a 16-channel PowerDAQ board in differential mode, Ch 0 and 8

form the High and Low inputs of differential-input Ch 0; next, for differential-input Ch 1 you use

Ch 1 and 9; follow this pattern for all eight differential-input pairs. Follow this procedure when

wiring the PDL-MF board according to the pin assignments in Fig 3.12b. However, we have

prepared separate differential-input pin-assignment diagrams for the PD2/PDXI-MF(S) boards,

and they appear in Figs 3.8c and 3.8d.

The voltage between the inputs and the PC ground is monitored by two high-impedance

amplifiers. A third amplifier measures the difference between the Positive and Negative inputs,

eliminating any voltage common to both wires. This method eliminates problems that can arise

with a single-ended system because this configuration attenuates noise common to both channel

inputs (common-mode noise). Thus it’s wise to use twisted-pair cable to bring signals to the data-

acq card because that setup ensures that any noise generated along the wiring path is the same for

each line, and this noise gets subtracted by the amplifier.

Although using differential inputs on MF Series and PDL-MF boards cuts in half the number of

channels you can read with a given data-acq card compared to single-ended or pseudodifferential

setups, there are several cases where you are well advised to use differential inputs:

• when signal leads are over a few meters in length, because the instrumentation amp can

eliminate the effect of noise pickup from signal leads and also eliminate the possibility of

ground differentials.

• when measuring signals less than approximately 100 mV, because such low-level signals

can otherwise be easily overwhelmed by noise and ground differentials that only the

differential mode can remove.

• when measuring the output from high-impedance sensors such as strain gauges, because

their high impedances can lead to higher common-mode voltages, which the differential

inputs are able to remove thus leading to higher resolution.

Figure 5.2—Wiring for differential inputs

In the pin-assignment of Fig 3.8c, AIn8 has the name AIn0Return, while AIn9 has the designation

AIn1Return)

5. Analog-Input Subsystem

51

 Note Do not drive positive and negative differential inputs with voltages that exceed a value of AGND ±

14V; otherwise, the input multiplexers could lock up and even be damaged. Always connect

equipment grounds together in a star configuration with low resistance.

Overall Recommendations

In summary, when wiring applications the analog-input subsystem, keep the following factors in

mind:

• Pseudodifferential inputs cannot eliminate the effects of noise.

• Use differential inputs when working in an environment with electrical noise or when

using gains to amplify the raw signal.

• Use individually shielded twisted-pair wires between the sensor and the terminal panel

and also connect the shield to analog ground when working in an environment with

electrical noise.

• Run signal lines near devices that create high levels of electrical noise through a metal

cable tray above or below the work area.

• Keep wiring paths or conduits carrying power lines and signal lines physically separate.

• Never put signal cables in the same wiring harness as high-current or high-voltage cables.

• Avoid routing signal and power cables together in parallel paths unless a reasonable

distance separates the paths, reasonable being determined by the strength of the power

signals and the amount of shielding.

• Be aware that many external factors—among them power lines, poorly designed video

monitors or switching power supplies, solenoids, electric arcs from circuit breakers or

welders, and unshielded signal cables—can have a negative impact on the accuracy of

your measurements.

• Single-ended inputs are appropriate when you need to measure a large number of signals

but you also need to keep system costs to a minimum—and you are confident that the

above noise-inducing situations can be avoided.

 Note Input multiplexers have a high input impedance. It is highly recommended that you ground all unused

channels using a 1-kΩ to 10-kΩ resistor. Further, try to use signal sources with a low output

impedance (<100Ω) to avoid crosstalk. To limit signal bandwidth, you can also place a capacitor on

the screw-terminal panel between the signal and ground (single-ended mode) or for differential mode

between signal and return lines. The suggested capacitor values are between 1000 pF and 0.047 µF

depending on the input frequency and the impedance of the signal source according to F = 1 /

(2πRC).

5. Analog-Input Subsystem

52

Sequential vs simultaneous sampling

Users have several choices in determining the relationship of one sample to the next: You can

sample a series of signals sequentially, and you can simulate simultaneous sampling by sampling

adjacent signals at the highest possible rate to minimize the time skew among them

(pseudosimultaneous); both of those methods are possible with MF Series boards. For true

simultaneous sampling where you must eliminate time skew among multiple channels, the best

solution is to work with MFS Series boards. The fact that all MFx boards use one A/D converter

determines their front-end architecture ahead of the converter.

Sequential sampling

For sequential sampling, a multiplexer feeds signals to a common input amplifier, which then

feeds the A/D converter (Fig 5-3). Clearly, the front end needs some time to switch from one input

to the next and allow the amplifier time to settle. In the MF Series cards there is very little

difference between the time the multiplexer switches to a new signal—when the front end sees a

new signal—and when that new signal is digitized.

On MF and PDL-MF Series boards the minimum delay between each channel readings is limited

by the rated speed of the board, which you can calculate as 1/rate. For instance, for a board rated at

2.2M samples/sec, the interchannel digitization delay is 1 / 2.2 x 10
6
 = (1 x 10

-6
) / 2.2 = 450 nsec.

By selecting a card with a fast front end (such as UEI cards that operate at megahertz speeds) and

collecting samples as quickly as possible, the delay between samples (ie, the time between t0, t1, t2

and so on) can be extremely short. If the input signal’s frequency is relatively low (5-10 times

lower than the acquisition rate), the difference in the acquired signal level from one sample to the

next is minimal. For many applications, especially where the signals you are measuring change

slowly, this interchannel delay is so small that you can consider the samples to be virtually

simultaneous. This is also referred to as pseudosimultaneous operation.

 If you are interested in phase differences between channels, an MFS board is more

suitable for such an application.

TIP

5. Analog-Input Subsystem

53

Figure 5.3a—Analog front end of a PowerDAQ MF Series board

In Fig 5.3b, CL refers to the CL Clock, also known as the Channel List clock or the Scan Clock.

CV refers to the CV Clock, also known as the Conversion Clock.

Figure 5.3b—Acquisition sequence for multiplexed inputs on MF Series and PDL boards

Note that t1 shows the time between individual samples on the A/D; the time between CV clocks is

limited by the board’s maximum digitization rate. If you need to increase the settling time between

samples, slow down the board by decreasing its digitization rate.

5. Analog-Input Subsystem

54

Next, ts is the minimal time between scans of the Channel List; it depends on t1 and the number of

entries in the Channel List. The value of 1 / ts is the maximum scan rate (in Hz). If the board is set

up such that the CL Clock comes before the board is ready to accept a new scan, the board ignores

the clock and sets an Error bit.

 Note When driven with the internal clock, the preferred configuration for MF Series boards is CL =

continuous and CV = internal. For MFS Series boards, the preferred configuration is the reverse,

specifically, CL = internal and CV = continuous (see following section on clocking).

The effective per-channel sampling rate also depends on the number of channels in the Channel

List. In this case, a PowerDAQ board acquires data across all channels sequentially at the selected

speed, which need not be the peak speed, and this rate is referred to as the aggregate rate. When

the Channel List contains two channels, the per-channel rate is one half of the aggregate rate. For

multiple channels, you can thus calculate the maximum per-channel rate as:

Per-channel rate = Aggregate rate / Number of channels

Simultaneous sampling

In contrast, our MFS Series cards (Fig 5-4) achieve true simultaneous sampling. To do so, they

supply a sample/hold amplifier (S/H) at each signal input. When waiting for a conversion

command, all the S/H amplifiers track their respective input signals and change their outputs to

reflect the value of the continually varying input. However, when the analog front end sees a

conversion command, all the S/Hs immediately stop tracking their input values and instead freeze

and hold the last values until they are once again freed up to track the inputs. While the S/Hs are

holding the inputs, the A/D converter can service them in turn through the multiplexer. Thus, even

though the A/D cannot digitize more than one signal simultaneously, the use of the S/Hs allows

the card to achieve true simultaneous sampling regardless of the input signal’s frequency.

 Note Always use MFS Series boards if you require the exact difference between input levels at a specific

time or if you are working with signals close to their Nyquist frequencies.

The MFS Series boards have a unique exact-timing feature. An MFS board’s control logic needs

15 nsec to process an external Hold signal. To compensate for this small delay, the S/H amps have

a negative delay. In other words, the signal level that such an amp captures when the board logic

switches it into Hold mode is the level that appeared at the input 15 nsec earlier. This guarantees

that the board acquires a signal level at the exact time you apply an external pulse.

The standard configuration on MFS Series boards is for single-ended inputs with unity gain,

however the PD2-MFS-DG differential-input option adds one device on the back side of the board

that combines an instrumentation amp and a programmable-gain amplifier. As with MF Series

5. Analog-Input Subsystem

55

boards, you store channel numbers along with their respective gains in the Channel List memory.

This mechanism allows you to select different gains on a per-channel basis.

Figure 5.4a—Analog front end on PowerDAQ MFS simultaneous-sampling

boards (with both SE and DI modes available)

Here, again, t1 is the board’s conversion time, which is limited by the A/D’s maximum speed and

the ability of the board’s input amplifiers to settle. Compared to a multiplexed MF Series board,

though, t2 represents the hold time after the board has switched the sample/hold amp into the Hold

state; t3 is the time the sample/hold amp requires to once again start tracking the input signal after

the board has switched it back into Sample mode.

Given these parameters, you can determine tssh -- the minimum time between scans – as the sum

of t2 + t3 + (t1 * number of channels). The maximum scan rate now equals 1 / tssh. PowerDAQ

boards use analog pipelines to cut down both the settling time and the sample/hold times.

5. Analog-Input Subsystem

56

Figure 5.4b—Acquisition sequence for simultaneous inputs using S/H amplifiers on MFS Series boards

Simultaneous sample/hold settling-time issues

The analog-input timing on MFS Series boards (in which dedicated sample/hold amplifiers on

each channel feed a common multiplexer) is slightly different than the timing on MF Series boards

(where the analog-input channels feed directly into a multiplexer). Specifically, on MF Series

boards, the front end can start an A/D conversion on the first channel in the current run through

the Channel List immediately after it has digitized the last channel in the previous Channel List.

On MFS boards, in contrast, an additional delay is required when the sequencer starts to work

from the first entry of a Channel List because before a new Channel List can be read, the board

must instruct the bank of S/H amps to hold at a new set of values. Thus, the sample/hold amps

need a certain amount of time to settle to sufficient accuracy prior to the digitization stage. Note

that acquiring a lower number of channels leads to a lower maximum aggregate speed for the

board. This drop in speed arises due to S/H amp settling-time delay, which must allow for every

time the Channel List is processed

Clrate = 1 / [(S/H settling time) + (A/D conversion time * Number of channels)]

Clocking and Triggering

5. Analog-Input Subsystem

57

PowerDAQ cards offer considerable flexibility in how fast they digitize and collect real-world

samples. To set up any analog-input operation, you must configure both of two clocks; to activate

this operation, the subsystem must also receive a trigger pulse.

Clocking

Let’s first examine the two clocks:

• the CL clock or Channel List clock—also known as the Burst clock, it tells the control

logic when to start processing a full scan through the Channel List.

• the CV clock or Conversion clock—also known as the Pacer clock, it triggers individual

acquisitions or entries in the Channel List and thus tells the A/D how fast to digitize

successive samples.

 Note When the CL clock has read the last entry in the Channel List, it automatically fetches a new set of

entries for the Channel List from the CL FIFO and sets up the mux and amplifiers to be ready to take

the next sample when a new CL clock pulse arrives.

For both of these clocks, you have the choice of four sources:

• Software clock—a software command in the application program issues a clock pulse.

• Internal clock—derived from a timebase on the board. Each PowerDAQ board offers two

software-selectable base frequencies (11 and 33 MHz). You obtain lower frequencies by

dividing the base frequency with a 24-bit divisor that has a value from 1 to 2
24
 (=

16,777,216). To calculate the new frequency, use the formula: Timebase = Base

Frequency / (divisor + 1). To implement this new timebase, pass the required value in the

divisor variable in the configuration function.

• External clock—the user connects this signal to a terminal panel. For instance, you might

want to export a clock from one card and have another card read that clock so both work

in a synchronized fashion. All the signals of interest on MFx Series boards are located on

the J2 digital I/O connector:

Pin 27—read external CL clock

Pin 35—export CL clock

Pin 31—read external CV clock

Pin 32—export CV clock.

Note that most of these signals are also available on J1, the main connector on the

mounting bracket that carries the analog I/O signals. However, we recommend you

working with clock signals from J2 where there is no chance that they could potentially

degrade the quality of the analog signals on which the board is operating. However, if

you are not planning to use digital I/O, using the J2 clock lines means you must purchase

an additional cable. Note further that on its external clock inputs, the board provides 4.7

kΩ pull-up resistors.

• Continuous clocking—essentially gates the clock always On, sending the next pulse at

the earliest possible opportunity.

5. Analog-Input Subsystem

58

CAUTION! If you define a clock whose speed is too high for the subsystem to

handle, the board simply ignores any pulses that arrive before it is ready to respond

to them, but it does not issue an error message.

 Note Both the CL and CV clocks are required. Even if your application takes just one sample from one

channel, you must create a minimal Channel List. Failure to create this list and activate it with the CL

clock before activating the CV clock will result in false data. Put another way, a PowerDAQ card

ignores the CV clock until it senses a CL clock pulse; until you activate the Channel List, the A/D

doesn’t do any digitizing.

You define the source of each of the two clocks during the card’s configuration and initialization

stages, specifically with the command _PdAInSetCfg(). One of the parameters you pass to that

command, dwAInCfg, is a configuration word whose bits set the values of various analog-input

parameters.

More specifically, you set two configuration bits in dwAInCfg to establish the source of each clock

signal. For the Channel List clock you work with AIB_CLSTART0 and AIB_CLSTART1, and for

the Conversion clock you work with AIB_CVSTART0 and AIB_CVSTART1.

To specify a clock source, set the bits as follows (Bit 1, Bit 0)

 0, 0 software clock

 0, 1 internal clock

 1, 0 external clock

 1, 1 continuous

The default value for each of these four bits is Zero, so not setting any of the bits leaves the default

value of the two setup pairs 0,0 = software clock. To change a value there is no need to insert a

line of code that toggles the bit value; rather, merely placing its variable name in the configuration

word will change it to a One. In many situations you will want to change the values of multiple

bits to a One; you do so by ORing them. For instance, to change the CL clock to internal and the

CV clock to continuous, use AIB_CLSTART0+AIB_CVSTART0+AIB_CVSTART1, which sets

CL to 0,1 and CV to 1,1.

 Note On the PDL-MF board, you can specify only one clock at a time. If you configure the CV clock as

internal or external, you must then set the CL clock to continuous. If you set the CL clock to internal

or external, the board ignores the CV clock and runs the A/D at its maximum speed.

 Note The PDL-MF board provides a Gated mode when you work with the external trigger line to activate

the clock you have selected as active. If you set the bit AIB_EXTGATE by including it in the

dwAInCfg configuration word, then the board uses the ExtTrig terminal as a gate for the selected A/D

clock regardless of the clock source selected. A High on the ExtTrig terminal enables conversions,

and a Low disables them. This mode is incompatible with other trigger modes, and you should clear

all AIB_xxTRIGxx bits when working with this mode. Note also that you can implement Gated mode

on any MF/MFS boards using the 8254 counter/timers.

5. Analog-Input Subsystem

59

It’s important to realize that you can scan channels in two basic ways: either very fast by using the

CL clock to control the speed at which you start a new scan of the Channel List, or you can allow

for a specific amount of time between adjacent samples, such as to ensure that the front-end

amplifiers settle, by using the CV clock. In either case, when you set a speed on one clock, it’s

generally advisable to set the other clock to continuous mode so it has no effect on the speed of the

overall operation.

Clearly these two clocks often run at different speeds. Unless the board is sampling just one

channel, the maximum CL clock has a value of (CV clock / number of channels). As just

mentioned, setting one clock to continuous is an easy way to avoid any timing conflicts between

the two clocks. In fact, there are few cases where you might want to set both clocks exactly.

In addition, anytime you apply a clock signal before the subsystem is ready to process it, the board

generates an error condition. For example, if you input a clock at a frequency higher than the rated

aggregate rate, the board sets a bit in one of the status registers whenever a CL or CV clock pulse

occurs before it’s ready to process the pulse.

Triggering

Once you set up the Channel List clock and the Conversion clock with the commands just

described, the board doesn’t yet start collecting data. You must also supply a start trigger to

activates both clocks. The clocks are like runners at the starting line, sitting still, waiting for the

starting gun. Once the trigger signal arrives, the clocks start running. Thus, the maximum possible

delay from the time the trigger arrives to when the board digitizes its first sample is the period of

the CV clock. Similarly, you later need a stop trigger to halt both clocks. In this way, the

application has control over the exact time during which it digitizes signals. The trigger signal can

be either a software command or an external pulse, with the software trigger being the default; you

must either put a trigger command in the application or enable an external trigger.

 Note If the CV clock is set to continuous or internal, the trigger is guaranteed to start and stop acquisition

at the beginning of a Channel List scan. If the CV clock is external, the external equipment is

responsible for providing enough clock pulses to complete a pass through the Channel List.

Don’t forget that if you set up the board to start on an external trigger, the analog input subsystem

ignores both the CL and CV clocks until the pulse arrives. Acquisition continues until the stop

trigger occurs. Within an application program, you generate a software trigger with the command

_PdAInSwStartTrig(). Using this command, a program can request immediate acquisition or it can

trigger an acquisition based on a review of incoming data to see if they meet some user-specified

requirement such as a certain level (see Table 5.4).

5. Analog-Input Subsystem

60

Table 5.4—External trigger modes

If you prefer to use an external clock, you apply it to Pin 29 on the J2 connector (also Pin 26 on

the J1 connector). This line, as are all logic inputs on the board, is supplied with a 4.7 kΩ pull-up

resistor. Note, though, that this pin also serves as the input for the Analog Output subsystem’s

external clock input, and obviously you can’t use that line for both purposes at the same time. The

external trigger input on a PowerDAQ board is edge-sensitive, that is, you can trigger the

acquisition to begin on either a rising or falling edge by setting the appropriate configuration bits

in the dwAInCfg word in the _PdAInSetCfg() function.

Generally, data acquisition begins immediately upon a trigger signal. In some cases, however, it’s

desirable to have analog pretriggering (examining input levels to trigger an acquisition run and

then retrieving data that led up to an external event) or analog posttriggering (starting data

collection after one of the inputs reaches a certain level). In the analog-input subsystem such

functionality must be implemented in the user application with the Advanced Circular Buffer (see

Appendix E). Note also that digital pretriggering is not possible.

Software can examine the value of incoming samples and compare them to a setpoint. Many third-

party applications include built-in functions for this task, among them are LabVIEW, DASYLab,

DIADem, TestPoint and Agilent VEE. UEI has implemented analog-trigger support in our drivers

for these packages. For example, in our LabVIEW VI named PD AIRead, that VI supplies a node

where you can activate analog triggering as well as specify parameters such as the threshold.

5. Analog-Input Subsystem

61

Clocking/Triggering Examples

A few brief examples should help you get a better idea of how to work with the clocks and

triggers.

1. Single sample

Suppose you want to take just one sample and no more. First make sure that you have defined a

Channel List, where the first entry defines the channel number and its gain setting. Next set the CL

clock to continuous, and then activate the Start trigger. Now any call to the function

_PdAInSwCvStart() generates a single pulse on the CV clock, and so it reads the next value in the

Channel List and then pauses. Because the CL clock is continuous, it effectively pulses again as

quickly as possible, once again setting the pointer to the top of that list. Thus, calling

_PdAInSwCvStart()again at any desired time digitizes just that one desired channel as before.

Recall once more that the function call will have no effect unless you have already activated the

Start trigger.

Note that you could exchange the order of the clocks; that is, you could set the CV clock to

continuous (so a reading is made immediately whenever the board activates the Channel List), and

you could use the function _PdAInSwClStart()to issue one pulse in the CL clock from an

application program. This has the same effect of reading one channel because this setup allows

one pass through the Channel List, but for this application the list contains only one entry.

5. Analog-Input Subsystem

62

2. Single scan through Channel List

As you might surmise, only a slight variation in the procedure could allow the board to make one

reading from multiple channels: simply expand the number of entries in the Channel List. In

addition, you now work with clocks a bit differently. First set the CV clock to continuous for the

fastest stepping through the list. For the CL clock, use a software source and have the application

program make a call to the _PdAInSwClStart() function to start one run though the Channel List—

assuming that you have also set the Start trigger active. Note that you need one CV clock pulse for

each entry in the Channel List, but you first need a CL clock pulse to activate the list and set the

pointer to the first entry. For instance, you can set the CV clock running free, but nothing happens

until you pulse the CL clock.

3. Multiple scans through Channel List

If you want multiple runs through the Channel List, you must pulse the CL clock each time you

want to enable another run, although the CV clock steps through the list. You might think it would

be convenient to set both clocks to continuous, but that setup is not advised because you don’t

have a reliable timebase; there might be some slight delay in starting another run and that delay

could vary from run to run.

In addition, you might think that a good option would be to set both clocks to software, but that

setup actually isn’t terribly productive. In this setup, you would theoretically call one function to

start the CL clock and then call another function to read each entry in the list; this operation would

essentially single-step through the list. If you wish to single step in this fashion, it’s far easier to

set the CL clock to continuous at the start of the program and then just use the CV clock when you

want another sample; because the CL clock is continuous, it will set the list pointer to the top of

the Channel List at the first available opportunity.

