UEI-820

UEI-820 board is designed as a drop-in replacement for ADI RTI-820 board. All registers map remains the same.

There are some jumpers change described below:

Jumpers

E1 — When installed external A/D conversion clock will be used. Positive edge of external clock will pace A/D conversion.

E2 - A/D settling time delay – when installed – 100 uS, when open – 20 uS delay will be added after A/D channel write before A/D conversion.

E4 - DAC coding. When installed – twos, when open – straight binary.

E6 - A/D coding. When installed – twos (MSB inverted and extended in upper four bits), when open – straight binary.

E8, E9 - D/A range. When installed \pm -5V, when open - 0..5 V.

SW1 - address switch (same as on RTI-820)

SW2 - IRQ selection switch

J5 – debug header – do not install any jumpers

J3 - clock select header. Always install J3 in (1-2) position.

Calibration

A/D — offset only. Apply 0.0000V at A/D input and use R59 to achieve 0x800 readings. D/A — R13 — offset, R8 — gain.

A/D Subsystem

Resolution 12 bits

Channel register 6 bits (up to 64 channels)

Write strobe 456 ns Maximum Sampling Rate 20Ks/s

Type of A/D Successive approximation Input Range ±5V (fixed)

Drift

Zero $\pm 30 \,\mu\text{V/°C}$ Gain $\pm 30 \,\text{ppm/°C}$

Input Impedance 100 M Ω in parallel with 22 pF

Input Bias Current ±20 nA

Input Overvoltage +/- 20V cont., powered or unpowered

A/D Conversion Time 25 μ S

A/D Settling Time $20/100~\mu S$ (jumper selectable)

DC Accuracy

Nonlinearity ± 0.5 LSB (no missing codes)

System Noise 0.5 LSB

AC Accuracy

Effective Number of Bits 11.4 Total Harmonic Distortion+ 70.2 dB

Nonlinearity+Noise

Clocking and Trigger Input

Maximum A/D Pacer Clock

Aggregate Throughput 20 kS/s @0.001% accuracy

External A/D Sample Clock

Maximum Frequency 20 kS/s Minimum Pulse Width 100 nS

Additional A/D features available on UEI-820 board:

- Software/external A/D clock (jumpers configurable)
- Interrupt on conversion complete/overrun
- Two's-compliment and straight binary coding

D/A Subsystem

Number of Channels 1
Channel list register 6 bits
Channel write strobe 608 ns
Resolution 12 bit
Update Rate 400S/s

Analog Output Range 0-5V, ±5V (jumpers selectable)

Error

 $\begin{array}{ccc} \text{Gain} & & \pm 0.5 \text{ LSB} \\ \text{Zero} & & \text{Calibrated to 0} \end{array}$

Current Output ± 18 mA minimum Output Impedance 0.3Ω typical Capacitive Drive Capability $0.001 \mu F$ $\pm 1 LSB$

Protection Short circuit to analog ground

Power-on Code 0h000

Setting Time to 0.01% of FSR 10 µS, 20V step, 1 µS, 100 mV step

Slew Rate $10 \text{ V/} \mu\text{S}$

Additional D/A features available on UEI-820 board:

Two's-compliment and straight binary coding

Once calibrated for the particular mode (Unipolar or Bipolar) the stability and linearity over full-scale is \pm 0.5 LSB. Offset and gain errors are in a \pm 0.5 LSB range. When changing ranges, the maximum offset is 6 mV.

DIn/DOut subsystem

Input/Output Bits 24, in groups of 8 (with on-board 10 K pull-up resistors),

inverted
Direction Software selectable

Inputs

High-level Input Voltage 2.0V minimum Low-level Input Voltage 0.8V maximum

High-level Input Current 20 μ A Low-level Input Current -20 μ A

Outputs

Output Driver High Voltage 2.5V minimum, 3.0V typical (IOH = -32 mA)

Output Driver Low voltage: 0.55V maximum, (IoL = 32 mA)

Current Sink -64/32 mA maximum

Power-on Voltage Logic Zero

Control register/Interrupts

The board implement the control/status register which contains the A/D interrupt enable bits and allows you to read the A/D status (conversion complete/overrun/in-progress).

The following status bits available:

- Conversion in progress (auto-cleared at the end of the conversion) (CP)
- Conversion complete (CC)
- Conversion overrun (CO)

The CP bit is set only at the time of A/D conversion, the CC bit is set at the end of the each conversion and cleared after the high byte read from the A/D data register, the CO bit is set when A/D conversion software command/external clock coming before data was read from the A/D register. In this situation old data will be stored and no new conversion will be allowed until data will be read from the A/D register.

All the status bits are cleared using the Flags Clear command asynchronously at any time.

There are two interrupt enable flags in the control register:

- Conversion complete (CCI)
- Conversion overrun (COI)

CCI -This interrupt is cleared after reading from the A/D

COI —This interrupt is cleared only after the Flags Clear command

Also board implement DAC status register which contain following information about DAC FIFO: FIFO Ready, Follow with data, FIFO full.

I/O Address Selection

Table 1: I/O Map Address Locations per DIP Switch Placement

DIP Switch Position						Base Address
1	2	3	4	5	6	Extension (in Hex)
ON	ON		ON	ON	ON	200H
ON	ON		ON	ON	OFF	210H
ON	ON]	ON	OFF	ON	220H
ON	ON]	ON	OFF	OFF	230H
ON	ON]	OFF	ON	ON	240H
ON	ON]	OFF	ON	OFF	250H
ON	ON]	OFF	OFF	ON	260H
ON	ON]	OFF	OFF	OFF	270H
ON	OFF]	ON	ON	ON	280H
ON	OFF]		ON	OFF	290H
ON	OFF]		OFF	ON	2A0H
ON	OFF]		OFF	OFF	2B0H
ON	OFF]	OFF	ON	ON	2C0H
ON	OFF	NOT USED	OFF	ON	OFF	2D0H
ON	OFF]	OFF	OFF	ON	2E0H
ON	OFF]	OFF	OFF	OFF	2F0H
OFF	ON		ON	ON	ON	300H
OFF	ON			ON	OFF	310H
OFF	ON]		OFF	ON	320H
OFF	ON			OFF	OFF	330H
OFF	ON		OFF	ON	ON	340H
OFF	ON]	OFF	ON	OFF	350H
OFF	ON		OFF	OFF	ON	360H
OFF	ON		OFF	OFF	OFF	370H
OFF	OFF		ON	ON	ON	380H
OFF	OFF			ON	OFF	390H
OFF	OFF]		OFF	ON	3A0H
OFF	OFF]		OFF	OFF	3B0H
OFF	OFF]	OFF	ON	ON	3C0H
OFF	OFF]	OFF	ON	OFF	3D0H
OFF	OFF]	OFF	OFF	ON	3E0H
OFF	OFF		OFF	OFF	OFF	3F0H

^{1.} Factory Configuration