For an application that requires repeated runs through the Channel List, the recommended setup is

CL clock = internal and CV clock = continuous. The CV clock thus will step through the Channel

List as quickly as possible, and the CL clock activates the list according to the internal timebase

(either 11 or 33 MHz, modified by a user-applied divisor). Be careful when setting the timebase

because the subsystem ignores any interim clock pulses that arrive before it is able to handle them.

That situation will set an error bit but it won’t halt activity. Alternately, you could reverse the

configuration and set the CL clock = continuous and the CV clock = internal.

Table 5.5 examines all the possible clock combinations and gives you some comments on where

they are best applied. The last column tells you which bits to mention (and thereby set to One) in

the configuration word; not including the bits in this word uses the default value of Zero.

Clock combination

CL Clock

source

CV Clock

source

Typical use

Bits to set in the

dwAInCfg

configuration word

Software Continuous To acquire one set of data points (one scan). A AIB_CVSTART0+

5. Analog-Input Subsystem

63

software clock initiates one pass through the

Channel List and then the board waits for another

CL clock before restarting. This method is useful

in voltmeter type programs as well as in realtime

control and hardware-in-the-loop systems

AIB_CVSTART1

Internal Continuous For continuous acquisition with an accurate

timebase. After each CL Clock pulse, the

Channel List is executed at the maximum

acquisition rate. This is the primary mode for

use with MFS cards, and use it with MF cards

when it’s critical to minimize channel skew.

AIB_CLSTART0+

AIB_CVSTART0+

AIB_CVSTART1

External Continuous For continuous acquisition when each run of

the Channel List is triggered by an external

signal. Use this mode to synchronize scans with

external events.

AIB_CLSTART1+

AIB_CVSTART0+

AIB_CVSTART1

Continuous Continuous To perform acquisition at the maximum speed

possible. Less accurate than using the timebase.

AIB_CLSTART0+

AIB_CLSTART1+

AIB_CVSTART0+

AIB_CVSTART1

Continuous

or Software

Internal Primary mode for use with MF boards; do not

use with MFS boards. The internal CV clock

sets the time between conversions. Use this

type of clocking when you want to increase the

settling time between acquisitions, especially

when the signal source has a high output

impedance.

AIB_CLSTART0+

AIB_CLSTART1+

AIB_CVSTART0+

or

AIB_CVSTART0

Continuous External Used with MF boards only. This mode is useful

when acquiring data from just one channel, or if

you want to start a channel conversion exactly at

an external pulse edge.

AIB_CLSTART0+

AIB_CLSTART1+

AIB_CVSTART1

External or

Software

Internal Use internal CV clock on MF board to set the

time between conversions
AIB_CLSTART+

AIB_CVSTART0 or

AIB_CVSTART0
External External This mode provides full control of the board’s

timing from an external device. It is rarely used

because it requires the external device it

sophisticated enough to assume all timing

functions.

AIB_CLSTART1+

AIB_CVSTART1

Software Software Although this mode gives full control of the

board’s timing to the user application, it is

rarely used because you can’t achieve high

precision compared to that possible with a

hardware clock source.

0+0 (default)

Table 5.5—Possible clocking combinations (the shaded rows at the bottom indicate rarely used

combinations).

5. Analog-Input Subsystem

64

The A/D Sample FIFO

When you collect analog samples with a PowerDAQ board, they do not go directly into host

memory. Instead, all digitized values first go into an onboard A/D FIFO memory. The standard

size of this FIFO starts at 1k samples (4k samples for high-speed 2-MHz boards), but you can

purchase options that upgrade the FIFO size to as many as 64k samples.

 Note Keep in mind that a DAQ-card driver differs from one for a printer, CD-ROM or other peripheral in

one fundamental way: realtime operation. A printer can wait before it gets the next data to print; and

a CD-ROM can pause for a short while to let other activity go on. A data-acq board, however,

typically collects data continuously and can pause only as long as its onboard FIFO has sufficient

room to store intermediate results. If this buffer overflows, incoming data is lost.

This combination of an onboard DSP and a data FIFO has several advantages. First, a PowerDAQ

board can collect data at its full rated speed no matter what the host PC is doing. The DSP controls

the acquisition process and stores the data locally. So even if you’re running a graphics-intensive

application, it has no negative impact on the data-collection process. Further, virtually all of the

host CPU’s horsepower is available for post-acquisition analysis such as running a control loop.

Before moving on to other issues related to acquiring digitized data, it’s important to understand

the distinction between a scan and frame. A scan is one run through of the presently configured

Channel List. In contrast, a frame consists of a user-defined number of scans, and these datapoints

reside in a predefined portion of a buffer in host-memory. This host-memory buffer is also known

as the Advanced Circular Buffer (ACB). We elected to define these two objects to give you the

utmost in flexibility when deciding how to collect data. Keeping both scans and frames in mind,

we will now examine the various methods of moving data from the data-acq card into the host PC

where the application can use it.

Moving data into the host PC

Once you have acquired samples into the A/D FIFO buffer, you can choose from four modes that

transfer data into host memory for use by the user application.

• Normal Mode

• Fast Mode

• Bus Mastering

• Bus Mastering/Short Burst

It’s unusual that a program will use more than one of these methods. Thus, the normal procedure

is to select the desired transfer mode by going to the PowerDAQ Control Panel application,

clicking on the Driver Settings tab and selecting the mode. In the unusual event that you do want

to change transfer modes from within a user application, use the software command

5. Analog-Input Subsystem

65

_pdDiagSetPrm(). However, use this function with great caution. If not set up exactly right, the

host system could easily lock up.

1. Normal mode

In some cases, all the datapoints from an acquisition run fit easily into the A/D FIFO. In that case

you can use software commands to empty the FIFO into host memory at your convenience—but at

the latest before another acquisition run. Starting another acquisition run adds more samples to the

existing values in the FIFO. For this type of operation, you work with the first two modes, Normal

and Fast. If the FIFO is full, the board ignores any additional samples.

When you set Normal mode active, the driver transfers one-half the A/D FIFO buffer (512

samples for a 1k-sample buffer) per interrupt, but for larger buffers this transfer is never any larger

than 4k samples. While it empties one half of the FIFO, the board places newly acquired values in

the other half. The driver runs in a loop, moving a sample at a time into host memory. Further, the

driver verifies the availability of each individual sample in the before it retrieves it. Thus this is the

safest transfer mode, but it’s also the slowest. This mode works with any PCI-bus implementation.

 Note The PDL-MF board does not include an onboard A/D FIFO memory. Thus, Normal mode, which

transfers data samples individually, is the only data-transfer method available for that card.

2. Fast mode

This is the default transfer mode for most MF(S) cards. Here the driver transfers samples from the

A/D FIFO into host memory using programmed I/O but without checking whether a given sample

is actually available. Thus it consumes fewer processor resources than Normal mode. As is the

case in Normal mode, the transfer size in Fast mode is the lesser of one-half the A/D FIFO or 4k

samples.

We have found that 99% of all PCI motherboards handle this mode well. However a few systems

with PCI bridges can ignore the situation that data is not yet available and nonetheless complete

the PCI Read cycle normally but with zero data. In those systems you should revert to Normal

mode.

3. Bus Mastering

In many cases, programmed I/O (Method 2) can empty the A/D FIFO in sufficient time so there is

always room in the FIFO for data coming from the next scan. However, if you collect data at a

5. Analog-Input Subsystem

66

very high rate (1 MHz or greater), the potential exists for a buffer overrun where incoming data

wants to overwrite the half of the FIFO that hasn’t yet been transferred to host memory. Such

conditions will result in an error message.

If a PowerDAQ board is configured such that the amount of incoming data could eventually

exceed the size of the FIFO buffer, you should set this mode active, whereby the DSP uses bus

mastering to handle buffer maintenance automatically. Specifically, the DSP detects when the

FIFO becomes half full and at that point initiates a data transfer from the FIFO into host memory.

This mode thus unloads the host processor from the task of transferring samples into host memory.

But because the PowerDAQ board takes control of the system bus, it might interrupt other host

processes that require bus access. Thus, you should set up the system so it doesn’t request a DMA

transfer for small amounts of data. We recommend that the minimum size of a frame for bus

mastering should be 4096 samples.

Two modes of bus-master transmissions are available, and you switch between them using the

PowerDAQ Control Panel application or the _pdDiagSetPrm() command mentioned earlier.

3a. Bus Master (standard)

Bus Master mode is employs a standard method of data transmission over the PCI bus. The board

transfers samples into locked pages of host memory that are preallocated by the VMM (virtual

memory manager). It moves data over the bus in bursts of 32 transfers, each with 32 bits of data.

Bus Master mode transfers at least 4k samples at a time regardless of the FIFO size.

Note that the PowerDAQ driver includes a special function call, _pdDiagSetPrm(), to adjust bus-

master operating parameters. However, the initial page-allocation size equals two sets of four

pages (4096 samples) and that allocation cannot be changed on the fly. Boards with larger FIFOs

can allocate more memory, as much as 16,384 samples in a single contiguous block. When the

data transfer is complete, the board fires an interrupt to the driver.

A/D FIFO Size

(k bytes)

Bus Master Transfers

when FIFO Half Full

(samples)

Bus Master

Transfers per

Interrupt

(samples)

Transfer Size in

Normal and Fast

modes (k bytes)

1 512 4096 512

2 1024 4096 1024

4 2048 4096 2048

8 4096 4096 4096

5. Analog-Input Subsystem

67

16 8192 8192 4096

32 8192 8192 4096

64 8192 8192 4096

Table 5.6—Default Bus Mastering parameters for various FIFO sizes

Our tests show that with the maximum number of boards tested simultaneously (four boards) this

mode achieves rates of 3M samples/sec per board. With a 1-GHz CPU, the load per board at this

rate is less than 5%.

3b. Bus Master/Short Burst

We developed this mode to accommodate industrial PCs with secondary bridges on the PCI bus

and that don’t properly handle PCI Abort errors and where a bus lockup can occur. In this mode,

the firmware shortens the number of 32-bit transfers per master cycle from 32 to 8, and if the

firmware encounters PCI Abort termination, it retransmits the burst completely. In this mode our

tests show transfer rates of 1.3M samples/sec per board, again with four boards running

simultaneously. The CPU load per board using this mode is <3%.

 Note Some legacy PowerDAQ PD2 MF/MFS boards cannot guarantee sustained bus-mastering operation,

especially on some PCs with a secondary PCI bridge such as large industrial PCs or on machines with

a PCI-bus extender. You can identify these boards by going to the PowerDAQ Control Panel applet

(Ver 3.13 or higher) and checking which version of the Motorola DSP is on the board; a version 2

DSP indicates a board in this legacy category.

You can examine a PowerDAQ board’s data-transfer mode settings by going to the PowerDAQ

Control Panel applet. In the screen shot in Fig 5.5, the last line shows some typical settings for a

board that has a 1k-sample A/D FIFO.

xMd:1 Transfer mode—Fast mode (1)

xFh:1 Transfer size—move one 512-sample block upon FIFO half full event

xPg:8 Page size—interrupt the driver after it makes eight transfers (or 4k samples).

This value depends on the size of the FIFO installed on the board, and these

transfer parameters default to the values in Table 5.6.

5. Analog-Input Subsystem

68

Figure 5.5—Control Panel applet with typical PowerDAQ board settings

Data-transfer method tradeoffs

Depending on the speed of your board and how often you want to read new data from the board,

you must choose between programmed I/O and bus mastering. In general, if you need a short

response time, use Normal mode or Fast mode.

Consider an example of a 100-kHz board with a 1k-sample A/D FIFO. The FIFO gets emptied

when it is half full, or 512 samples / 100k samples/sec, so you have access to data every 5 msec.

In Bus Mastering you have no access to new data until incoming data can fill a full bus-master

page, which is at least 4096 samples. Thus, you would have to wait 41 msec to have access to that

data.

Another factor to consider is that under Normal and Fast modes (but not Bus Master modes) you

can take advantage of the _PdImmediateUpdate command. Among other things, it immediately

fetches all acquired samples from the board.

This command is particularly useful in these cases:

1. Acquisition rates < 10k samples/sec. If a board running at 100 Hz has the default

A/D FIFO of 1k samples, and if you select a frame size of 50 samples, you'll get 11

5. Analog-Input Subsystem

69

frames per event, a frame every 5.5 sec. To achieve better response time, include

_PdImmediateUpdate call in a timer loop.

2. When you want to clock an acquisition externally and the clock frequency can vary,

we recommend you call _PdImmediateUpdate periodically to see if any scans are

available.

3. Be aware that _PdImmediateUpdate consumes some processor time. Thus for boards

running at high acquisition rates (>100k samples/sec) we do not recommend that you

call this function more then 10 times/sec.

Host-based buffer usage

What you do with the data once they arrive in host memory can also have a major impact on

system performance. The PowerDAQ drivers set up an Advanced Circular Buffer (ACB). When

combined with applications tuned to take advantage of this flexible buffering mechanism, the

system as a whole runs much more efficiently.

Frame Markers

Buffer Tail

Buffer Head

Board/Driver

Write New Data

At Buffer Head

Application

Reads Data From

Buffer Tail

Driver Asserts
Frame Done Events

When Data Written

Passes Frame

Boundry

Advanced Circular

Buffer

Figure 5.6—Advanced Circular Buffer

Once an acquisition is started, the board/driver stores data into the buffer at a known point (called

the head), while the application generally reads data at another position (known as the tail). Both

operations occur asynchronously and can run at different rates. However, you can synchronize

5. Analog-Input Subsystem

70

them by either timer notification or by a driver event. To be able to issue a notification to the user

application upon receipt of a specific sample or when incoming data reach a scan-count boundary,

the driver segments the buffer into frames. Whenever incoming data crosses a frame boundary, the

driver sends an event to the application. If multichannel acquisition is performed, the frame size

should be a multiple of the scan size to keeps pointer arithmetic from becoming unnecessarily

complex.

With the ACB, three modes of operation are possible depending on the action taken when the end

of the buffer is reached or if the buffer head catches up with the tail.

• In Single Buffer mode, acquisition stops when the driver reaches the buffer's end. The

user app can access the buffer and process data during acquisition or wait until the buffer

is full. This approach is appropriate when you're not acquiring data in a continuous

stream, and it resembles the way a digital scope operates.

• In Circular Buffer mode the head and tail each wrap to the buffer start when they reach

the end. If the head catches up to the tail pointer, the buffer is considered full and

acquisition stops. This mode is useful in applications that must acquire data with no

sample loss. Data acquisition continues until either a predefined trigger condition or the

application stops the driver. If the app can't keep up with the acquisition process and the

buffer overflows, the driver halts the acquisition and reports an error condition.

• Recycled mode resembles Circular Buffer mode except that when the head catches up

with the tail pointer, it doesn’t stop but instead overwrites the oldest scans with the new

incoming scans. As the buffer fills up, the driver is free to recycle frames, automatically

incrementing the buffer tail. This buffer-space recycling occurs irrespective of whether or

not the application reads the data. In this mode a buffer overflow never occurs. It's best

for applications that monitor acquired signals at periodic intervals. The task might require

that the system digitize signals at a high rate but not need to process every sample. Also,

an application might need only the latest block of samples.

While the ACB might seem a departure from single and double-buffer schemes you’ll see on most

other DAQ cards, it's actually a superset of them. In Single Buffer mode, the ACB behaves like a

single buffer. Configured as Circular Buffer with two frames, it behaves as a double buffer. With

multiple frames, the ACB can function in algorithms designed for buffer queues. The only

limitation, which results in more efficient performance, is that the logical buffers in the queues

can't be dynamically allocated or freed and their order is fixed.

Data format

When working with data in the host memory space, you must be aware of the format in the

datastream. Every two consecutive bytes in the stream make up one sample from the A/D

converter. These datapoints appear in a file in the order they come from the A/D converter

following the order defined in the Channel List. The format for each data word differs according

to the A/D’s resolution (PowerDAQ boards automatically place Zeros in any unused bit locations),

as shown in Fig 5.7, where bit0 is the LSB.

5. Analog-Input Subsystem

71

Figure 5.7a—PowerDAQ 16-bit data format

Figure 5.7b—PowerDAQ 14-bit data format

Figure 5.7c—PowerDAQ 12-bit data format

In an application, you’ll generally want to convert these raw values (in hexadecimal) into a scaled

value, typically a voltage. To do so, use the following formula:

Output (V) = ((HexData XOR 0x8000) * BitWeight + Displacement) / Gain

You needn’t place this equation in a user application because the PowerDAQ API includes two

useful functions for this purpose: _PdAInRawToVolts() and _PdAInScanToVolts(). However,

should you want to include a conversion function in the user code, perform the following

calculations to convert raw hex data to scaled (voltage) data:

1. Determine the value of a single bit (“bit weight”) in volts. This value depends on the

input range.

Input Range Bit Weight (Span / 65535)

0-5V unipolar (5V span) 0.000076295 V/bit

0-10V unipolar (10V span) 0.000152590 V/bit

±5V bipolar (10V span) 0.000152590 V/bit

±10V bipolar (20V span) 0.000305180 V/bit

Table 5.8—Bit weight by input range

2. Determine the zero offset (or displacement), which again depends on the input range.

1st channel 2nd channel … last channel 1st channel …

sample sample sample sample

bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

bit13 bit12 bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 0 0

bit11 bit10 bit19 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 0 0 0 0

5. Analog-Input Subsystem

72

Table 5.9—Displacement by input range

3. Perform an arithmetical XOR on the raw data value with 0h8000

4. Multiply this intermediate result by the Bit Weight from Step 1

5. Add the Zero Offset from Step 2

6. If the board applied a gain other than 1 to a selected channel (as defined in the Channel

List), divide the value from Step 5 by this gain factor (this step guarantees maximal data

accuracy).

Input Range Displacement

5V or 10V unipolar 0

±5V bipolar -5V

±10V bipolar -10V

5. Analog-Input Subsystem

73

Programming Techniques

With this knowledge of the analog-input hardware, you are better prepared to understand how to

program the board to perform various digitizing functions. This subsystem is very flexible, and it

offers a variety of operating methods. Before selecting one, it’s wise to read through this manual

to understand what each does and then compare it to the application requirements.

With any of these methods, you must first specify how you are using the analog inputs, whether in

single-ended or differential mode, and indicate the range of the raw inputs prior to applying any

gain. To tell a user program which you have selected, you must OR the analog-input configuration

word dwAInCfg with one of the Mode constants in Table 5.10

Input Mode Constant for use in dwAInCfg

Single-Ended, 0-5V* 0

Single-Ended, 0-10V AIB_INPRANGE

Single-Ended, ±5V AIB_INPTYPE

Single-Ended, ±10V AIB_INPTYPE + AIB_INPRANGE

Differential, 0-5V* AIB_INPMODE

Differential, 0-10V AIB_INPMODE + AIB_INPRANGE

Differential, ±5V AIB_INPMODE + AIB_INPTYPE

Differential, ±10V AIB_INPMODE + AIB_INPTYPE + AIB_INPRANGE

* Not available in PDL-MF.

Table 5.10—Mode constants for use in analog-input configuration word

Almost every digitization task falls into one of the following categories.

• Method A—Single scan

• Method B—Burst buffered acquisition (1-shot)

• Method C—Continuous acquisition using Advanced Circular Buffer (ACB)

• Method D—Recycled-buffer mode

Method A—Single scan

A single scan, where you take one reading across the Channel List, is useful when you need to get

one set of datapoints, where a scan might even consist of just one entry in the Channel List.

Applications such as a multichannel voltmeter or sensor/thermocouple monitor are well suited for

this method. Depending on the Channel List size (maximum number of entries equals 256) and

maximum board speed, you can acquire as many as 100 scans/sec in non-realtime applications and

roughly 10 scans/sec in a realtime application.

You can initiate an acquisition with a software command or by monitoring the external CL Clock.

The maximum number of samples acquired is less then the minimal size of the A/D FIFO, so all

data stay in that FIFO and there’s no need to work with an ACB in host memory.

5. Analog-Input Subsystem

74

 Note The PowerDAQ Software Suite CD-ROM contains a large number of functioning sample programs

written for various languages. They might come close to approximating what you would like an

application to do, so you might want to take a closer look at them. The examples in the SDK that fall

into the category of Method A are:

• simpleAin.c

• simplescan.pas

• simplescan.bas

• vm64.pas

• voltmeter.vbp

• Vl16.cpp

• PDGABoards.cpp

Programming Model

Now let’s take a detailed look at what’s involved when working with a program that follows the

model of Method A.

 Note We urge you to read through this and all other programming models because they will give you

valuable tips on how best to work with the PowerDAQ API.

Initialization

Reset the board

PdAInReset(…)

Set up configuration

_PdAInSetCfg(…)

where dwAInCfg is the analog-input configuration word whose bits define the operating

parameters for the subsystem including the mode (SE or DI), input range, clock and trigger

sources. Analog-input configuration bits are defined in the file pdfw_def.h. Note that if you want

to change any parameter, you must make a function call that includes all the parameters, not just

the one you wish to modify. The recommended configurations for Method A are

for software clocking:

dwAInCfg = (AIB_CVSTART0 | AIB_CVSTART1)

or for an external clock

dwAInCfg = (AIB_CVSTART0 | AIB_CVSTART1 | AIB_CLSTART1)

For details on clocking options, refer back to Table 5.5.

Set up the Channel List

 _PdAInSetChList(…)

where one parameter indicates the number of channels in the list, and another parameter represents

the Channel List data array.

5. Analog-Input Subsystem

75

Enable conversions

 _PdAInEnableConv(…) with dwEnable = 1

 _PdAInSwStartTrig(…) to issue the software-based Start trigger

Now, if you have selected the software clock, clock the first scan into the A/D FIFO.

 _PdAInSwClStart(…)

Acquisition

Now the user application can instruct the board to collect analog samples as required using the

onboard timer or a program loop. In either case, you must allow sufficient time for the A/D to

acquire all points in a scan and digitize the entire Channel List. You normally allow (1 / maximum

board rate) seconds for each channel.

 Note As described earlier, PowerDAQ boards have a special Slow Bit you can insert in the Channel List.

You might want to increase settling time for a particular channel when you’ve selected a high gain

setting, or for a channel connected to a signal with a high output impedance. See Appendix B for

each specific board to determine how much a Slow Bit affects the time needed to acquire a channel.

Get the samples already acquired out of the A/D FIFO and move them into the array declared in

the user application

 _PdAInGetSamples(…)

If you have selected the software clock, clock in the next scan

 _PdAInSwClStart(…)

 Note If you are using external pulses to start clocking of the Channel List, make sure to address the

situation whereby the next scan clock comes during the _PdAInGetSamples(…) call. This function

returns the number of points stored in the buffer. If the number of scans equals the A/D FIFO size,

the subsystem could lose scan synchronization because you might not be aware of an overrun

condition. It’s possible to enable/disable conversions on the fly with _PdAInEnableConv(…), and you

can clear the A/D FIFO with _PdAInClearData(…).

Method B—Burst buffered acquisition (1-shot)

This method is useful when you need a series of 1-shot acquisitions with a significant delay

between runs. An example of such an application might be when simulating an oscilloscope or

signal analyzer, where you run an acquisition one time, stop the process, analyze the data, and run

it again as required. However, the size of the acquired data likely require buffered A/D FIFO

reads. Consequently, this method requires initializing and use of the PowerDAQ buffering

mechanism (see Appendix E).

Method B uses an asynchronous notification from the driver through Win32 events. Thus you

should program the board for asynchronous operation and use Win32 function such as

WaitForSingleObject(…) to initiate a wait until the driver notifies that the data has been

successfully acquired.

5. Analog-Input Subsystem

76

 Note Examples in the SDK that fall into the category of Method B are:

• Stream2.c

• SimpleExample.vbp

Programming Model

Initialization

Reset the board

_PdAInReset(…)

Allocate and register a buffer for the board. The buffer should be accessible in both the user and

kernel spaces, and it should be locked to the physical pages. Use as big a buffer as you need; its

size is limited by the amount of memory installed on your PC. The buffer should contain at least

two frames so you can empty one while the A/D fills the other. The PowerDAQ API allocates

buffers for you.

_PdAcquireBuffer(…)

Register the buffer with the AnalogIn subsystem. Use dwMode with BUF_BUFFERWRAPPED

and BUF_BUFFERRECYCLED. for single-run operation whereby acquisition stops when the

buffer is filled.

_PdAcquireBuffer(…)

Set up the analog-input configuration and events about which you want to be notified. The analog-

input configuration bits are defined in the file pdfw_def.h. Here are the recommended

configurations for Method B:

• For the internal software clock,

dwAInCfg = (AIB_CVSTART0 | AIB_CVSTART1 | AIB_CLSTART0)

• for an external clock,

dwCfg = (AIB_CVSTART0 | AIB_CVSTART1 | AIB_CLSTART1)

Add the AIB_INTCLSBASE constant to select the 33-MHz base frequency instead of the default of

11 MHz

The application needs to know what’s going on in the buffer, so set up the board to fire events on

certain conditions. To do so, use the function

_PdSetUserEvents(…)

Analog-input event bits are defined in the file pwrdaq.h. The recommended event notification

method is

dwEvents = eFrameDone | eBufferDone | eBufferError | eStopped

Your application is notified when at least one frame is complete. Upon notification, the buffer in

5. Analog-Input Subsystem

77

host memory is filled with data or you will receive a buffer error. The most common reason for

buffer errors is heavy loading from other applications running on the PC during acquisition, so

that the system cannot service the interrupt in time. Consider using an A/D FIFO upgrades to

improve system performance (PD-16KFIFO or PD-32KFIFO) or try Method 3, bus mastering.

Initiate asynchronous operation

_PdAInAsyncInit(…)

This command sets up the data-acquisition hardware with all its basic parameters such as input

mode, type, range and clock sources. Again, you define these settings in the bits of dwAInCfg.

Provide a value for dwAInClClkDiv to set the desired scan rate. Fill and pass the Channel List as

explained in Method A. Make sure that that the aggregate rate you have set up (scan rate * number

of channels) is lower or equal to the maximum board rate.

Set up event notification

_PdAInSetPrivateEvent(…)

The API creates Win32 events and returns a valid event handle.

Acquisition

Start asynchronous operation

_PdAInAsyncStart(…)

and either have the user app issue a software trigger or wait for a hardware trigger, and then wait

for event notification that the card has digitized some data.

The following function puts your program into Sleep mode and gives the system CPU time for

other processes. The function returns control when the board signals an event or the timeout period

has expired. The timeout period should be long enough to fill your buffer with samples. When this

function returns an event from the board, you must check to see what caused it.

WaitForSingleObject(hEventObject, Timeout)

 If the board is clocked from the low-frequency internal timebase or a slow external

clock, you likely won’t get an immediate event notification upon the acquisition of the

first datapoints. This is because the board transfers data from the on-board A/D FIFO

into host memory only when the FIFO reaches 50% capacity. For example, if your

board’s FIFO size is 1k samples, the acquisition rate is 100 Hz and you put only one

channel into the Channel List, the board notifies the driver (and thus the application)

only after 500 samples = 5 sec of acquisition, no matter how small your frame is. If you

clock the board externally, no response comes from the board until it gets enough

pulses to fill its FIFO half full with samples. However, you can use

_PdImmediateUpdate(…) on a timer loop to force data from the A/D FIFO into the host

buffer. Don’t call this function too often because it can degrade system performance.

Note also that this function does not work in Bus Mastering mode.

TIP

5. Analog-Input Subsystem

78

Check events with the function

_PdGetUserEvents(…)

This function returns events for the specified subsystem (here be sure to specify AnalogIn). The

user application should analyze the events and take appropriate action. An event word can contain

following flags:

• eFrameDone—a frame of data is ready for retrieval.

• eBufferDone+ eStopped—Acquisition is complete. All data is stored in the buffer and is

available for analysis.

• eBufferError—Data integrity was compromised because of a lack of performance or

system latency while serving interrupts. In such cases the on-board A/D FIFO overflows.

If this error persists, check the interrupt settings, purchase a larger A/D FIFO option or

consider using Method D with bus mastering.

Reset events. Call this function to notify the driver that events are processed.

_PdSetUserEvents(…)

Restart

The following calls stop asynchronous operation. You need to call them before you again call

_PdAInAsyncInit(…) and _PdAInAsyncStart(…). You can start and restart acquisition as many

times as the application requires. Each time you restart an acquisition, the board overwrites data in

the buffer with a new values.

 _PdAInAsyncStop(…)

 _PdAInAsyncTerm(…)

De-Initialization

Stop asynchronous operation

 _PdAInAsyncStop(…)

 _PdAInAsyncTerm(…)

Release event object handle

 _PdAInClearPrivateEvent(…)

Unregister and deallocate buffer

 _PdReleaseBuffer(…)

5. Analog-Input Subsystem

79

Method C—Continuous acquisition using the Advanced

Circular Buffer (ACB)

Method C employs the PowerDAQ Advanced Circular Buffer mechanism (see Appendix E). Here

you work with one part of a buffer you set up in host memory while the A/D FIFO fills the other

half. In this way, an acquisition can run continuously, and each time an event occurs (such as

frame filled), the application receives program control again. The data-acq thread waits on the

function call and won’t do anything until that call comes.

You can create separate threads for each board in your application to run the acquisition process.

 Note Examples in the SDK that fall into the category of Method C are:

• Stream2.c

Set up the buffers

The analog-input configuration is very similar to Method B except you set up the buffer in a

different way. First, allocate the buffer and register it with the board. Make the buffer as large as

necessary. Here you define a frame, which is a user-defined number of scans, and you define how

many frames (and thus number of scans) must be in the buffer before the driver issues an

eFrameDone event to notify the application that data is ready for retrieval. Each user application

processes events in different ways, but each time an application detects an eFrameDone event, it

knows that one or more frames are filled with data. For Method C, the minimum buffer size is two

frames, which implements the classic double-buffering mechanism. The largest possible size is

limited by the amount of free memory in the host. A larger number of frames makes the operation

more flexible and decreases probability of buffer overflow because the host CPU isn’t involved as

frequently.

_PdAcquireBuffer(…)

When registering the buffer and if you want to use the ACB, be sure to set

Set dwWrapAround = AIB_BUFFERWRAPPED.

_PdAcquireBuffer(…)

 How can you determine the optimal buffer size and number of frames? Normally four

frames in a buffer are enough to achieve smooth operation. They provide enough

time to avoid a buffer overflow if the OS encounters a delay in responding. The

buffer should be big enough to accommodate from 0.33 to 1 sec of incoming data.

TIP

5. Analog-Input Subsystem

80

 How can you determine the optimal frame size for an acquisition run? When

selecting the frame size, take the following items into account. Events consume host

CPU and on-board DSP time, so a small frame needs servicing more often and thus

decreases overall system performance. On the other hand, larger frames decrease the

event rate, which isn’t desirable in situations where you need faster response,

especially in control-loop applications. We recommend setting a frame size so the

application receives from 4 to 10 events per second. For example, if the Channel List

has four entries and the acquisition rate is 100k scans/sec, the recommended frame

size is from 10,000 scans (calculated as 100k scans/10) to 25,000 scans. (calculated

as 100k scans/4).

Acquisition

Wait for event notification with

WaitForSingleObject(hEventObject, Timeout)

This function puts the user application into Sleep mode and gives the host CPU time for other

processes. The user app gets activated when the board signals an event or the timeout period has

expired. The timeout period should be long enough to fill the host buffer with samples. When this

function returns an event from the board, the application must check to see what caused it.

Check events with

_PdGetUserEvents(…)

This function returns events for the specified subsystem. The user application should analyze the

events and take appropriate action. An event word can contain following flags:

• eFrameDone—a frame of data is ready for retrieval.

• eBufferDone + eStopped—The acquisition is complete. All data is stored in the buffer

and is available for analysis.

• eBufferDone + eBufferWrapped—Incoming data has reached the end of the buffer. The

next frame that will be filled is at the start of the buffer.

• eStopped—The acquisition has stopped. The reason could be a trigger pulse on the

external trigger line, a software command or a buffer error. It’s possible that the user

application is not retrieving data from the buffer fast enough and there’s no room for new

incoming data. Check other events to find out what caused the acquisition to stop.

• eBufferError—Data integrity was compromised because of a lack of performance or

system latency while serving interrupts (see note about interrupts).

• eStopTrig—The acquisition stopped because it received the Stop trigger pulse or a

software command.

Retrieve data with

_PdAInGetBufState(…)

This function retrieves information about the position of unread frames in the buffer n scans

(ScanIndex) and the number of scans available for the application (NumValidScans). In other

words, it tells you how much new data there is and where it is located. If incoming data has passed

the buffer boundary and starts filling it from the beginning, the eFrameDone event occurs twice:

TIP

5. Analog-Input Subsystem

81

once to let the user application retrieve data at the end of the buffer (that is, from the point of the

last retrieval to the end of the buffer), and a second time to let the application retrieve data from

the beginning of the buffer to the latest complete frame. During any _PdAInGetBufState(…) call

the application gets the data in one piece. This eliminates the need for the user application to deal

with wraparound situations. Finally, note that _PdAInGetBufState(…) has a side effect: When

called, it marks frames it returns as “read” and thus these frames can be reused for new data.

Reset events with

_PdSetUserEvents(…)

Call this function to tell the driver that events have been processed.

Now perform application-specific tasks on the data. Make sure that each procedure is short enough

to process everything required before the next eFrameDone event arrives. Otherwise the buffer

can overflow and the driver can stop acquisition.

 Tips for reading thermocouples and other slow-speed processes. There are two ways of

reading slow-speed processes. Method A is better when the application doesn’t require

a precise timebase and needs 10 or fewer datapoints per sec. Method C is better for rates

exceeding 10 datapoints per sec. For faster update rates, either use a

_PdImmediateUpdate(…) call on a timer loop or let the driver do the same thing by

calling _PdAInEnableTimer(…). Both functions force the board to move all samples

from the A/D FIFO to the buffer; the difference is that _PdAInEnableTimer(…) also

starts and stops the built-in timer in the driver. By making the frame sizes smaller, you

get events more quickly. Note that _PdImmediateUpdate() doesn’t work in Bus

Mastering mode.

Method D—Recycled-buffer mode

If you want to make certain that the entire buffer contains only the latest data, use the recycled-

buffer method of working with the ACB (explained in detail in Appendix E). It overwrites the

oldest frames with new data without the requirement that the data first be read. For example, you

can run an acquisition continuously as in Method C. However, if at some time the application

needs much more time to process data than the time needed to fill the frame, the acquisition

doesn’t halt and you don’t get an error message. Instead, the driver continues the acquisition and

all frames that the application hasn’t yet retrieved get overwritten with new data. When the

application receives the next event, that event sets the eFrameRecycled event flag.

One obvious situation in which to use this mode is when you cannot predict the exact time needed

to process the data. Consider the case when a control application monitors input datastreams and at

some point it needs to perform exhaustive calculations and change equipment settings. Instead of

stopping and restarting the process, Recycling buffer mode allows the data acquisition to keep

running. After processing is completed, the control application catches up with the latest data. This

mode is also suited for pretriggering applications.

TIP

5. Analog-Input Subsystem

82

 Note Examples in the SDK that fall into the category of Method D are:

• Stream2.c

To switch your buffer into this mode, first call

_PdAcquireBuffer(…)

and be sure to set dwWrapAround = BUF_BUFFERRECYCLED to use the ACB’s Recycled

mode.

Combining Analog and Digital subsystems

It’s often desirable to coordinate analog inputs with digital inputs. When doing so, the part that

requires special attention is event handling. The PowerDAQ API has two sets of functions to

address this issue.

1. Set up all subsystem operations in one thread and create an event using

_PdSetPrivateEvent(…).This function creates a single event that is set when either subsystem

needs attention. Be sure to retrieve and process each active subsystem event in the order they

arrive. To release a event object, use _PdClearPrivateEvent(…).

2. Set up each subsystem operation in a separate thread. You can create a separate event object for

each subsystem using

_PdAInSetPrivateEvent(…)

_PdAOutSetPrivateEvent(…)

_PdDInSetPrivateEvent(…)

_PdUctSetPrivateEvent(…)

When one of these subsystem needs attention, it sets the appropriate event. Subsystem threads

wake up on WaitForSingleObject(…), Win32 API calls and process events as described above. To

release event objects, use the appropriate _PdxxxClearPrivateEvent(…) call.

 Note Examples in the SDK that fall into the category of Method G are:

• SimpleTest.dpr

Synchronous stimulus/response

Some applications require that a test setup apply an analog stimulus to an experimental system and

then read the response read. To address this task, use a subset of Method A. Set the analog output

to generate its next datapoint on a pulse connected to that output’s external trigger line. Apply that

same pulse to one of the UCTs (user counter/timers) and have it start counting down from a

predetermined value. Upon reaching the terminal value, it generates a pulse, which you connect to

the external clock (CL Clock line) on the analog-input subsystem to start a scan. This setup

provides a user-defined delay from the analog output to the time you read the response with an

analog-input scan.

5. Analog-Input Subsystem

83

84

6. Analog-Output Subsystem

Architecture

The analog-output subsystem on every PowerDAQ multifunction board (PD2, PDL or PXI) is the

same: it consists of two 12-bit D/A converters and supports several operating methods: one single-

value update method and several waveform-generation (or streaming) methods.

The following methods are available:

Single-value update

• Method A—Single update

Buffered Waveform Generation

• Method B—Single-shot waveform generation

• Method C—Continuous waveform generation

• Method D—Repetitive waveform generation

Non-buffered Waveform Generation (backward compatibility)

• Method E—Auto-regeneration

• Method F—Events in non-buffered mode

Single-value update method

Single update (Method A)

The single update method uses an API command from the user program to write the digital

representation of the desired analog output value directly into the output register of a D/A

converter. This digital word remains in the output register indefinitely until you overwrite it with a

new value. The maximum rate at which you can update the actual analog output generated from

the D/A depends on the configuration of the host PC system, but it is at least 1 kHz.

Buffered waveform generation methods

When you are working with waveforms whose shape you know in advance, it is possible to

calculate the corresponding values for the D/A’s output register and send multiple datapoints to

the analog-output subsystem all at once. There are several ways to transfer these points:

Single-shot waveform generation (Method B)

This method outputs the waveform only once and then the subsystem stops.

6. Analog-Output Subsystem

85

Continuous waveform generation (Method C)

This method allows the continuous generation of waveforms, and there is no limit to the total

amount of data the system can output. When a frame of the buffer has been output, the driver

issues an event to allow you to write more data to the buffer.

Repetitive waveform generation (Method D)

This method can create fixed-length waveforms greater than 2048 samples. The size of the buffer

is limited by the amount of physical memory in the PC. An application writes data to the

PowerDAQ driver buffer, and each time the end of the buffer is reached, the PowerDAQ driver

resends the same buffer until instructed to stop.

Non-buffered waveform generation methods

Autoregeneration (Method E)

This method can create fixed length waveforms (maximum size limited by the D/A FIFO) without

any host PC intervention. An application writes data to the FIFO buffer, and each time the end of

buffer is reached, the DSP resends the same buffer until instructed to stop.

 Note Rev 3.x of the PowerDAQ SDK allows you to create waveforms up to the size of the memory

available on your PC. (See Method D)

Events in non-buffered mode (Method F)

The events in this method allow the continuous generation of waveforms, and there is no limited

to the total amount of data the system can output. When the FIFO on the DSP drops to less than

half full, the board issues an interrupt requesting more data. Thus, with a 2k-sample FIFO, you can

load a maximum of 1024 samples at a time.

 Note If the FIFO is empty and the card has sent out the last value, it continues outputting that last value

until the program instructs it to do otherwise.

6. Analog-Output Subsystem

86

Channel List

Just as the analog-input subsystem offers a Channel List, so does the analog-output subsystem in

buffered mode. There is a fixed Channel List for the analog output on the PD2-MF(S) boards, and

it always contains values for both analog outputs (Ch 0 and Ch 1), and they are updated

simultaneously.

 Note Because both output channels are updated at the same time, you must configure both D/As for the

same mode of operation.

Data format

Figure 6-1—Analog-output data format

The analog outputs have a fixed output range of ±10V. The data representation is straight binary.

To convert a voltage into binary codes, use the following formula:

HexValue = ((Voltage + 10V) / 20) * 0xFFF

You can combine the two Hex values that Aout Ch 0 and Ch 1 should write as follows:

Value_To_Write = (HexValue1 << 12) OR (HexValue0)

 To convert floating-point values to raw voltages use the function

_PdAOutVoltsToRaw(…)

Clocking

You must clock the analog-output subsystem for each new voltage level being generated.

Specifically, every time a clock pulse occurs, the board reads the next value from the D/A FIFO,

converts it into a voltage representation, and generates the analog voltage on the selected channel.

You can clock the subsystem using a software command, the internal 11 or 33 MHz base

frequency, or from with a signal on an external trigger input line.

To calculate the output frequency, use the following formula:

Acquisition Rate = Base Frequency / (divisor + 1)

To calculate the divisor use:

Divisor = (Base Frequency/Acquisition Rate)-1

12-bit data

for AOut1

12-bit data

for AOut 0
Unused

0 11 12 23 24 31

TIP

6. Analog-Output Subsystem

87

Triggering

The external trigger line can serve as a Start/Stop trigger for free-running analog outputs. You can

select the internal clock as the analog-output timebase and then use the trigger line to start and

stop the output.

Additionally, the external trigger line can synchronize the analog-input and the analog-output

subsystems.

Programming Techniques

Let’s now take a look at how to program a PowerDAQ MF/MFS card’s analog-output subsystem

for each of the operating methods described above.

Method A—Single update

This simple method allows you to update the analog-output value on either or both D/As

immediately.

 Note Examples in the SDK that fall into the category of Method A are:

• SimpleAOut.cpp

• SimpleTest.vbp

Initialization

Reset the board (if required)

_PdAOutReset(…)

Generate output

Output the analog output value.

_PdAOutPutValue(…)

6. Analog-Output Subsystem

88

Method B—Single-shot waveform generation

This method is useful when you need a series of single-shot waveforms with a significant delay

between runs where you output the waveform one time, stop the process, and run it again as

required. However, the size of the waveform data likely requires buffered D/A FIFO writes.

Consequently, this method requires initialization and use of the PowerDAQ buffering mechanism

(see Appendix E).

Method B uses an asynchronous notification from the driver through Win32 events. Thus you

should program the board for asynchronous operation and use Win32 function such as

WaitForSingleObject(…) to initiate a wait until the driver notifies that the data has been

successfully output.

Initialization

Reset analog output from previous operation

_PdAOutReset(…)

Acquire buffer for analog output

_PdAcquireBuffer(…) without setting the BUF_BUFFERWRAPPED flag

and fill the buffer with data

Initialize asynchronous operation

_PdAOutAsyncInit(…)

and set dwConfig = AOB_CVSTART0 to use internal clock

and calculate the divisor as described above

Set up event notification

_PdAOutSetPrivateEvent(…)

Start waveform generation

Start asynchronous operation

_PdAOutAsyncStart(…)

Wait for an eBufferDone event from the board or a timeout

WaitForSingleObject(hEventObject, Timeout)

Event handler

Check why the event object was set with

_PdGetUserEvents(…)

Re-enable events with

_PdSetUserEvents(…)

6. Analog-Output Subsystem

89

Restart

Stop asynchronous operation

_PdAOutAsyncStop(…)

_PdAOutAsyncTerm(…)

before starting again

_PdAOutAsyncInit(…)

_PdAOutAsyncStart(…)

only include

_PdAOutAsyncTerm(…)

and

_PdAOutAsyncInit(…)

if you need to change parameters

Deinitialize the subsystem

Stop asynchronous operation

_PdAOutAsyncStop(…)

_PdAOutAsyncTerm(…)

Release event object handle (optional)

_PdAOutClearPrivateEvent(…)

Release the buffer

_PdReleaseBuffer(…)

Clear the subsystem and set both outputs to 0V (optional)

_PdAOutReset(…)

Method C—Continuous waveform generation

Method C uses the PowerDAQ Advanced Circular Buffer mechanism (see Appendix E). Here you

work with one frame of a buffer you set up in host memory while the driver empties the other

frames. In this way, the output can run continuously, and each time an event occurs, the

application takes control. You can create separate threads in your application to run the acquisition

process.

Initialization

Reset analog output (if required)

_PdAOutReset(…)

6. Analog-Output Subsystem

90

Acquire buffer for analog output

_PdAcquireBuffer(…) set the BUF_BUFFERWRAPPED flag and fill the buffer with

data

Initialize asynchronous operation

_PdAOutAsyncInit(…)

and set dwConfig = AOB_CVSTART0 to use internal clock

and calculate the divisor as described above

Set up event notification

_PdAOutSetPrivateEvent(…)

Start waveform generation

Start asynchronous operation

_PdAOutAsyncStart(…)

Wait for an event from the board or a timeout

WaitForSingleObject(hEventObject, Timeout)

Event handler

Check why the event object was set with

_PdGetUserEvents(…)

Check where to put new data in the buffer

_PdAOutGetBufState(…)

and write the new data

Re-enable events with

_PdSetUserEvents(…)

Stop waveform generation

Stop asynchronous operation

_PdAOutAsyncStop(…)

_PdAOutAsyncTerm(…)

Deinitialize the subsystem

Release event object handle (optional)

_PdAOutClearPrivateEvent(…)

6. Analog-Output Subsystem

91

Release the buffer

_PdReleaseBuffer(…)

Clear the subsystem and set both outputs to 0V (optional)

_PdAOutReset(…)

Method D—Repetitive waveform generation

Use this method to create fixed-length waveforms. The PowerDAQ buffering mechanism handles

all data transfers to the D/A FIFO. After an application writes data to the buffer, the board starts to

output the waveform and restarts automatically when the pointer reaches the end of the buffer.

This method is suitable when you need a continuous repetitive waveform.

Initialization

Reset analog output (if required)

_PdAOutReset(…)

Acquire buffer for analog output

_PdAcquireBuffer(…) set BUF_BUFFERWRAPPED | BUF_BUFFERRECYCLED flags

and fill the buffer with data

Initialize asynchronous operation

_PdAOutAsyncInit(…)

and set dwConfig = AOB_CVSTART0 to use internal clock and calculate the divisor as described

above

Set up event notification

_PdAOutSetPrivateEvent(…)

Start waveform generation

Start asynchronous operation

_PdAOutAsyncStart(…)

Wait for an event from the board or a timeout

WaitForSingleObject(hEventObject, Timeout)

Event handler

Check why the event object was set with

_PdGetUserEvents(…)

6. Analog-Output Subsystem

92

Re-enable events with

_PdSetUserEvents(…)

Stop waveform generation

Stop asynchronous operation

_PdAOutAsyncStop(…)

_PdAOutAsyncTerm(…)

Deinitialize the subsystem

Release event object handle (optional)

_PdAOutClearPrivateEvent(…)

Release the buffer

_PdReleaseBuffer(…)

Clear the subsystem and set both outputs to 0V (optional)

_PdAOutReset(…)

Method E—Autoregeneration

Use this method to create fixed-length waveforms (2048 samples maximum, or 65536 with

external memory) without using any host CPU cycles; the onboard DSP handles all subsystem

operations. It’s easier than using Method D, but the size is limited to the D/A FIFO size. After an

application writes data to the D/A FIFO, the board starts to output the waveform and the

subsystem restarts automatically when the pointer reaches the end of the buffer. This method is

suitable when you need a continuous repetitive waveform less than or equal to the D/A FIFO size.

 Note Examples in the SDK that fall into the category of Method E are:

• SimpleTest.dpr

Initialization

Reset the analog output (optional)

_PdAOutReset(…)

Set the analog-output configuration

_PdAOutSetCfg(…)

6. Analog-Output Subsystem

93

setting dwConfig = AOB_CVSTART0 | AOB_DACBLK0 | AOB_DACBLK1 | AOB_REGENERATE

to use the 11-MHz internal clock for autoretriggerable waveform generation.

Set the timebase

_PdAOutSetCvClk(…)

using the same calculations to set up the timebase as described in the analog-input subsystem

Write data to the D/A FIFO with

_PdAOutPutBlock(…)

Start waveform generation

_PdAOutEnableConv(…) using 1 as the value for dwEnable

_PdAOutSwStartTrig(…)

Stop waveform generation

Reset the analog-output subsystem (optional)

_PDAOutReset(…)

 Note The board also stops waveform generation when it reaches the end of the buffer.

Method F—Event-based waveforms using PCI

interrupts

There are several ways to generate long continuously changing waveforms. The event-based

waveform technique empties the board’s onboard FIFO memory into the analog-output subsystem.

When the FIFO is less than half full, the board sends an interrupt to the host to request additional

data. You can process analog-output events in a separate event handler or in the common event

handler for all subsystems. Please note that Method C has replaced Method F, which we include

for backward compatibility.

 Note Examples in the SDK that fall into the category of Method F are:

• AOEvents.c

• AEOutBlk.vbp

6. Analog-Output Subsystem

94

Initialization

Reset the analog output

_PdAOutReset(…)

This function resets both analog outputs to 0V, and you must reset all operating parameters before

running an analog output.

Set the analog-output configuration with

_PdAOutSetCfg(…)

and set dwConfig = AOB_CVSTART0 to use the 11-MHz internal base clock.

Set the timebase with

_PdAOutSetCvClk(…)

and use the same calculations to set up the timebase as described in the analog-input subsystem.

Set up an event object

_PdAOutSetPrivateEvent(…)

Enable the interrupt

_PdAdapterEnableInterrupt(…)

Set the events about which you wish to be notified

_PdSetUserEvents(…)

and set dwEventsNotify = eFrameDone | eBufferDone | eBufferError | eStopped. You need these

all for event-based waveform mode. Don’t forget to set the subsystem parameter to AnalogOut

Write the first block of data

_PdAOutPutBlock(…)

Enable and start analog-waveform generation

_PdAOutEnableConv(…) using 1 for dwEnable

_PdAOutSwStartTrig(…)

 Note To start waveform generation with a software command, use _PdAOutSwStartTrig(). If you wish to

synchronize an analog output with an external trigger, set the appropriate flags in _PdAOutSetCfg().

Note that the flags AOB_STARTTRIG0, AOB_STARTTRIG1, AOB_STOPTRIG0 and

AOB_STOPTRIG1 have the same functionality as for the analog-input subsystem.

Wait for events and process them using the Win32 API call

WaitForSingleObject(…).

Event handler

Check why the event object was set with

_PdGetUserEvents(…)

6. Analog-Output Subsystem

95

Examine the return from this function for these events: eFrameDone means that the D/A has

output a voltage for half the values in the D/A FIFO; eBufferDone + eBufferError means that the

D/A has emptied the entire buffer and that no more datapoints are available.

Re-enable events with

_PdSetUserEvents(…)

Write additional data to the D/A FIFO with

_PdAOutPutBlock(…)

Continue waveform generation

_PdAOutEnableConv(…) and use 1 for dwEnable

_PdAOutSwStartTrig(…)

Stop waveform generation

Issue a stop trigger if you haven’t configured the external trigger

_PdAOutSwStopTrig()

and then disable D/A conversions

_PdAOutEnableConv(…) and use 0 (FALSE) for dwEnable

De-initialize the subsystem

Disable the board interrupt (if no other subsystem are using the interrupt at the time)

_PdAdapterEnableInterrupt(…) and use dwEnable = 0

Release the event object

_PdAOutClearPrivateEvent(…)

Clear the subsystem and set both outputs to 0V.

_PdAOutReset(…)

96

7. Digital I/O Subsystem

Architecture

The digital I/O subsystem in almost all PD2/PDXI MF/MFS Series boards contains one 16-bit

input register and one 16-bit output register. The only exception is the PDL-MF, which uses two

24-bit registers. In all cases, the digital I/O registers do not support clocked operation, so this

subsystem can be used only in software-polled mode.

Figure 7.1—Digital-input subsystem hardware block diagram

On all dedicated digital input lines the board comes with 4.7kΩ pull-up resistors. (We supply these

pull-up resistors on all digital inputs including all external trigger lines, all external clock inputs

and counter/timer inputs.)

In the standard configuration (excluding the PDL-MF), the eight lower lines of the digital input

connect to a latch register. You can then program this register to detect rising or falling edges on

these lines.

7. Digital I/O Subsystem

97

To configure the latch you send a 16-bit word, two bits being assigned to each of the eight sense

inputs. Setting the F bit for a given input to a One makes that input sensitive to a falling edge;

setting the R bit to a One makes that input sensitive to a rising edge.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

F R F R F R F R F R F R F R F R

Figure 7.2—Digital-input configuration word

The latch register in the digital-input subsystem provides one status bit for each line. When it

detects the configured edge (falling or rising), the detection/latch logic does two things. First, it

sets this status bit to a One; second, it fires an interrupt to inform the DSP that the configured

conditions have been met.

If you set up a latch to watch for edges on several lines, the interrupt fires as soon as any of the

selected conditions happens. However, the interrupt will not refire until the user application clears

the status bit for that first line. Then, when the logic detects another change on any line, the

interrupt fires again. To determine which line has caused an interrupt, the user program must read

the digital-input status bits in the latch register.

Programming Techniques

The digital input/output subsystem can be used in two ways, and recall that this subsystem has no

clocked operations available.

Method A—Polled I/O

This method works by using software to poll 16 digital inputs and 16 digital outputs.

 Note Examples in the SDK that fall into the category of Method A are:

• SimpleTest.dpr

Initialization

Reset the digital subsystem

_PdDOutReset(…) sets the output lines to Zero

_PdDInReset(…)clears the latch and the configuration register

7. Digital I/O Subsystem

98

Set up the digital input configuration

Set up edge-sensitivity configuration with

_PdDInSetCfg(…)

Specify an input line and an edge to be detected using a configuration word as described earlier in

this section.

Read the status of the digital input latch with

_PdDInGetStatus(…)

This function returns the current state of the digital-input lines in one byte and the status of the

digital-input latch register in a second byte. If the specified edge was detected, the latch contains a

One in the appropriate bit.

Clear the status of the digital input latch with

_PdDInClearData(…)

This function clears the latch register and re-enables edge detection on the line that previously

caused an event

Input/output

Read digital inputs

_PdDInRead(…)

Write digital outputs

_PdDOutWrite(…)

 It’s possible to acquiring a digital signal using analog techniques. as analog. In an

application where you need to acquire some digital signals along with an analog input,

you can build a simple D/A converter using a resistor ladder. It allows you to convert up

to eight digital input lines into one analog signal, which you then digitize and from its

value you can determine the values of the original digital bits. for reliable detection using

a 12-bit PowerDAQ board.

TIP

7. Digital I/O Subsystem

99

Method B—Generate an event upon edge detection

In this scheme you set up an input configuration, and the subsystem fires an event when it detects

a specified edge on the corresponding input line. The eight lower lines of the 16-bit digital input

subsystem are edge-sensitive.

The setup parameters for this method are very similar to those used in Method A. The difference is

that you should additionally enable and set up event notification. As does the analog-output

subsystem, digital inputs can share an event handler with other subsystems or have a dedicated

event handler.

 Note Examples in the SDK that fall into the category of Method B are:

• DIEvents.c

Initialization

Reset the digital-input subsystem with

_PdDInReset(…)

to clear the latch and configuration register

Set up the digital-input configuration

Set up the edge-sensitivity configuration

_PdDInSetCfg(…)

Specify an input line and an edge to be detected using a configuration word as described earlier in

this section.

_PdAdapterEnableInterrupt(…) with dwEnable set to 1

_PdDInSetPrivateEvent(…) sets up event object

_PdSetUserEvent(…)

and use DigitalIn as a subsystem name. The driver defines only one digital-input event,

eDInEvent, which means that one or more edges were detected

Event handler

Check event

_PdGetUserEvent(…)

should return the eDInEvent flag in the status word.

Read the status of the digital-input latch

_PdDInGetStatus(…)

7. Digital I/O Subsystem

100

This function returns the current state of the digital-input lines in one byte and the status of the

digital-input latch register in a second byte. If the specified edge was detected, the latch contains a

One in the appropriate bit.

Clear the status of the digital input latch with

_PdDInClearData(…)

It clears the latch register and re-enables edge detection on the line that previously caused an event

Re-enable events with

_PdSetUserEvent(…)

and use DigitalIn as a subsystem name. The driver defines only one digital-input event,

eDInEvent, which means that one or more edges were detected

De-Initialization

Disable interrupts if there is no other subsystem running

_PdAdapterEnableInterrupt(…) with dwEnable set to 0

Release the event object and clear user-level events

_PdDInClearPrivateEvent(…)

_PdClearUserEvent(…) and use DigitalIn as the subsystem name

Reset the digital inputs to clear the configuration and latch registers

_PdDInReset(…)

7. Digital I/O Subsystem

101

102

8. User Counter/Timer Subsystem

Architecture

Unlike the counter/timers on many other data-acq boards, those on the MF/MFS Series boards are

fully dedicated to user tasks. You can set up the three on-board counter-timers to any mode

compatible with the Intel 82C54 chip. Using a counter/timer output to control the analog-input and

-output subsystems can result in setups that perform sophisticated data-acquisition tasks. Certain

applications, though, might require you to build external digital circuitry.

Additionally, when they reach Zero counts these counter-timers can generate events, which can

clock other subsystems and perform various operations.

The user counter/timer (UCT) subsystem on MF/MFS Series boards is based on Intel’s 16-bit

82C54 counter-timer chip (again, the PDL-MF has a different configuration as described below).

That device contains three counter/timers that are not required by any PowerDAQ subsystems and

thus are fully dedicated to user applications. Further, the three counter/timers are fully independent

so that each can function in a different mode, if desirable.

Note: You can combine UCT0 with UCT1 to implement a 32-bit counter or use UCT0 as a

common prescaler for UCT1 and UCT2.

The 82C54 solves a common problem that arises in setting up test systems, the generation of

accurate time delays under software control. Instead of setting up timing loops in software, the

programmer configures the chip to meet system requirements and programs one of the counters for

the desired delay. After the desired delay, the 82C54 interrupts the CPU. Software overhead is

minimal and variable-length delays can easily be accommodated.

Some other counter/timer functions you can easily implement with the 82C54 are:

• Event counter

• Digital one-shot

• Programmable rate generator

• Squarewave generator

• Binary rate multiplier

• Complex waveform generator

• Complex motor controller

The UCT is extremely useful in combination with the external clock and trigger lines. Using the

UCT you can create very sophisticated acquisition setups.

8. User Counter/Timer Subsystem

103

At a high level, the programmer need only be concerned with selecting the input clock source and

then selecting the gate signal (setting the Gate to Logic 1 enables counting; setting it to Logic 0

disables counting; it has no effect on the counter/timer output lines). The UCT generates an output

signal depending on its operating mode and the input conditions. In addition, a counter/timer’s

outputs can also generate an interrupt to the host PC when a change in state occurs.

You can feed a clock input from one of the following sources:

• Software command

• 1-MHz internal timebase

• External clock input line (10 MHz max)

• Output from UCT0 (available as input for UCT1 and 2)

It is possible to control the gate from the following sources:

• Software command

• External gate input line

You can operate each UCT in several modes (for details, see the 82C54 datasheet available on the

Intel web site):

• Single pulse (82C54 Mode 1)—The output line is initially High, and it goes Low on the

clock pulse following a trigger on the gate line to begin a 1-shot pulse. It remains Low

until the counter reaches zero. At that point the output again goes High and remains in

that state until the clock pulse after the next trigger.

• Pulse train (82C54 Mode 2)—This mode functions like a divide-by-N counter so the

pulse length equals 1 / clock frequency. The output line is initially High. When the initial

count decrements to 1, the output goes Low for one clock pulse, and then it goes High

again at which time the counter reloads the initial count and the process repeats. This

mode is periodic, and the same sequence repeats indefinitely until it is instructed to stop.

• Rate (82C54 Mode 3)—This mode is similar to Pulse train mode except for the output

line’s duty cycle. That line is initially High, and when half the initial count has expired it

goes Low for the remainder of the count. The sequence repeats indefinitely. An initial

count of N results in a square wave with a period of N clock cycles.

• Delay (82C54 Mode 5)—This mode generates a single pulse after waiting a programmed

amount of time. The output line is initially High. The rising edge of the gate line triggers

counting. When the initial count has expired, the output line goes Low for one clock

pulse and then returns to a High state.

A special frequency measurement mode is implemented on PD2/PDXI boards. Using this mode

you can measure an external frequency; you connect the signal to the counter’s input terminal and

measure the number of counts (up to 65,535) that arrive in a 1-sec interval (see the

UCTMeasFrequency example program).

 Note It’s not necessary to implement an event handler and enable interrupts for most UCT applications. Set

one up only if the application must be informed on specific countdown conditions.

8. User Counter/Timer Subsystem

104

 Note You can use UCT to stop an analog acquisition run after acquiring N scans. To do so, program the

device to count the N scans, and also connect its output to the analog input’s external trigger. Then

set up the A/D to stop on the external trigger’s falling edge of the external trigger.

PDL-MF-X

The PDL-MF also supplies three user counter/timers, but they are implemented with 24-bit

registers on the 56301 DSP. They are independent of each other and can generate interrupts. The

maximum clock frequency is 16.5 MHz for an external clock and 33 MHz for an internal clock.

Please refer to Motorola DSP56301 user manual for details.

This UCT functions in the following modes:

• timer

• external event counting

• pulse output

• squarewave output

• PWM (pulse-width modulation) output

• width/period/capture measurement

 Note On the MF-PDL card, TMR0 is shared with the AIn clock; TMR2 is shared with the AOut clock.

8. User Counter/Timer Subsystem

105

Programming Techniques

Programming the Intel 82C54 can be difficult because of its various modes and settings. To ease

this job, the PowerDAQ SDK provided the definitions you need along with a set of example

functions in the file uct_progr.c, which is located in the same folder with the UCTEvents Visual

C++ example. Please refer to that file and to the Intel 82C54 datasheet to assist you in learning

how to program the UCT subsystem.

Please be aware that the PowerDAQ API provides separate event flags for each

counter/timer.

 Note To write to the counter/timer, you must apply an input clock to the selected UCT. You can control its

Gate line using the _PdUctSwSetGate(…) function.

 Note Examples in the SDK that fall into the UCT category are:

• DIEvents.c

• uct_progr.c

• SimpleTest.dpr

• SimpleTest.vbp

Using UCT events

Initialization

Reset the UCT subsystem with

_PdUctReset(…) to clear the latch and configuration register

Set up UCT configuration

Set up the edge-sensitivity configuration

_PdUctSetCfg(…)

and refer to uct_progr.c in the SDK files for bit definitions

_PdAdapterEnableInterrupt(…) using dwEnable = 1

_PdUctSetPrivateEvent(…) sets up event object

_PdSetUserEvent(…)

and use CounterTimer as the subsystem name. The driver defines three events, one for each

counter/timer: eUct0Event, eUct1Event and eUct2Event

8. User Counter/Timer Subsystem

106

Event handler

Check for an event

_PdGetUserEvent(…)

can return either the eUct0Event, eUct1Event or eUct2Event flag in the status word.

Read the status of the UCT output

_PdUctGetStatus(…)

Re-enable events

_PdSetUserEvent(…)

Deinitialization

Disable interrupts if no other subsystem is running

_PdAdapterEnableInterrupt(…) while setting dwEnable = 0

Release the event object and clear user-level events

_PdUctClearPrivateEvent(…)

_PdClearUserEvent(…) using CounterTimer as the subsystem name

Reset the UCT to clear its configuration and stop ongoing operations

_PdUctReset(…)

8. User Counter/Timer Subsystem

107

108

9. Support Software

PowerDAQ Example Programs

A complete range of sample programs with source code is included with each PowerDAQ board

as part of the PowerDAQ Software Suite CD-ROM. For complete details on programming the

PowerDAQ board, refer to the PowerDAQ Software Manual

 Note Listed below are summaries of just a few of the examples we supply. Please review the installation

directories for new examples or visit us online at www.PowerDAQ.com

Visual C++ examples

Versions supported: VC 1.5 (16 bit), VC 5 and 6 (32 bit)

Examples supplied:

• VM16.exe–simple voltmeter application displaying as many as 64 channels.

• Stream4.exe–continuous acquisition and stream-to-disk application.

Visual BASIC examples

Versions supported: VB 3 (16 bit), VB 5 and 6 (32 bit)

Examples supplied:

• The SimpleTest utility (SimpleTest.vbp), which allows the simultaneous operation, if

desired, of all subsystems: Analog Input, Analog Output, Digital Input, Digital Output

and Counter/Timer operation.

• Additional examples are located on the PowerDAQ Software Suite CD-ROM in the

VBExecutables directory. After running the installation, look in the

PowerDAQ\SDK\Examples\VisualBasic\VB5 (OR VB6)\[Example Name] directory.

Delphi examples

Versions supported: Delphi 3 and 4 (32-bit)

9. Support Software

109

Examples supplied include the following:

• The SimpleTest utility (SimpleTest.dpr), which allows the simultaneous operation, if

desired, of all subsystems: Analog Input, Analog Output, Digital Input, Digital Output

and Counter/Timer operation.

Borland C++ Builder examples

Versions supported: Inprise/Borland 3.5

Examples supplied:

• Stream4.exe – continuous acquisition and stream-to-disk application.

 Note The files included for the above programming languages may have the same file name. This means

they can be used with either language.

9. Support Software

110

Third-Party Software Support

The PowerDAQ CD contains drivers for most popular third-party software packages. The

installation procedure automatically detects if you have installed any of the third-party packages,

and will install the drivers and examples automatically. If you install a third-party software

package after installing the PowerDAQ software, you must reinstall our software to include

support for this new third-party package.

As of the writing of this manual, we support the following third-party software:

Software

Package

Version Supports

multiple

PowerDAQ

boards

What’s included

LabVIEW 5.x or greater Yes Extensive VIs including click-

and-replace low-level VIs

LabVIEW for Linux 6.x or greater Yes VIs that mirror standard

LabVIEW support but run under

Linux

LabVIEW Real-

Time

6.x or greater Yes VIs that mirror standard

LabVIEW support but run under

this environment.

Agilent VEE 5.x or greater Yes Examples

DASYLab 4.x or greater No Examples

TestPoint 3.3 or greater Yes Examples

LabWindows/CVI 5.x or greater Yes Callable from our VC++ support

DIADEM 6.x or greater Yes Examples

MATLAB Data-

Acquisition

Toolbox

6.x or greater Yes Examples

xPC Target 2.x or greater Yes Examples

Table 9.1—Third-party software support

9. Support Software

111

112

Appendix A: Specifications

Appendix A: Specifications

113

PD2-MF Multifunction Boards

Model: PD2-MF-xx- 3M/12x 2M/14H 1M/12x 500/16x

Resolution 12 bits 14 bits 12 bits 16 bits

Number of Channels

 Single-Ended

 Differential

16 or 64

8 or 32

Maximum Sampling Rate 3M S/sec 2.2M S/sec 1.25M S/sec 500k S/sec

Onboard FIFO Size

(upgradeable to 16k, 32k, 64k)

16k samples 4k samples 2k samples

Channel-Gain List 256 entries

Input Ranges 0–5V, 0–10V, ±5V, ±10V

(software selectable)

Programmable Gains

by channel

L=1,10,100,1000

H=1, 2, 4, 8

H=1, 2, 4, 8

L=1,10,100,1000

H=1, 2, 4, 8

Drift

 Zero

 Gain

±30 µV/°C

±30 ppm/°C

Input Impedance 10 MΩ

Input Bias Current ±20 nA

Input Overvoltage ±20V,2000V ESD

10 mA max

±35V continuous

A/D Conversion Time 283 ns 0.45 µsec 0.8 µsec 2 µsec

A/D Settling Time 250 ns 0.37 µsec 0.6 µsec 1.2 µsec

DC Accuracy

Nonlinearity ±1 LSB ±2 LSB ±0.5 LSB ±1 LSB

System Noise 0.8 LSB 1.2 LSB 0.3 LSB 1.3 LSB

AC Accuracy

Effective Number of Bits 11.2 12.2 11.63 14.5

Total Harmonic Distortion+

Nonlinearity+Noise

72 dB 76 dB 71.8 dB 88 dB

Channel Crosstalk -80 dB @ 1k S/sec

Clocking and Trigger Input

Maximum A/D Pacer Clock

Aggregate Throughput

@ 0.01% Accuracy

3000k S/sec

2200k S/sec @ 1 ch

1800k S/sec @ all

1250k S/sec

500k S/sec

External A/D Sample Clock

 Maximum Frequency

3000k S/sec

2200k S/sec @ 1 ch

1800k S/sec @ all

1250k S/sec

500k S/sec

 Minimum Pulse Width 20 nsec

External Digital (TTL)Trigger

 High-level Input Voltage

 Low-level Input Voltage

 Minimum Pulse Width

2.0V min

0.8V min

20 nsec

Appendix A: Specifications

114

Model: PD2-MF-xx- 400/14x 333/16x 150/16x

Resolution 14 bits 16 bits 16 bits

Number of Channels

 Single-Ended

 Differential

16 or 64

8 or 32

16

8

Maximum Sampling Rate 400k S/sec 333k S/sec 150k S/sec

Onboard FIFO Size

(upgradeable to 16k, 32k, 64k)

1k samples

Channel-Gain List 256 entries

Input Ranges 0–5V, 0–10V, ±5V, ±10V (software selectable)

Programmable Gains

by channel

L = 1,10,100,1000

H = 1, 2, 4, 8

Drift

 Zero

 Gain

±30 µV/°C

±30 ppm/°C

Input Impedance 10 MΩ

Input Bias Current ±20 nA

Input Overvoltage ±35V continuous

A/D Conversion Time 2.5 µsec 2.0 µsec 6 µsec

A/D Settling Time 2.0 µsec 1.2 µsec 5 µsec

DC Accuracy

Nonlinearity ±0.5 LSB ±1 LSB ±1 LSB

System Noise 0.8 LSB 1.3 LSB 1.2 LSB

AC Accuracy

Effective Number of Bits 13.1 14.5 14.8

Total Harmonic Distortion+

Nonlinearity+Noise

81 dB 89 dB 91 dB

Channel Crosstalk -80 dB @ 1k S/sec

Clocking and Trigger Input

Maximum A/D Pacer Clock

Aggregate Throughput

@ 0.01% Accuracy

400k S/sec

333k S/sec

150k S/sec

External A/D Sample Clock

 Maximum Frequency

400k S/sec

333k S/sec

150k S/sec

 Minimum Pulse Width 20 ns

External Digital (TTL)Trigger

 High-level Input Voltage

 Low-level Input Voltage

 Minimum Pulse Width

2.0V min

0.8V min

20 nsec

Appendix A: Specifications

115

Analog Outputs - all PD2-MF models

 Number of Channels 2

 Resolution 12 bits

 Update Rate 200k S/sec each

 Onboard FIFO Size 2k samples (on DSP)

 Analog Output Range ±10V

 Error

 Gain ±1 LSB

 Zero Calibrated to 0

 Current Output ±20 mA max

 Output Impedance 0.3Ω typ

 Capacitive Drive Capability 1000 pF

 Nonlinearity ±1 LSB

 Protection Short circuit to analog ground

 Power-on Voltage 0V ±10 mV

 Setting Time to 0.01% of FSR 10 µsec, 20V step

1 µsec, 100-mV step

 Slew Rate 30 V/µsec

Counter/Timer - all PD2-MF models

Number of Counters 3 available to user

(Intel 82C54)

Resolution 16 bits on each counter

Clock Inputs:

 Software configurable

 High-level Input voltage

 Low-level Input voltage

 High-level Input current

 Low-level Input current

Internal 1M S/sec

External < 10M S/sec

2.0V min

0.8V max

20 µA

-20 µA

Gate Inputs:

 Maximum Pulse Width

100 nsec (High) 100 nsec (Low)

Counter Outputs:

 Output Driver High Voltage

 Output Driver Low Voltage

Inverted

2.5V min (IOH = 24 mA)

0.55V max (IOH = 48 mA)

Appendix A: Specifications

116

Digital I/O—all PD2-MF models

Input Bits

(8 can generate IRQ)

16

Output Bits 16

Inputs:

 High-level Input Voltage

 Low-level Input Voltage

 High-level Input Current

 Low-level Input Current

2.0V min

0.8V max

20 µA

-20 µA

Outputs:

 Output Driver High Voltage

 Output Driver Low Voltage

2.5V min, 3.0V typ (IOH = -32 mA)

0.55V max (IOL = 64 mA)

Current Sink -32/64 mA max, 250 mA per port

Pulse Width 20 ns min, interrupt bit latched on rising,

falling or either edge

Power-on Voltage Logic Zero

General Specifications and Connectors - all PD2-MF models

 Power Requirements 5V

 Physical Dimensions 10.5 x 3.8” (262 x 98 mm)

 Environmental:

 Operating Temperature Range

 Storage Temperature Range

 Relative Humidity

0 to 70°C

-25 to 85°C

to 95%, noncondensing

 Connector J1 96-pin high-density Fujitsu connector (male)

(Fujitsu PN#FCN-245P096-G/U)

 Connector J2 36-pin header connector (male)

(Thomas and Betts PN#609-3627)

 Connector J4 36-pin header connector (male)

(Thomas and Betts PN#609-3627)

Connector J6 8-pin male connector

(Adam-Tech PN#PH2-SMT-8-SGA)

Appendix A: Specifications

117

PD2-MFS Simultaneous Sampling Boards

Model: PD2-MFS-xx- 2M/14 1M/12 800/14

Resolution 14 bits 12 bits 14 bits

Number of Channels

 Single-Ended

 Differential

4 (8 optional)

4 (8 optional)

Maximum Sampling Rate

(multiple channels)

2M S/sec 1M S/sec 800k S/sec

Onboard FIFO Size (upgradeable

to 16k, 32k, 64k)

4k samples 1k samples

Input Ranges 0–5V, ±5V,

0–8V, ±8V @ 10V

ranges

0–5V, 0–10V, ±5V, ±10V

(software selectable)

Channel-Gain List 256 entries

Programmable Gains

by channel

256 entries

Drift

 Zero

 Gain

±30 µV/°C

±30 ppm/°C

Input Impedance 1 MΩ

Input Bias Current ±100 pA

Input Overvoltage

A/D Conversion Time 0.45 µsec 0.8 µsec 1.25 µsec

SSH Amp Settling Time 0.7 µsec 0.9 µsec 1.0 µsec

A/D Settling Time 0.4 µsec 0.6 µsec 1.25 µsec

DC Accuracy

Nonlinearity

 (no missing codes)

±2 LSB ±0.5 LSB ±0.5 LSB

AC Accuracy

Effective Number of Bits 12.1 11.3 12.7

Channel Crosstalk -80 dB @ 1k S/sec

Clocking and Trigger Input

 Maximum A/D Pacer Clock 1500k S/sec, 4 ch,

1700k S/sec, 8 ch

975k S/sec, 4 ch,

1095k S/sec, 8 ch

800k S/sec

External A/D Sample Clock

 Maximum Frequency

1500k S/sec, 4 ch

1700k S/sec, 8 ch

975k S/sec, 4 ch,

1095k S/sec, 8 ch

800k S/sec

Minimum Pulse Width 20 nsec

External Digital (TTL)Trigger

 High-level Input Voltage

 Low-level Input Voltage

 Minimum Pulse Width

2.0V min

0.8V min

20 nsec

Appendix A: Specifications

118

Model: PD2-MFS-xx- 500/16 500/14 300/16

Resolution 16 bits 14 bits 16 bits

Number of Channels

 Single-Ended

 Differential

4 (8 optional)

4 (8 optional)

Maximum Sampling Rate

(multiple channels)

500k S/sec 500k S/sec 300k S/sec

Onboard FIFO Size (upgradeable to

16k, 32k, 64k)

1k samples

Input Ranges 0–5V, 0–10V, ±5V, ±10V (software selectable)

Channel-Gain List 256 entries

Programmable Gains by channel 1, 2, 5, 10

Drift

 Zero

 Gain

±30 µV/°C

±30 ppm/°C

Input Impedance 1 MΩ

Input Bias Current ±100 pA

Input Overvoltage ±18V SE, ±40V DI

A/D Conversion Time 2 µsec 2.0 µsec 3 µsec

SSH Amp Settling Time 1.2 µsec 1.2 µsec 1.2 µsec

A/D Settling Time 1.5 µsec 1.2 µsec 2.7 µsec

DC Accuracy

Nonlinearity

 (no missing codes)

±1 LSB ±1 LSB ±1 LSB

AC Accuracy

Effective Number of Bits 13.8 12.7 13.8

Channel Crosstalk -80 dB @ 1k S/sec

Clocking and Trigger Input

 Maximum A/D Pacer Clock 500k S/sec 300k S/sec

External A/D Sample Clock

 Maximum Frequency

500k S/sec

300k S/sec

Minimum Pulse Width 20 nsec

External Digital (TTL)Trigger

 High-level Input Voltage

 Low-level Input Voltage

 Minimum Pulse Width

2.0V min

0.8V min

20 nsec

Appendix A: Specifications

119

Analog Outputs - all PD2-MFS models

 Number of Channels 2

 Resolution 12 bits

 Update Rate 200k S/sec each

 Onboard FIFO Size 2k samples (on DSP)

 Analog Output Range ±10V

 Error

 Gain ±1 LSB

 Zero Calibrated to 0

 Current Output ±20 mA max

 Output Impedance 0.3Ω typ

 Capacitive Drive Capability 1000 pF

 Nonlinearity ±1 LSB

 Protection Short circuit to analog ground

 Power-on Voltage 0V ±10 mV

 Setting Time to 0.01% of FSR 10 µsec, 20V step,

1 µsec, 100-mV step

 Slew Rate 30 V/µsec

Counter/Timers - all PD2-MFS models

Number of Counters 3 available to user

(Intel 82C54)

Resolution 16 bits on each counter

Clock Inputs:

 Software configurable

 High-level Input voltage

 Low-level Input voltage

 High-level Input current

 Low-level Input current

Internal 1M S/sec

External 10M S/sec

2.0V min

0.8V max

20 µA

-20 µA

Gate Inputs:

 Maximum Pulse Width

100 nsec (High) 100 nsec (Low)

Counter Outputs:

 Output Driver High Voltage

 Output Driver Low Voltage

Inverted

2.5V min (IOH = 24 mA)

0.55V max (IOH = 48 mA)

Appendix A: Specifications

120

Digital I/O - all PD2-MFS models

Input Bits

(8 can generate IRQ)

16

Output Bits 16

Inputs:

 High-level Input Voltage

 Low-level Input Voltage

 High-level Input Current

 Low-level Input Current

2.0V min

0.8V max

20 µA

-20 µA

Outputs:

 Output Driver High Voltage

 Output Driver Low Voltage

2.5V min, 3.0V typ (IOH = -32 mA)

0.55V max (IOL = 64 mA)

Current Sink -32/64 mA max, 250 mA per port

Pulse Width 20 nsec min, interrupt bit latched on

rising, falling or either edge

Power-on Voltage Logic Zero

General Specifications and Connectors – all

PD2-MFS models

Power Requirements 5V

Physical Dimensions 10.5 x 3.8” (262 x 98 mm)

Environmental:

 Operating Temperature Range

 Storage Temperature Range

 Relative Humidity

0 to 70°C

-25 to 85°C

to 95%, noncondensing

Connector J1 96-pin high-density Fujitsu connector (male)

(Fujitsu PN#FCN-245P096-G/U)

Connector J2 36-pin header connector (male)

(Thomas and Betts PN#609-3627)

Connector J4 36-pin header connector (male)

(Thomas and Betts PN#609-3627)

Connector J6 8-pin male connector

(Adam-Tech PN#PH2-SMT-8-SGA)

Appendix A: Specifications

121

PDL-MF “Lab” Multifunction Boards

Model: PDL-MF-x 50 333

Resolution 16 bits

Number of Channels

 Single-Ended

 Pseudo-Differential

 Differential

16

16

8

Maximum Sampling Rate

(single or multiple channel)

 50k S/sec 333k S/sec

Onboard FIFO Size

(upgradeable to 32k)

1k samples

64k samples with SRAM option

Channel-Gain List 64 entries

Input Ranges 0–10V,

±5V, ±10V (software selectable)

Programmable Gains 1, 2, 5, 10

Drift

 Zero

 Gain

±30 µV/°C

±30 ppm/°C

Input Impedance 10 MΩ

Input Bias Current ±20 nA

Input Overvoltage ±35V cont.

10 mA max

A/D Conversion Time 2.7 µsec 1.8 µsec

A/D Settling Time (@gain=1) 20 µsec 3 µsec

DC Accuracy

Nonlinearity ±1 LSB

System Noise 1.2 LSB

AC Accuracy

Effective Number of Bits 14.8

Total Harmonic Distortion+

Nonlinearity+Noise

91 dB

Channel Crosstalk -80 dB @ 1k S/sec

Clocking and Trigger Input

Maximum A/D Pacer Clock

Aggregate Throughput

@ 0.01% Accuracy

 50k S/sec 333k S/sec

External A/D Sample Clock

 Maximum Frequency

 Minimum Pulse Width

50 kHz

20 nsec

333 kHz

20 nsec

External Digital (TTL)Trigger

 High-level Input Voltage

 Low-level Input Voltage

 Minimum Pulse Width

2.0V min

0.8V min

20 nsec

Analog Trigger 2 channels-level and edge

Appendix A: Specifications

122

Analog Outputs—PDL-MF

 Number of Channels 2

 Resolution 12 bits

 Update Rate 100k S/sec each

 Onboard FIFO Size 2k samples

 Analog Output Range ±10V

 Current Output ±20 mA max

 Output Impedance 0.3Ω typ

 Capacitive Drive Capability 1000 pF

 Nonlinearity ±1 LSB

 Protection short circuit to analog ground

 Power-on Voltage 0V ±10 mV

 Setting Time to 0.01% of FSR 10 µsec, 20V step

1 µsec, 100 mV step

 Slew Rate 30 V/µsec

Digital I/O—PDL-MF

Input Bits 24

Output Bits 24

High-level Input Voltage 2.0V min

Low-level Input Voltage 0.8V max

High-level Input Current 20 µA

Low-level Input Current -20 µA

Output Driver High Voltage 2.5V min, 3.0V typ (IOH=-32 mA)

Output Driver Low Voltage 0.55V max (IOL = 64 mA)

Current Sink -32/64 mA max, lines 8-16

-24/24 mA max, lines 0-7

250 mA per port

Counter/Timer—PDL-MF

Number of Channels 3

Resolution 24 bits

Maximum Frequency 16.5M S/sec for external clock and

33M S/sec for internal DSP clock

Minimum Frequency 0.00002 Hz for internal clock,

no low limits for external clock

Minimum Pulse Width 20 nsec

Output High Level 2.0V min @ -4 mA

Output Low Level 0.5V max @ 4 mA

Protection 7 kV ESD, ±30V overshoot/undershoot

Input Low Voltage 0.0–0.8V

Input High Voltage 2.0–5.0V

Appendix A: Specifications

123

PDXI-MF Multifunction Boards

Model: PDXI-MF-xx- 2M/14H 1M/12x 500/16x

 Resolution 14 bits 12 bits 16 bits

Number of Channels:

 Single-Ended

 Differential

16 or 64

8 or 32

Maximum Sampling Rate 2.2M S/sec 1.25M S/sec 500k S/sec

Onboard FIFO Size

(upgradeable to 16k, 32k, 64k)

4k samples 2k samples

Channel-Gain List 256 entries

Input Ranges 0–5V, ±5V,

0–8V, ±8V @

10V ranges

0–5V, 0–10V, ±5V, ±10V

(software selectable)

Programmable Gains by channel H=1, 2, 4, 8 L=1,10,100,1000

H=1, 2, 4, 8

Drift:

 Zero

 Gain

±30 µV/°C

±30 ppm/°C

Input Impedance 10 MΩ

Input Bias Current ±20 nA

Input Overvoltage ±20V,2000V ESD 10

mA max

±35V continuous

A/D Conversion Time 0.45 µsec 0.8 µsec 2 µsec

A/D Settling Time 0.37 µsec 0.6 µsec 1.2 µsec

DC Accuracy

Nonlinearity ±2 LSB ±0.5 LSB ±1 LSB

System Noise 1.2 LSB 0.3 LSB 1.3 LSB

AC Accuracy

Effective Number of Bits 12.2 11.63 14.5

Total Harmonic Distortion+

Nonlinearity+Noise

76 dB 71.8 dB 88 dB

Channel Crosstalk -80 dB @ 1k S/sec

 Clocking and Trigger Input

Maximum A/D Pacer Clock

Aggregate Throughput

@ 0.01% accuracy

2200k S/sec @ 1 ch

1800k S/sec @ all

1250k S/sec 500k S/sec

External A/D Sample Clock

Maximum Frequency

2200k S/sec @ 1 ch

1800k S/sec @ all

1250k S/sec 500k S/sec

 Minimum Pulse Width 20 nsec

External Digital (TTL)Trigger

 High-level Input Voltage

 Low-level Input Voltage

 Minimum Pulse Width

2.0V min

0.8V min

20 nsec

Appendix A: Specifications

124

Model: PDXI-MF-xx- 400/14x 333/16x 150/16x

 Resolution 14 bits 16 bits 16 bits

Number of Channels:

 Single-Ended

 Differential

16 or 64

8 or 32

16

8

Maximum Sampling Rate 400k S/sec 333k S/sec 150k S/sec

Onboard FIFO Size

(upgradeable to 16k, 32k, 64k)

1k samples

Channel-Gain List 256 entries

Input Ranges 0–5V, 0–10V, ±5V, ±10V

(software selectable)

Programmable Gains by channel L=1,10,100,1000

H=1, 2, 4, 8

Drift:

 Zero

 Gain

±30 µV/°C

±30 ppm/°C

Input Impedance 10 MΩ

Input Bias Current ±20 nA

Input Overvoltage ±35V continuous

A/D Conversion Time 2.5 µsec 2.0 µsec 6 µsec

A/D Settling Time 2.0 µsec 1.2 µsec 5 µsec

DC Accuracy

Nonlinearity ±0.5 LSB ±1 LSB ±1 LSB

System Noise 0.8 LSB 1.3 LSB 1.2 LSB

AC Accuracy

Effective Number of Bits 13.1 14.5 14.8

Total Harmonic Distortion+

Nonlinearity+Noise

81 dB 89 dB 91 dB

Channel Crosstalk -80 dB @ 1k S/sec

 Clocking and Trigger Input

Maximum A/D Pacer Clock

Aggregate Throughput

@ 0.01% accuracy

400k S/sec 333k S/sec 150k S/sec

External A/D Sample Clock

Maximum Frequency

400k S/sec 333k S/sec 150k S/sec

 Minimum Pulse Width 20 nsec

External Digital (TTL)Trigger

 High-level Input Voltage

 Low-level Input Voltage

 Minimum Pulse Width

2.0V min

0.8V min

20 nsec

Appendix A: Specifications

125

Analog Outputs - all PDXI-MF models

 Number of Channels 2

 Resolution 12 bits

 Update Rate 200k S/sec each

 Onboard FIFO Size 2k samples (on DSP)

 Analog Output Range ±10V

 Error

 Gain ±1 LSB

 Zero Calibrated to 0

 Current Output ±20 mA max

 Output Impedance 0.3W typ

 Capacitive Drive Capability 1000 pF

 Nonlinearity ±1 LSB

 Protection Short circuit to analog ground

 Power-on Voltage 0V ±10 mV

 Setting Time to 0.01% of FSR 10 µsec, 20V step

1 µsec, 100-mV step

 Slew Rate 30 V/µsec

Digital I/O - all PDXI-MF models

 Input Bits

(8 can generate IRQ)

16

 Output Bits 16

 Inputs:

 High-level Input Voltage

 Low-level Input Voltage

 High-level Input Current

 Low-level Input Current

2.0V min

0.8V max

20 µA

-20 µA

Outputs:

 Output Driver High Voltage

 Output Driver Low Voltage

2.5V min, 3.0V typ (IOH = -32 mA)

0.55V max (IOL = 64 mA)

 Current Sink -32/64 mA max, 250 mA per port

 Pulse Width 20 nsec min, interrupt bit latched on

rising, falling or either edge

 Power-on Voltage Logic Zero

Appendix A: Specifications

126

Counter/Timer - all PDXI-MF models

 Number of Counters 3 available to user (Intel 82C54)

 Resolution 16 bits on each counter

Clock Inputs:

 Software configurable

High-level Input voltage

 Low-level Input voltage

 High-level Input current

 Low-level Input current

Internal, 1M S/sec,

External, 10M S/sec

2.0V min

0.8V max

20 µA

-20 µA

 Gate Inputs:

 Maximum Pulse Width

100 nsec (High), 100 nsec (Low)

 Counter Outputs:

 Output Driver High Voltage

 Output Driver Low Voltage

Inverted

2.5V min (IOH = 24 mA)

0.55V max (IOH = 48 mA)

General Specifications and Connectors – all PDXI-MF models

 Power Requirements 5V

 Physical Dimensions 7 x 4” (177 x 101 mm)

Environmental:

 Operating Temperature Range

 Storage Temperature Range

 Relative Humidity

0 to 70°C

-25 to 85°C

to 95%, noncondensing

 Connector J1 96-pin high-density Fujitsu connector (male)

(Fujitsu PN# FCN-245P096-G/U)

 Connector J2 80-pin header connector (male)

(Adam Tech PN# HBMR-A-80-VSG)

Appendix A: Specifications

127

PDXI-MFS Simultaneous Sampling Boards

Model: PDXI-MFS-xx- 2M/14 1M/12 800/14

Resolution 14 bits 12 bits 14 bits

Number of Channels

 Single-Ended

 Differential (optional)

4 or 8

4 or 8

Maximum Sampling Rate

(multiple channels)

2M S/sec 1M S/sec 800k S/sec

Onboard FIFO Size

(upgradeable to 16k, 32k, 64k)

4k samples 1k samples

Input Ranges 0–5V, ±5V, 0–8V,

±8V @ 10V ranges

0–5V, 0–10V, ±5V, ±10V

(software selectable)

Channel-Gain List 256 entries

Programmable Gains by channel 1, 2, 5, 10

Drift

 Zero

 Gain

±30 µV/°C

±30 ppm/°C

Input Impedance 1 MΩ

Input Bias Current ±100 pA

Input Overvoltage ±18V SE

±40V DI

A/D Conversion Time 0.45 µsec 0.8 µsec 1.25 µsec

SSH Amp Settling Time 0.7 µsec 0.9 µsec 1.0 µsec

A/D Settling Time 0.4 µsec 0.6 µsec 1.25 µsec

DC Accuracy

Nonlinearity

(no missing codes)

±2 LSB ±0.5 LSB

AC Accuracy

Effective Number of Bits 12.1 11.3 12.7

Channel Crosstalk -80 dB @ 1k S/sec

Clocking and Trigger Input

Maximum A/D Pacer Clock 1500k S/sec @ 4 ch,

1700k S/sec @ 8 ch

975k S/sec @ 4 ch,

1095k S/sec @ 8 ch

800k S/sec

External A/D Sample Clock

 Maximum Frequency

1500k S/sec @ 4 ch

1700k S/sec @ 8 ch

975k S/sec @ 4 ch,

1095k S/sec @ 8 ch

800k S/sec

 Minimum Pulse Width 20 ns

External Digital (TTL)Trigger

 High-level Input Voltage

 Low-level Input Voltage

 Minimum Pulse Width

2.0V min

0.8V min

20 nsec

Appendix A: Specifications

128

Model: PDXI-MFS-xx- 500/16 500/14 300/16

Resolution 16 bits 14 bits 16 bits

Number of Channels

 Single-Ended

 Differential (optional)

4 or 8

4 or 8

Maximum Sampling Rate

(multiple channels)

500k S/sec 300k S/sec

Onboard FIFO Size

(upgradeable to 16k, 32k, 64k)

1k samples

Input Ranges 0–5V, 0–10V, ±5V, ±10V

(software selectable)

Channel-Gain List 256 entries

Programmable Gains by channel 1, 2, 5, 10

Drift

 Zero

 Gain

±30 µV/°C

±30 ppm/°C

Input Impedance 1 MΩ

Input Bias Current ±100 pA

Input Overvoltage ±18V SE

±40V DI

A/D Conversion Time 2 µsec 2.0 µsec 3 µsec

SSH Amp Settling Time 1.2 µsec 1.2 µsec 1.2 µsec

A/D Settling Time 1.5 µsec 1.2 µsec 2.7 µsec

DC Accuracy

Nonlinearity

(no missing codes)

±1 LSB

AC Accuracy

Effective Number of Bits 13.8 12.7 13.8

Channel Crosstalk -80 dB @ 1k S/sec

Clocking and Trigger Input

Maximum A/D Pacer Clock 500k S/sec 300k S/sec

External A/D Sample Clock

 Maximum Frequency

500k S/sec

300k S/sec

 Minimum Pulse Width 20 nsec

External Digital (TTL)Trigger

 High-level Input Voltage

 Low-level Input Voltage

 Minimum Pulse Width

2.0V min

0.8V min

20 nsec

Appendix A: Specifications

129

Analog Outputs—all PDXI-MFS models

 Number of Channels 2

 Resolution 12 bits

 Update Rate 200k S/sec each

 Onboard FIFO Size 2k samples (on DSP)

 Analog Output Range ±10V

 Error

 Gain ±1 LSB

 Zero Calibrated to 0

 Current Output ±20 mA max

 Output Impedance 0.3W typ

 Capacitive Drive Capability 1000 pF

 Nonlinearity ±1 LSB

 Protection Short circuit to analog ground

 Power-on Voltage 0V ±10 mV

 Setting Time to 0.01% of FSR 10 µsec, 20V step

1 µsec, 100-mV step

 Slew Rate 30 V/µsec

Counter/Timer—all PDXI-MFS models

 Number of Counters 3 available to user

(Intel 82C54)

 Resolution 16 bits on each counter

 Clock Inputs

 Software configurable

 High-level Input voltage

 Low-level Input voltage

 High-level Input current

 Low-level Input current

Internal, 1M S/sec

External, 10M S/sec

2.0V min

0.8V max

20 µA

-20 µA

Gate Inputs

 Maximum Pulse Width

100 nsec (High), 100 nsec

(Low)

Counter Outputs

 Output Driver High Voltage

 Output Driver Low Voltage

Inverted

2.5V min (IOH = 24 mA)

0.55V max (IOH = 48 mA)

Appendix A: Specifications

130

Digital I/O—all PDXI-MFS models

Input Bits

(8 can generate IRQ)

16

 Output Bits 16

Inputs

 High-level Input Voltage

 Low-level Input Voltage

 High-level Input Current

 Low-level Input Current

2.0V min

0.8V max

20 µA

-20 µA

Outputs:

 Output Driver High Voltage

 Output Driver Low Voltage

2.5V min, 3.0V typ (IOH = -32 mA)

0.55V max (IOL = 64 mA)

Current Sink -32/64 mA max, 250 mA per port

Pulse Width 20 ns min, interrupt bit latched on rising,

falling or either edge

Power-on Voltage logic Zero

General Specifications and Connectors - all PDXI-MFS models

 Power Requirements 5V

 Physical Dimensions 7 x 4” (177 x 101 mm)

Environmental:

 Operating Temperature Range

 Storage Temperature Range

0 to 70°C

-25 to 85°C

 Relative Humidity to 95%, noncondensing

 Connector J1 96-pin high-density Fujitsu connector (male)

(Fujitsu PN#FCN-245P096-G/U)

 Connector J2 80-pin header connector (male)

(Adam Tech PN# HBMR-A-80-VSG)

Appendix A: Specifications

131

132

Appendix B: PowerDAQ A/D

Timing
The following tables are intended to help you determine the fastest acquisition rates for various

models when working with various gains.

In the Board Model column, note that an “x” is a placeholder for various models and represents

the number of channels on the board.

In the Resolution / Speed / Gain column, “Low” refers to a board with modest gain capabilities

(either 1, 2, 4, 8 or 1, 2, 5, 10) and are intended to work with high-level signals—and hence the

“H” suffix on the board model number. Conversely, “High” in the second column refers to a board

with high gain capabilities (1, 10, 100, 1000) and are intended to work with low-level signals—

and hence the “L” suffix on the board model number.

The column “Fast Acq Delay” gives the minimum time between conversions when the board is

digitizing at its maximum rate.

The column “Slow Acq Delay (using Slow Bit)” gives the minimum time between conversions

when you activate the Slow Bit for a channel. Recall that a Slow Bit setting instructs the board to

wait an extra amount of time before taking the next sample, thereby giving the amplifier and other

front-end elements time to settle to the next value before actually digitizing the signal. This

column tells you exactly how much time you can expect to wait until the next channel is digitized.

 Note We are working constantly to improve these specifications, and so they are subject to change. Please

check with the factory for the latest values.

Appendix B: PowerDAQ A/D Timing

133

PD2-MF Series Timing

Board Model Resolution / Speed /

Gain

Fast Acq

Delay

Slow Acq Delay

(using Slow Bit)

PD2-MF-xx-3M/12L 12 / 3 MHz / High 283 nsec 800 µsec

PD2-MF-xx-3M/12H 12 / 3 MHz / Low 283 nsec 800 µsec

PD2-MF-xx-2M/14H 14 / 2.2 MHz / Low 450 nsec 3.0 µsec

PD2-MF-xx-500/16L 16 / 500 kHz / High 2.0 µsec 20 µsec

PD2-MF-xx-500/16H 16 / 500 kHz / Low 2.0 µsec 10 µsec

PD2-MF-xx-400/14L 14 / 400 kHz / High 2.5 µsec 25.0 µsec

PD2-MF-xx-400/14H 14 / 400 kHz / Low 2.5 µsec 10.0 µsec

PD2-MF-xx-333/16L 16 / 333 kHz / High 3.0 µsec 20.0 µsec

PD2-MF-xx-333/16H 16 / 333 kHz / Low 3.0 µsec 10.0 µsec

PD2-MF-16-150/16L 16 / 150 kHz / High 6 µsec 20 µsec

PD2-MF-16-150/16H 16 / 150 kHz / Low 6 µsec 10 µsec

PD2-MFS Series Timing

Board Model Resolution /

Speed

Fast Acq

Delay

Slow Acq Delay

(using Slow Bits)

SSH Acq

Delay

SSH Hold

Delay

PD2-MFS-x-2M/14 14 / 2.2 MHz 450 nsec 2.0 µsec 700 nsec 500 nsec

PD2-MFS-x-800/14 14 / 800 kHz 1.25 µsec 3.0 µsec 900 nsec 700 nsec

PD2-MFS-x-500/14 14 / 500 kHz 2.0 µsec 3.0 µsec 900 nsec 700 nsec

PD2-MFS-x-333/16 16 / 333 kHz 3.0 µsec 10.0 µsec 900 nsec 700 nsec

PDL-MF Series Timing

Board Model Resolution / Speed / Gain Fast Acq

Delay

Slow Acq Delay (no

Slow Bits)

PDL-MF/PDL-MF-50 16 / 50 kHz / 1,2,5,10 20 µsec N/A

PDL-MF-333 16 / 333 kHz / 1,2,5,10 3 µsec N/A

Appendix B: PowerDAQ A/D Timing

134

PDXI-MF Series Timing

Board Model Resolution / Speed /

Gain

Fast Acq

Delay

Slow Acq Delay

(using Slow Bits)

PDXI-MF-xx-2M/14H 14 / 1.65 MHz / Low 450 nsec 3.0 µsec

PDXI-MF-xx-1M/12L 12 / 1.25 MHz / High 800 nsec 20.0 µsec

PDXI-MF-xx-1M/12H 12 / 1.25 MHz / Low 800 nsec 5.0 µsec

PDXI-MF-xx-800/14L 14 / 800 kHz / High 1.25 µsec 20.0 µsec

PDXI-MF-xx-800/14H 14 / 800 kHz / Low 1.25 µsec 10.0 µsec

PDXI-MF-xx-500/16L 16 / 500 kHz / High 2.0 µsec 20.0 µsec

PDXI-MF-xx-500/16H 16 / 500 kHz / Low 2.0 µsec 10.0 µsec

PDXI-MF-xx-400/14L 14 / 400 kHz / High 2.5 µsec 25.0 µsec

PDXI-MF-xx-400/14H 14 / 400 kHz / Low 2.5 µsec 10.0 µsec

PDXI-MF-xx-333/16L 16 / 333 kHz / High 3.0 µsec 20.0 µsec

PDXI-MF-xx-333/16H 16 / 333 kHz / Low 3.0 µsec 10.0 µsec

PDXI-MF-xx-150/16L 16 / 150 kHz / High 6.0 µsec 20.0 µsec

PDXI-MF-xx-150/16H 16 / 150 kHz / Low 6.0 µsec 10.0 µsec

PDXI-MF-xx-100/16L 16 / 100 kHz / Low 10.0 µsec 50.0 µsec

PDXI-MF-xx-100/16H 16 / 100 kHz / High 10.0 µsec 50.0 µsec

PDXI-MFS Series Timing

Board Model Resolution /

Speed

Fast Acq

Delay

Slow Acq

Delay (using

Slow Bits)

SSH Acq

Delay

SSH Hold

Delay

PDXI-MFS-x-2M/14 14 / 2.2 MHz 450 nsec 2.0 µsec 700 nsec 500 nsec

PDXI-MFS-x-1M/12 12 / 1.25 MHz 800 nsec 2.0 µsec 700 nsec 500 nsec

PDXI-MFS-x-800/14 14 / 800 kHz 1.25 µsec 3.0 µsec 900 nsec 700 nsec

PDXI-MFS-x-500/14 14 / 500 kHz 2.0 µsec 3.0 µsec 900 nsec 700 nsec

PDXI-MFS-x-333/16 16/ 333 kHz 3.0 µsec 10.0 µsec 900 nsec 700 nsec

Appendix B: PowerDAQ A/D Timing

135

136

Appendix C: Accessories
UEI supplies a wide range of accessories for the PowerDAQ PD2/PDXI boards. They greatly

expand the core functionality of standard MF(S) hardware and allow you to employ these cards in

very demanding applications. These accessories also provide the means for implementing custom

interconnection schemes for OEM applications.

Screw-Terminal Panels (PD2/PDXI)

PD/PDXI-STP-96 Screw-terminal panel with 96- and 37-pin connector, suited for boards with as

many as 64 analog channels

PD/PDXI-STP-96-KIT Complete kit: Includes PD-STP-96, PD-CBL-96 and PD-CBL-37 for

64-channel boards

PD/PDXI-STP-9616 Screw-terminal panel with 96-pin and 37-pin connector for 4/8/16-channel

boards

PD/PDXI-STP-9616-KIT Complete kit: Includes PD-STP-9616, PD-CBL-96 and PD-CBL-37 for

4/8/16-channel boards

PD-STP-3716 Low-cost screw-terminal panel with 37-pin connector for 16-channel boards

PD-STP-3716-KIT Complete kit: Includes PD-STP-3716 and PD-CBL-9637 for 16-channel

boards

PD-STP-DIO Screw-terminal panel with 37-pin connector, handles digital I/O and

counter/timer signals only.

Screw Terminal Panels (PDL-MF only)

PDL-STP 100-way screw terminal with dual 50-pin IDC connectors

PDL-CBL-100 18” cable, connects 100-way connector on PDL-MF board and is terminated

with dual 50-way IDC connectors for the PDL-STP

PDL-MF-CONN Connector for direct attachment of signal leads to PDL-MF board, no cable

required

Appendix C: Accessories

137

BNC & Distribution Panels (PD2/PDXI)

PD-BNC-16 BNC panel for 16-channel boards

PD-BNC-16-KIT Complete kit: Includes PD-BNC-16, PD-CBL-96, PD-CBL-37

(for 16-channel boards)

PD/PDXI-BNC-64 BNC panel for 64-channel boards

PD/PDXI-BNC-64-KIT Complete kit: Includes PD-BNC-64, PD-CBL-96, PD-CBL-37

(for 64-channel boards)

 Note See Appendix E for PD-BNC wiring tips.

Cables (PD2/PDXI)

PD/PDXI-CBL-96 96-way pinless, round, 1m shielded cable with metal cover plates

PD/PDXI-CBL-96-6FT 96-way pinless, round, 6-ft shielded cable with metal cover plates

PD/PDXI-CBL-96-9FT 96-way pinless, round 9-ft shielded cable with metal cover plates

PD/PDXI-CBL-37 DIO cable set: 37-way, 1m D-sub cable, internal cable with mounting

bracket

PD-CBL-37-6FT DIO cable set: 37-way, 6-ft D-sub cable, internal cable with mounting

bracket

PD-CBL-37-9FT DIO cable set: 37-way, 9-ft D-sub cable, internal cable with mounting

bracket

PD-CBL-37BRKT DIO cable: 37-way, 1m internal cable with mounting bracket

PD-CBL-37TP DIO twisted-pair cable set: 37-way, 1m D-sub cable, internal cable

with mounting bracket

PD-CBL-3650-8/8 DIO cable set: 36/50-way 1m ribbon cable, internal cable

with mounting bracket (for 8 DI and 8 DO)

PD-CBL-3650-16I DIO cable set: 36/50-way 1m ribbon cable, internal cable

with mounting bracket (for 16 DI)

PD-CBL-3650-16O DIO cable set: 36/50-way 1m ribbon cable, internal cable

with mounting bracket (for 16 DO)

PD-CBL-5B 18” ribbon cables that connect from the PD-5BCONN to

5B-xx racks

PD-CBL-7B 18”. ribbon cables that connect from the PD-7BCONN to

7B-xx racks

PD-CBL-SYNC4 Internal cable to synchronize up to four PowerDAQ

MF(S) boards

PD-CBL-SYNC5 Internal cable to synchronize up to five PowerDAQ

MF(S) boards

PD-CBL-SYNC10 Internal cable to synchronize up to ten PowerDAQ

MF(S) boards

Appendix C: Accessories

138

Mating cables, connectors, rack mounts (PD2/PDXI)

PD-CONN Mating connector with metal cover (includes Fujitsu

PN# FCN-230C096-C/E and FCN-247J096-G/E). Allows users to create

custom connector pinouts from PowerDAQ board.

PD-CONN-CBL 96-way pinless, 0.5m, round shielded cable with

metal cover plate (bare wires at one end)

PD-CONN-PCB PowerDAQ mating connector with pc-board attached

PD-CONN-9696 PowerDAQ connector for interfacing to custom/OEM boxes or equipment.

PD-CONN-NI Converts 100-way NI multipurpose analog-digital connector to the

PowerDAQ 96-way analog and 37-way digital connectors

PD-CONN-STR Individual Fujitsu connector (PN FCN-244P096-G/E), with a vertical pc-

board mount

PD-CONN-RTA Individual Fujitsu connector (PN FCN-245P096) with a right-angle

pc-board mount (version used on PowerDAQ boards)

PD-19RACK 19” rack, holds 3.5” deep terminal panels such as the PD-STP-96,

PD-STP-9616, and PD-BNC-16

PD-19RACKW 19” rack, wide version holds 7” deep terminal panels such as the

PD-TCR-16-x or PD-BNC-64

PD-5BCONN Connects 16- or 64-channel PowerDAQ board to one to four

5B-xx racks

PD-7BCONN Connects 16- or 64-channel PowerDAQ board to one to four

7B-xx racks

PD-100HDR Connects 16- or 64-channel PowerDAQ board to two 50-way IDC headers

Appendix C: Accessories

139

Signal Conditioning (all boards)

PD-PSU-5/15 Power supply (110/200V ac in; 5V, ±5V dc out) for use with PD-TCR-

16-x racks or with PD-ASTPs

PD-SCXU-AOMUX 8-channel analog-output multiplexer

PD-ASTP-16 16-channel AIn active screw-terminal panel (G = 1, 6-dB

cutoff @ 100 Hz)

PD-ASTP-16X 16-channel ASTP panel that adds 2 analog excitation-voltage channels

PD-ASTP-16SG Precision version of ASTP-16X with G = 100, cutoff of 10 Hz, for use

with strain gages and thermocouples

PD-5B-CONN Connects 64-channel PowerDAQ board to four ASTPs

PD2-DIO-BPLANE16 16-channel backplane for solid-state relay modules

PD2-DIO-CONN64-4 Distribution board (converts 100-way connector to four

50-way IDC headers)

PD2-DIO-CBL-100 100-way 1m cable

PD2-DIO-CBL-50 18” 50/50-way IDC ribbon cable, connects

PD2-DIO-CONN64-4 to PD2-DIO-BPLANE16

PD-5B-04 2-channel backplane, mounts 5B analog I/O modules to

MF(S) boards

PD-5B-08 8-channel backplane, mounts 5B analog I/O modules to

MF(S) boards

PD-5B-01 16-channel backplane, mounts 5B analog I/O modules to

MF(S) boards

 Note UEI supplies a wide range of analog and digital signal-conditioning modules for use on these racks.

The list is far too extensive to publish in this manual. For the latest list, contact the factory or your

local distributor, or review the list on our web site at www.ueidaq.com.

140

Appendix D: PowerDAQ SDK

Structure
The installation will create the following directory structure in Program Files. This assumes you

selected the SDK installation (default). This software ships on the PowerDAQ Software Suite CD-

ROM that accompanies each board.

Figure D.1—PowerDAQ Software Structure

Appendix D: PowerDAQ SDK Structure

141

PowerDAQ Windows device drivers

Windows 9x

 \windows\system pwrdaq95.vxd

Windows NT

\winnt\system32\drivers pwrdaq.sys

Windows 2000

\winnt\system32\drivers PwrDAQ2K.sys

\winnt\inf PwrDAQ2K.inf

Windows XP

\windows\system32\drivers PwrDAQ2K.sys

\windows\inf PwrDAQ2K.inf

 Note The PDL-MF works on all operating systems except Windows 9x, and it also runs under Linux and

QNX. The PowerDAQ Software Suite Version 3 or above is required.

PowerDAQ Windows DLLs

The PowerDAQ Software Suite includes various DLLs (dynamic linked libraries) for different

versions of the Windows operating system. The location of these DLLs is as follows:

Windows 9x

 \windows\system PwrDAQ32.dll (32-bit)

PwrDAQ16.dll (16-bit)

Windows NT/2000

\winnt\system32 PwrDAQ32.dll

PwrDAQ16.dll

Windows XP

\windows\system32 PwrDAQ32.dll

PwrDAQ16.dll

The DLLs have identical names for Windows 9x and NT/2000/XP, but note that they are

implemented differently. Both support the same API, so PowerDAQ applications that don’t use

functions specific to Win9x or WinNT/2000/XP should run on any version of Windows.

Appendix D: PowerDAQ SDK Structure

142

PowerDAQ Language Libraries

PowerDAQ SDK contains libraries for all major software development tools.

/lib

pwrdaq32.lib MSVC/MSVS v.5.x, 6.x

pd32bb.lib Borland C Builder v.3.0, 4.0

pd16bb.lib 16-bit Borland compilers

pwrdaq16.lib 16-bit MSVC 1.5x

Appendix D: PowerDAQ SDK Structure

143

PowerDAQ Include Files

/include

aliases.bas auxiliary functions to access PowerDAQ structures from within VB

DAQDefs.bas DAQ constant and variable definitions file for Visual Basic

DAQDefs.pas DAQ constant and variable definitions file for Delphi

pdApi.bas module used in SimpleTest VB example

pd_dsp_ct.h DSP counter-timer register definitions file for C/C++

pd_dsp_ct.pas DSP counter-timer register definitions file for Delphi

pd_dsp_es.h ESSI port register definitions file for C/C++

pd_dsp_es.pas ESSI port register definitions file for Delphi

pd32hdr.h PowerDAQ DLL driver interface function definitions file for C\C++

pd32hdr.pas PowerDAQ DLL driver interface function definitions file for Delphi

pdfw_bitsdef.bas PowerDAQ Firmware Command definitions file for Visual Basic

pdfw_bitsdef.pas PowerDAQ Firmware Command definitions file for Delphi

pdfw_def.h firmware constant definition file for C/C++

pdfw_def.pas firmware constant definition file for Borland Delphi

pdfw_def.bas firmware constant definition file for Visual Basic

pd_hcaps.h boards capabilities definition file for C/C++

pd_hcaps.pas PowerDAQ Firmware PCI interface definitions file for Visual Basic

pdpcidef.h PowerDAQ Firmware PCI interface definitions file for C\C++

pdpcidef.pas PowerDAQ Firmware PCI interface definitions file for Delphi

pwrdaq.h driver constants and definitions file for C/C++

pwrdaq.pas driver constants and definitions file for Delphi

pwrdaq.bas driver constants and definitions file for Visual Basic

pwrdaq32.h API function prototypes and structures file for C

pwrdaq32.hpp API function prototypes and structures file for C++

pwrdaq32.pas API function prototypes and structures file for Delphi

pwrdaq32.bas API function prototypes and structures file for Visual Basic

pxi.bas PXI related function definitions file for Visual Basic

pxi.h PXI related function definitions file for C\C++

sigproc.h PowerDAQ FFT and windows routines definition file for C

sigproc.hpp PowerDAQ FFT and windows routines definition file for C++

Appendix D: PowerDAQ SDK Structure

144

vbdll.bas auxiliary functions to access PowerDAQ buffer from within VB

/include/vb3

pwrdaq16.bas API function prototypes and structures file for Visual Basic v.3.0

pdfw_def.bas firmware constant definition file for Visual Basic v.3.0

pd_hcaps.bas boards capabilities definition file for Visual Basic v.3.0

daqdefs.bas event word definition for Visual Basic v.3.0

/include/16-bit

pwrdaq16.h API function prototypes and structures file for 16-bit C/C++

pwrdaq.h driver constants and definitions file for 16-bit C/C++

pdd_vb3.h auxiliary functions to access PowerDAQ structures from within VB

v.3.0

pd_hcaps.h boards capabilities definition file for 16-bit C

Appendix D: PowerDAQ SDK Structure

145

PowerDAQ Linux support

The PowerDAQ API for Linux, which also supports two variations of realtime Linux (the kernels

from RTAI and FSMLabs) is very similar to the Windows API.

Kernel driver:

/lib/modules/<kernel_version>/misc/pwrdaq.o

Shared library:

/usr/local/lib/libpowerdaq32.so.1.0

Header files:

win_sdk_types.h datatype definitions needed by the files above.

pdfw_def.h firmware constant definition file for C/C++

powerdaq.h driver constants and definitions file for C/C++

powerdaq32.h API function prototypes and structures file for C/C++

PowerDAQ QNX Support

QNX driver:

 /usr/bin/dev-pwrdaq

Shared library:

 /usr/lib/libpwrdaq.so

 /usr/lib/libpowerdaq32.so

Header files:

 pdl_headers.h header files specific to QNX6 and QNX4

 powerdaq.h driver constants and definitions file for C/C++

 powerdaq32.h API function prototypes and structures file for C/C++

 pdfw_def.h firmware constant definition file for C/C++

 win2qnx.h DDK types conversion into QNX types.

146

Appendix E: Application Notes

1. PowerDAQ Advanced Circular Buffer (ACB)

The Advanced Circular Buffer (ACB) solves many of the problems associated with high-

throughput data acquisition on a multithreaded /multitasking operating system. For simplicity, data

acquisition as an input process is discussed here. However, the same concepts can be applied to

output-signal generation.

• Asynchronous operation

• Nondeterministic processor time slots per thread

• Dynamic processor loading

• Nondeterministic user operation

The ACB requires that the DAQ interface library allocate a large circular buffer in the

application's memory space. The buffer size must be no larger than the available physical memory

with sufficient physical memory left over for most of the executable portion of the OS and active

applications to reside in memory. This prevents code or data from frequently being swapped to

disk. Consequently, if continuous gap-free acquisition is to be performed, the buffer should be

large enough to hold all the acquired data for the maximum time period expected between

application execution latency and the time required for the application to process all data in a full

buffer. This also implies that the application must be able to process the data at a rate faster than

the rate of acquisition.

Once acquisition is started, the DAQ board/driver transfer and store data into the buffer at one

rate, and the application generally reads the data from the buffer at another rate. Both operations

occur asynchronously of each other.

Appendix E: Application Notes

147

Frame Markers

Buffer Tail

Buffer Head

Board/Driver

Write New Data

At Buffer Head

Application

Reads Data From

Buffer Tail

Driver Asserts

Frame Done Events

When Data Written

Passes Frame
Boundry

Advanced Circular

Buffer

Figure E.1—Advanced Circular Buffer

The application can be synchronized to the acquisition process by either timer notification or by an

event from the driver notifying that a certain sample count boundary has been passed.

In order to receive notification on a sample or scan count boundary, the buffer is segmented into

frames. Whenever the data transferred to the buffer crosses a frame boundary, the driver sends an

event to the application. This event wakes up the application thread that is responsible for

processing data in the buffer. To keep the frame boundaries at fixed buffer locations, the buffer

size should be a multiple of the frame size. If multichannel acquisition is performed, then the

frame size should also be a multiple of the scan size. Doing so keeps the pointer arithmetic from

becoming unnecessarily complex.

With the ACB, three modes of operation are possible:

• Single Buffer

• Circular Buffer

• Recycled Circular Buffer

In all three modes, data is written to the beginning of the buffer at the start of acquisition. The

three modes differ in what is done when the end of the buffer is reached and if the buffer head

catches up with the buffer tail.

Appendix E: Application Notes

148

Single Buffer

In the Single Buffer mode, acquisition stops when the buffer end is reached. In this mode, the

application can access the buffer and process the data any time during acquisition or wait until the

buffer is full, and acquisition stops. The Single Buffer mode is the simplest to program, and it’s

also the most common. It is useful in applications where acquiring data in a continuous stream is

not required. This is similar to the way digital multimeters and storage scopes acquire signals,

whereby a single buffer is filled and then the waveform is displayed. This process can also be

repeated any number of times.

Circular Buffer

In the Circular Buffer mode, the buffer head and tail wrap to the beginning of the buffer when the

end is reached. Data is written at the location pointed to by head and the head pointer is

incremented, and likewise data is read from the location pointed to by the tail and the tail pointer

is incremented. When the head pointer wraps around and reaches the tail pointer, then the buffer is

considered full and acquisition stops with a buffer overflow condition. To prevent unintentional

incrementing of the tail pointer, the pointer should be incremented after the application has

finished reading the data in the buffer and has indicated that the buffer space is relinquished for

the write operation.

The Circular Buffer mode is useful in applications that must acquire data with no sample loss.

Each acquired sample must be stored by the hardware/driver and read by the application. The data-

acquisition operation continues until the application issues a stop command to the driver. If the

application cannot keep up with the acquisition process and the buffer overflows, then the

acquisition is stopped and the error condition is reported.

Recycled Circular Buffer

The Recycled Circular Buffer mode is similar to the Circular Buffer mode except that when the

head pointer catches up with the tail pointer, the tail pointer is automatically incremented to the

next frame boundary. This buffer-space recycling occurs irrespective of whether the application

read the data or not. In this mode, a buffer overflow condition never occurs.

The Recycled Circular Buffer is best suited for applications that monitor acquired signals at

periodic intervals. The application may require the signals to be acquired at a high rate, but not all

acquired samples need to be processed. Also, an application may only need the latest block of

samples acquired. As the buffer fills up, the driver is free to recycle frames, automatically

incrementing the buffer tail, and using the space to store new samples.

While the Advanced Circular Buffer may appear a much different buffering mechanism when

compared to the much simpler single and double buffer mechanisms, it is actually a superset of the

simpler buffers. The ACB configured in the single buffer mode will behave just as the simple

ordinary single buffer. If the ACB is configured as Circular Buffer with two frames, it will behave

as a double buffer. With multiple frames, the ACB can be used in algorithms that were designed

for buffer queues. The only limitation, which consequently results in more efficient performance,

is that the logical buffers in the buffer queues cannot be dynamically allocated and freed. In

addition, their order is fixed.

Appendix E: Application Notes

149

2. PD-BNC-xx wiring options:

Voltage dividers

To build a voltage divider, install resistors in the R0A, R8A and R0C positions for the Ch0 and

Ch8 pair, and similarly for other pairs. Note that when supplied by the factory, the RxA resistors

have 0Ω (wire) jumpers installed

Lowpass filtering

To build a lowpass filter, install resistors in the R0A and R8A positions. Also install a capacitor in

the C0B position for the Ch 0 and Ch 8 pair, and for other pairs as well. Note that when supplied

by the factory, the RxA resistors have 0Ω (wire) jumpers installed.

Highpass filtering

In order to build a highpass filter, install capacitors in the R0A and R8A positions. Also install a

resistor into the C0B position for the Ch 0 and Ch 8 pair and for other pairs as well. Note that

when supplied by the factory, the RxA resistors have 0Ω (wire)jumpers installed.

150

Appendix F: Warranty

All PowerDAQ boards have received CE Mark certification according to the following:

EN55011 Radiated Emissions Standard

EN50082-1 Generic Immunity Standard

UEI Terms and Conditions for all products are available as copies on demand, and

online at http://ueidaq.com/company/terms.aspx

151

Appendix G: Glossary

A

ACB see Advanced Circular Buffer

A/D (see ADC) Analog/digital, often used in connection with an A/D

converter.

adapter Alternate designation for a function card that plugs into a

backplane, often a PC.

ADC (also see A/D) Analog-to-Digital Converter. An integrated circuit that

converts an analog voltage to a digital number.

ADC conversion The process of converting an analog input to its digital

equivalent.

ADC conversion Start Signal used to start the process of converting an analog input

to a digital value. The source of this signal can be an internal

clock or an external asynchronous signal.

ADC Channel List Start Signal used to start the acquisition of digitized values as

defined in the Channel List. The triggering edge of this signal

(falling edge) enables the ADC conversion Start signals.

Advanced Circular Buffer A special user-defined buffer in host memory that stores

frames of collected data. The PowerDAQ driver allows the

user application to fetch data from this buffer in several

modes.

alias A false lower-frequency component that appears in sampled

data that has been acquired at an insufficiently high sampling

rate.

analog trigger A trigger that occurs when an analog signal reaches a user-

selected level. Users can configure triggering to occur at a

specific level on either an increasing or a decreasing signal

(positive or negative slope).

API Application Programming Interface, a collection of high-level

language function calls that provide access the functions in a

driver or other utility.

asynchronous (1) Hardware—A property of an event that occurs at an

arbitrary time, without synchronization to a reference clock.

Appendix G: Glossary

152

 (2) Software—A property of a function that begins an

operation and returns prior to the completion or termination of

the operation.

B
background acquisition Data is acquired by a DAQ system while another program or

processing routine is running without apparent interruption.

base address A memory address that serves as the starting address for

programmable registers. All other addresses are located by

adding to the base address.

bipolar A signal range that includes both positive and negative values

(for example, -5V to +5V, also represented as ±5V).

bit One binary digit, either 0 or 1.

Block mode A high-speed data transfer in which the address of the data is

sent followed by a specified number of back-to-back data

words.

Burst mode A high-speed data transfer in which the address of the data is

sent followed by back-to-back data words while a physical

signal is asserted.

bus The group of conductors that interconnect individual circuitry

in a computer. Typically, a bus is the expansion vehicle to

which I/O or other devices are connected. Examples of PC

buses are the PCI bus and the PXI bus.

bus master A type of plug-in board or controller that can read and write to

devices on the computer bus without the assistance of the host

CPU.

byte Eight related bits of data, an 8-bit binary number. Also used to

denote the amount of memory required to store one byte of

data.

C
cache High-speed processor memory that buffers commonly used

instructions or data to increase processing throughput.

calibration The setting or correcting of a measuring device or base level,

usually by adjusting it to match or conform to a dependably

known and unvarying measure.

channel list A variable length list of from 1 to 256 entries, each of which

defines a channel, its gain any Slow Bits. In continuous A/D

acquisition mode, the list wraps around to the first channel

after it reaches the end. The channels need not be in any

particular order and may appear multiple times in the list.

Channel List FIFO The on-board memory that holds the Channel List.

Appendix G: Glossary

153

CL clock The Channel List clock, also known as the Burst clock, tells

the control logic how quickly to move to the next entry in the

Channel List and set up the front-end operating parameters

such as gain.

control register Register containing control bits that set up and configure

various onboard subsystems.

CMRR Common-Mode Rejection Ratio, a measure of an instrument's

ability to reject interference from a common-mode signal,

usually expressed in decibels (dB).

code generator A software program, controlled from an intuitive user

interface, that creates syntactically correct high-level source

code in languages such as C or Basic.

cold-junction compensation The means to compensate for the ambient temperature in a

thermocouple measurement circuit.

common-mode range The input range over which a circuit can handle a common-

mode signal.

common-mode signal The mathematical average voltage, relative to the computer's

ground, of the signals going into a differential input.

component software An application that contains one or more component objects

that can freely interact with other component software.

Examples

 include OLE-enabled applications such as Microsoft Visual

Basic and OLE Controls.

conversion time The time, in an analog input or output system, from the

moment a channel is interrogated (such as with a Read

instruction) to the moment that accurate data is available.

counter/timer A circuit that counts external pulses or clock pulses (timing),

such as the Intel 8254 device.

coupling The manner in which a signal is connected from one location

to another.

crosstalk An unwanted signal on one channel due to an input on a

different channel.

current drive capability The amount of current a digital or analog output channel can

source or sink while still operating within voltage range

specifications.

current sinking The ability of a DAQ board to dissipate power from an output

signal, either analog or digital. Some sensors apply a voltage

to a loop, and the DAQ card must be able to accept the

resulting current flow.

current sourcing The ability of a DAQ board to supply current for analog or

digital output signals.

Appendix G: Glossary

154

CV clock The Conversion Clock, also known as the Pacer clock, it

triggers individual acquisitions and thus tells the A/D how fast

to digitize successive samples.

D
D/A Digital-to-analog, digital/analog

DAC Digital-to-Analog Converter, an integrated circuit that

converts a digital value into a corresponding analog voltage or

current.

DAC conversion Start Signal used to start the process of converting a digital value to

an analog output. The source of this signal can be either an

internal synchronous clock or an external asynchronous signal.

DAQ Data Acquisition

 (1) Collecting and measuring electrical signals from sensors,

transducers, and test probes or fixtures, and moving them to a

computer for processing;

 (2) Collecting and measuring the same kinds of electrical

signals with A/D or DIO boards plugged into a PC, and

possibly generating control signals with D/A or DIO boards in

the same PC.

dB Decibel, the unit for expressing a logarithmic measure of the

ratio of two signal levels: dB = 20log10(V1/V2) for signals in

volts.

differential input An analog-input configuration that measures the difference

between signals on two terminals, both of which are isolated

from computer ground.

DIO Digital input/output.

DLL Dynamic Link Library, a software module in Microsoft

Windows containing executable code and data that can be

called or used by Windows applications or other DLLs.

Functions and data in a DLL are loaded and linked at run time

when they are referenced by a Windows application or other

DLLs.

DNL Differential nonlinearity, a measure in LSBs of the worst-case

deviation of code widths from their ideal value of 1 LSB.

DMA Direct Memory Access, a method of transferring data to/from

computer memory from/to a device or memory on the bus,

taking place while the host processor does something else.

DMA is the fastest method of transferring data to/from

computer memory.

drivers Software that controls a specific hardware device such as a

DAQ board.

Appendix G: Glossary

155

DSP Digital signal processing.

dual-access memory Memory that can be sequentially accessed by more than one

controller or processor but not simultaneously. Also known as

shared memory.

dual-port memory Memory that can be simultaneously accessed by more than

one controller or processor.

dynamic range The ratio, normally expressed in dB, of the largest signal level

in a circuit to the smallest signal level. In DAQ boards it

typically refers to the range of signals a board can handle or

the amount of noise it suppresses.

E
EEPROM Electrically Erasable Programmable Read-Only Memory, a

nonvolatile memory device you can repeatedly program for

storage, erase and reprogram.

encoder A device that converts linear or rotary displacement into

digital or pulse signals. The most popular type of encoder is

the optical encoder.

EPROM Erasable Programmable Read-Only Memory: A nonvolatile

memory device that can be erased (usually by ultraviolet light

exposure) and reprogrammed.

event A signal or interrupt generated by a device to notify another

device of an asynchronous event. The contents of events are

device-dependent.

event-based mode A board operating mode whereby it notifies the user

application of certain predefined subsystem events using

Win32 calls. It allows you to write asynchronous applications.

external trigger A voltage pulse from an external source that triggers an event

such as an A/D conversion.

F
FIFO First-In First-Out, usually used in reference to a memory

buffer where the first data stored is the first sent out.

fixed point A format for processing or storing numbers as digital integers.

In fixed-point arithmetic all numbers are represented by

integers, fractions (usually restricted between ±1.0) or a

combination of both integers and fractions. Thus integer

mathematics can be implemented on all general-purpose

processors.

floating point Representing data as a combination of a mantissa and an

exponent. The mantissa is usually described by a signed

fractional value that has a magnitude >= 1.0 and restricted to<

2.0. The exponent, instead, is an integer and represents the

Appendix G: Glossary

156

number of places any binary number must be shifted, left or

right, in order to yield the desired value.

frame A user-defined number of scans, and these datapoints reside in

a predefined portion of a buffer in host-memory. This host-

memory buffer is also known as the Advanced Circular Buffer

(ACB).

function A set of software instructions executed by a single line of code

that may have input and/or output parameters and returns a

value when executed.

G
gain The factor by which a signal is amplified, sometimes

expressed in dB.

gain accuracy A measure of the deviation of an amplifier’s gain from the

ideal gain.

GUI Graphical User Interface, an intuitive means of

communicating information to and from a computer program

by means of graphical screen displays. GUIs can resemble the

front panels of instruments or other objects associated with a

computer program.

H
handler A device driver installed as part of the computer’s OS.

hardware The physical components of a computer system, such as the

circuit boards, plug-in boards, chassis, enclosures, peripherals,

cables, and so on.

I
IMD Intermodulation Distortion, the ratio, in dB, of the total RMS

signal level of harmonic sum and difference distortion

products, to the overall RMS signal level. The test signal

consists of two sinewaves added together.

INL Integral Nonlinearity, a measure in LSB of the worst-case

deviation from the ideal A/D or D/A transfer characteristic of

the analog I/O circuitry.

input bias current The current that flows into the inputs of a circuit.

input impedance The measured resistance and impedance between the input

terminals of a circuit.

input offset current The difference in the input bias currents of the two inputs of

an instrumentation amplifier.

instrumentation amplifier A circuit whose output voltage with respect to ground is

proportional to the difference between the voltages at its two

inputs.

Appendix G: Glossary

157

integral control A control action that eliminates the offset inherent in

proportional control.

integrating A/D An A/D whose output code represents the average value of the

input voltage over a given time interval.

interrupt A computer signal indicating that the CPU should suspend its

current task to service a designated activity.

I/O Input/Output, the transfer of data to/from a computer system

involving communications channels, operator interface

devices, and/or data-acquisition and control interfaces.

IPC Interprocess Communication, protocol by which processes can

pass messages. Messages can be either blocks of data and

information packets, or instructions and requests for

process(es) to perform actions. A process can send messages

to itself, other processes on the same machine, or processes

located anywhere on the network.

isolation voltage The voltage that an isolated circuit can normally withstand,

usually specified from input to input and/or from any input to

the amplifier output, or to the computer bus.

K
k kilo, the standard metric prefix for 1000 or 10

3
, used with

units of measure such as volts, Hertz, and meters.

L
linearity The adherence of device response to the equation R = KS,

where R = response, S = stimulus, and K is a constant.

LSB Least-significant bit.

M
M mega, the standard metric prefix for 1 million or 10

6
, when

used with units of measure such as volts and Hertz; the prefix

for 1,048,576, or 2
20
, when used to quantify data or computer

memory.

Mbytes/s A unit for data transfer that means 1 million or 10
6
 bytes/sec.

MMI Man-machine interface, the means by which an operator

interacts with an industrial automation system; often called a

GUI.

multiplexer A switching device with multiple inputs that sequentially

connects each of its inputs to its output, typically at high

speeds, in order to measure several signals with a single

analog input channel.

Appendix G: Glossary

158

multitasking A property of an operating system in which several processes

can run simultaneously.

mux see multiplexer

N
noise An undesirable electrical signal. Noise comes from external

sources such as the AC

 power line, motors, generators, transformers, fluorescent

lights, soldering irons, CRT displays, computers, electrical

storms, welders, radio transmitters as well as internal sources

such as semiconductors, resistors and capacitors.

O
OLE Object Linking and Embedding, a set of system services that

provides a means for applications to interact and interoperate.

Based on the underlying Component Object Model, OLE is

object-enabling system software. Through OLE Automation,

an application can dynamically identify and use the services of

other applications. OLE also makes it possible to create

compound documents consisting of multiple sources of

information from different applications.

OLE controls see ActiveX controls.

operating system Base-level software that controls a computer, runs programs,

interacts with users, and communicates with installed

hardware or peripheral devices.

optical isolation The technique of using an optoelectric transmitter and receiver

to transfer data without electrical continuity to eliminate high

potential differences and transients.

OS see operating system

output settling time The amount of time required for the analog output voltage of

an amplifier to reach its final value within specified limits.

output slew rate The rate of change of an analog output voltage from one level

to another.

overhead The amount of computer processing resources, such as time or

memory, required to accomplish a task.

P
paging A technique used for extending the address range of a device

to point into a larger address space

Appendix G: Glossary

159

PCI Peripheral Component Interconnect, an expansion bus

architecture originally developed by Intel to replace ISA and

EISA. It offers a theoretical maximum transfer rate of 132M

bytes/sec.

PDXI PowerDAQ eXtensions for Instrumentation, UEI’s

implementation of the PXI bus standard.

PGA see Programmable-gain amplifier

PID control A 3-term control algorithm combining proportional, integral

and derivative control actions.

pipeline A high-performance processor structure in which the

completion of an instruction is broken into its elements so that

several elements can be processed simultaneously from

different instructions.

PLC Programmable logic controller, a special-purpose computer

used in industrial monitoring and control applications. PLCs

typically have proprietary programming and networking

protocols and special-purpose digital and analog I/O ports.

Polled mode DAQ board operating mode whereby the user application

queries the board about the status of various subsystems as

needed.

port A communications connection on a computer or a remote

controller.

postriggering The technique used on a DAQ board to acquire a programmed

number of samples after trigger conditions are met.

potentiometer An electrical device whose resistance you can manually

adjusted; known among engineers as a “pot.”

pretriggering The technique used on a DAQ board to keep a continuous

buffer filled with data, so that when the trigger conditions are

met, the sample includes the data leading up to the trigger

condition.

programmable-gain amplifier also see PGA, an amplifier where you can change the amount

of gain applied to the inputs. Gain settings today are usually

made with software instead of setting jumpers as was

necessary with first-generation DAQ boards.

programmed I/O The standard method a CPU uses to access an I/O device—

each byte of data is read or written by the CPU.

propagation delay The amount of time required for a signal to pass through a

circuit.

proportional control A control action whose output is proportional to the deviation

of the controlled variable from a desired setpoint.

protocol The exact sequence of bits, characters and control codes used

to transfer data between computers and peripherals through a

communications channel.

Appendix G: Glossary

160

pseudodifferential An analog-input configuration where all channels refer their

inputs to a common ground—but this ground is not connected

to the computer ground.

PXI PCI eXtensions for Instrumentation, a bus standard that

combines the mechanical form factor of the CompactPCI

specification and the electrical aspects of the PCI bus. It also

adds integrated timing and triggering designed specifically for

measurement and automation applications.

Q
quantization error The inherent uncertainty in digitizing an analog value due to

the finite resolution of the conversion process.

R
real time A system in which the desired action takes place immediately

when all input conditions are fulfilled; it never has to wait for

other processes to complete before it can start. In DAQ terms,

it generally refers to the processing of data as it is acquired

instead of being accumulated and getting processed at a later

time.

relative accuracy A measure in LSB of the accuracy of an A/D. It includes all

nonlinearity and quantization errors. It does not include offset

and gain errors of the circuitry feeding the ADC.

resolution The smallest signal increment that a measurement system can

detect. Resolution can be expressed in bits, in proportions, or

in percent of full scale. For example, a system has a resolution

equal to 12 bits = one part in 4,096 = 0.0244% of full scale.

resource locking A technique whereby a device is signaled not to use one of its

resources, often local memory, while that resource is being

used by another device, generally the system bus.

ribbon cable A flat cable in which conductors are placed side by side.

RMS Root-mean square, computed by squaring the instantaneous

voltage, integrating over the desired time and taking the

square root.

RTD Resistance temperature detectors operate based on the

principle that electrical resistance varies with temperature.

They generally use pure metal elements, platinum being the

most widely specified RTD element type although nickel,

copper, and Balco (nickel-iron) alloys are also used. Platinum

is popular due to its wide temperature range, accuracy,

stability as well as the degree of standardization among

manufacturers. RTDs are characterized by a linear positive

change in resistance with respect to temperature. They exhibit

Appendix G: Glossary

161

the most linear signal over temperature of any electronic

sensing device

RTSI Real Time Systems Integration bus, developed by National

Instruments, this intercard bus allows you to transfer data and

control signals without using the backplane bus.

S
samples/sec expresses the rate at which a DAQ board digitizes an analog

signal.

scan one run through the presently configured Channel List

SDK Software developer’s kit, a collection of drivers and utilities

that allow engineers to write their own application programs.

SE see single-ended.

self-calibrating reference to a DAQ board that calibrates its own A/D and D/A

circuits with a reference source, sometimes provided internally

with a precision D/A converter.

sensor A device that generates an electrical signal in response to a

physical stimulus (such as heat, light, sound, pressure, motion

or flow).

S/H Sample/Hold, a circuit that acquires and stores an analog

voltage on a capacitor for a short period of time.

simultaneous sampling the act of digitizing multiple channels simultaneously, with

interchannel skew often being measured in psec.

single-ended a term used to describe an analog-input configuration where

you measure each channel with respect to a common analog

ground.

Slow Bit a control bit in the analog-input configuration word that

instructs the A/D to wait a short while before actually

digitizing the input voltage; it gives the input amplifier time to

settle, and is very useful when working with very high gains.

SNR also S/N ratio or Signal/Noise ratio, the ratio of the peak

power level to the remaining noise power, expressed in dB.

software trigger A programmed event that triggers an event such as a data

acquisition.

SPDT Single-pole double-throw, a switch in which one terminal can

be connected to one of two other terminals.

SSH Simultaneous Sample/Hold, see simultaneous sampling

S/s, S/sec see samples/sec

strain gage A sensor that converts mechanical motion into an electronic

signal. A change in capacitance, inductance or resistance is

proportional to the strain experienced by the sensor, but

Appendix G: Glossary

162

resistance is the most widely used characteristic that varies in

proportion to strain.

subroutine A set of software instructions executed by a single line of code

that may have input and/or output parameters.

subsystem On PowerDAQ cards, a group of circuits that perform either

analog input, analog output, digital input, digital output or

counter/timer functions.

successive-approximation A/D An A/D that sequentially compares a series of binary-

weighted values with an analog input to produce an output

digital word in n steps, where n is the A/D’s resolution in bits.

synchronous A property of a function that begins an operation and returns

only when the operation is complete.

system noise A measure of the amount of noise seen by an analog circuit or

an A/D when the analog inputs are grounded.

T
TCP/IP Transmission Control Protocol/Internet Protocol, the basic 2-

layer communication protocol of the Internet but that is also

used in a private network (either an intranet or an extranet).

The higher layer, TCP, manages the assembling of a message

or file into smaller packets that are transmitted and received

by a TCP layer that reassembles the packets into the original

message. IP handles the address portion of each packet so it

gets to the right destination.

THD Total harmonic distortion, the ratio of the total RMS signal

due to harmonic distortion to the overall RMS signal,

expressed in dB or percent.

 THD+N The percentage of Total Harmonic Distortion + Noise

(THD+N) of a sine wave equals 100 times the ratio of the

RMS voltage measured with the fundamental component of a

sine wave removed by a notch filter, to the RMS voltage of the

fundamental component.

thermistor A temperature-sensing element that exhibits a large change in

resistance proportional to a small change in temperature.

Thermistors usually have negative temperature coefficients.

They tend to be more accurate than thermocouples or RTDs,

but they have a much more limited temperature range.

thermocouple A temperature sensor created by joining two dissimilar metals.

The junction produces a small voltage as a function of

temperature.

throughput rate The flow of data, measured in bytes/sec, for a given

continuous operation.

Appendix G: Glossary

163

transducer A device that converts energy from one form to another.

Generally applied to devices that convert a physical

phenomenon (such as pressure, temperature, humidity or flow)

to an electrical signal.

transfer rate The rate, measured in bytes/sec, at which data is moved from a

source to a destination after software initialization and setup

operations; the maximum rate at which the hardware can

operate.

Trigger A signal, in either hardware or software, that initiates or halts

a process. In DAQ boards, it generally refers to a signal that

starts or stops an A/D, D/A or DIO operation.

U
UCT User counter/timer

unipolar A signal range that is always positive (for example, 0 to 10 V).

Z
zero offset The difference between true zero and an indication given by a

measuring instrument.

zero-overhead looping The ability of a high-performance processor to repeat

instructions without requiring time to branch to the beginning

of the instructions.

zero-Wait-State memory Memory fast enough that the processor does not have to wait

during any reads and writes to the memory.

Index

5

56301...7, 105

5B modules... 140

8

82C54 ..41, 103

A

A/D

peak rates ... 133

successive approximation 45

A/D FIFO.. 40, 64

ACB...............see Advanced Circular Buffer

Accessories ... 137

Active screw-terminal panel 140

Adapter ... 43

Advanced Circular Buffer64, 69, 79, 90, 147

Index

164

circular buffer mode70

recycled mode70

single buffer mode................................70

Agilent VEE support...............................111

Analog output

1-shot waveform.............................86, 89

asynchronous..89

autoregeneration86, 93

backward compatibility94

Channel List ...87

clocking ..87

configuration bits..................................94

continuous waveform86, 90

data conversion.....................................87

event based waveform....................86, 94

events ...86

repetitive waveform........................86, 92

single update...................................85, 88

software command96

triggering ..88, 96

Analog output multiplexer140

Analog-input subsystem......................39, 45

Analog-output subsystem....................40, 85

ASTP........ see Active Screw Terminal Panel

Averaging..46

B

Base address..23

Binary rate multiplier103

Block diagram, PD2-MF(S)37

Block diagram, PDL-MF39

Block diagram, PDXI-MF(S)....................38

BNC panels ...138

Board families ...8

Board types ...8

Borland C++ examples............................110

Buffer size...80

Burst buffered acquisition76

Burst clock see CL clock

Bus mastering..64

C

C examples..109

Cables, master list138

Calibration certificate................................15

Calibration procedures36

CE Mark Certification151

Channel List ..45, 46

Channel List clock....................see CL clock

Channel List FIFO.....................................39

Circular Buffer mode.................................70

CL clock ..22, 57

Clock

analog output ..87

CL clock22, 31, 57

configuration bits..................................58

continuous ..58

CV clock...................................22, 31, 57

default ...58

external ...57

internal..57

PDL-MF ...59

software ..57

sources ..57

Clocking ..17, 57

multichannel ...62

preferred ...54

repeated scans.......................................62

single sample ..61

source combinations62

Clocking / timing examples.......................61

Combining analog, digital subsystems83

Configuration word

dwAInCfg ...58

Connector

J1, PD2-MF(S)24

J1, PDXI-MF(S)33

J2, PD2-MF(S)24

J2, PDXI-MF(S)33

J4, PD2-MF(S)24

J6, PD2-MF(S)25

Connector layout, PD2-MF(S)19

Connector layout, PDL-MF.......................22

Connector layout, PDXI-MF(S)21

Connector summary, PD2 MF(S)..............24

Connectors, custom pinouts139

Continuous acquisition79

Control Panel Application18

Conversion clock......................see CV clock

Counter/timer

82C54 modes104

Index

165

clock sources...................................... 104

configuration...................................... 106

delay mode... 104

event flags.. 106

for A/D control 105

gate sources.. 104

pulse-train mode 104

rate mode ... 104

single-pulse mode 104

Counter/Timer subsystem......................... 41

Crosstalk... 51

CV clock..22, 57

D

D/A FIFO ... 40

DASYLab support 111

Data format... 71

Data transfers

Bus Master (standard).......................... 66

Bus Master/Short Burst........................ 67

Fast mode... 65

Normal mode 65

Delphi examples 110

Device drivers... 142

DG, MFS option 13

DIADEM support 111

Differential ... 49

Digital I/O

configuration...................................... 100

edge detection 100

event handler...................................... 100

polled I/O... 98

Digital I/O subsystem..........................41, 97

Digital one-shot 103

Disk streaming.. 109

Distribution panels 138

DMA... 23

E

Event

acquisition stopped78, 81

buffer done................................78, 81, 89

buffer error......................................78, 81

buffer wrapped..................................... 81

checking... 78

frame done 78, 80

frame recycled...................................... 82

private .. 83

status bits.. 77

Stop trigger .. 81

Event counter .. 103

Event handler 89, 91

Event mode ... 43

Example programs 109

F

FIFO upgrades .. 13

Filter

highpass ... 150

lowpass... 150

Frames .. 64, 148

size ... 80

unread... 81

FSMLabs .. 146

G

Gain option, MFS boards.......................... 13

Gains... 46

"H" option 8, 40, 46

"L" option................................... 8, 40, 46

impact on rates 133

Gains, MF Series .. 8

Gated mode, PDL-MF 59

Glossary .. 153

H

Hardware installation................................ 17

I

Immediate Update..................................... 68

Input impedance.. 51

Input mode

Differential... 49

Pseudodifferential 48

Single ended... 48

Input ranges .. 45

Installation, multiple boards 22

Interrupts... 23

Index

166

J

J2, Clocks on...57

L

Lab Board..14

LabVIEW for Linux support...................111

LabVIEW Real-Time support111

LabVIEW support111

LabWindows/CVI support111

Latch ...97

Libraries ..143

Life Support Policy151

Linux...146

Loopback tests ..35

Low-level signals50

M

Mating cables ..139

MATLAB support...................................111

Motor controller103

Multiplexer..39

N

Negative delay ..54

O

Operational test program...........................35

P

Pacer clock...............................see CV clock

PD2-MF Series..8

PD2-MFS Series10

PDL-MF..14

OS support..142

PDXI Configurator....................................23

PDXI-MF Series11

PDXI-MFS Series12

Polled ..43

Polled mode ..43

Posttriggering

analog ...61

PowerDAQ models8

PowerDAQ Software Suite 15, 16, 141

Pretriggering

analog ...61

digital..61

Programmable gain amplifier (PGA)39

Programmable rate generator103

Programming

general model42

opening, closing a subsystem43

OS support ..142

PowerDAQ API....................................42

PowerDAQ DLLs.................................42

PowerDAQ DLLs...............................142

PowerDAQ include files.....................144

PowerDAQ language libraries............143

PowerDAQ OS drivers142

PowerDAQ SDK16

PowerDAQ SDK, structure141

PowerDAQ Software Suite...........15, 141

Pseudodifferential......................................48

Pull-up resistors.............................58, 60, 97

Q

QNX ..146

R

Rack mounts..139

Realtime Linux..146

Recycled mode ..70

Recycled-buffer mode82

RTAI ...146

RTSI bus..20

S

S/H amplifiers ...54

Sandwich format PD220

Scaling raw readings71

Scan ...64

Schmidt trigger ..41

Screw-terminal panels137

Sense inputs...97

Sequential sampling52

Signal-conditioning options140

Simple Test program35

Simultaneous sampling........................52, 54

settling-time issues56

Index

167

Single Buffer mode................................... 70

Single scan operation................................ 73

Single-ended... 48

Skew... 52

Sleep mode ... 80

Slow Bit.......................................46, 75, 133

Software installation................................. 16

Software Suite .. 141

Solid-state relay modules 140

Specifications ... 113

PD2-MF Series 114

PD2-MFS Series 118

PDL-MF Board.................................. 122

PDXI-MF Series 124

PDXI-MFS Series.............................. 128

Squarewave generator 103

Start trigger... 59

Stop trigger ... 59

Strain gages .. 140

Strain gauges .. 50

Synchronization.. 88

cable... 22

connector ... 31

multiple boards22, 34

Synchronous operation 83

System requirements 15

T

TestPoint support.................................... 111

Thermocouples 140

Thermocuple readings............................... 82

Timeout... 77

Trigger .. 17, 59

analog output.. 88

external... 60

posttriggering 61

pretriggering... 61

rising/falling edge 60

software.. 60

start... 59

stop... 59

U

Unused channels 51

User Counter/Timer Subsystem.............. 103

V

Visual BASIC examples 109

Visual C++ examples.............................. 109

Voltage divider 150

W

Warranty ... 151

Waveform generator 85, 103

X

xPC Target support 111

168

Reader Feedback
We are committed to improving the quality of our documentation, in order to serve you better.

Your feedback will help us in the effort. Thanks for taking the time to fill out and return this form.

Is the manual well organized? Yes No

Can you find information easily? Yes No

Were you able to install the PowerDAQ boards? Yes No

Were you able to connect the PowerDAQ board to

the accessories?

 Yes No

Did you find any technical errors? Yes No

Is the manual size appropriate? Yes No

Are the design, type style, and layout attractive? Yes No

Is the quality of illustrations satisfactory? Yes No

How would you rate this manual? Excellent Good Fair Poor

Why?

Suggested improvements:

Other Comments:

Your background (optional):

Your application:

