

UEIModbus User Manual 3.6.0

September 2019 Edition

© Copyright 2012-2021 United Electronic Industries, Inc. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by
any means, electronic, mechanical, by photocopying, recording, or otherwise without prior written
permission.

 UEIModbus User Manual

© Copyright 2012-2021 www.ueidaq.com
United Electronic Industries, Inc. i 508.921.4600

Table of contents

1. Introduction .. 1

1.1. Register tables .. 1
1.2. Mapping PowerDNA I/O boards to MODBUS register tables 2

1.2.1. Data type representations in MODBUS registers 3
1.2.2. Digital I/O device representation ... 4
1.2.3. Digital I/O device with diagnostics representation 5
1.2.4. Analog I/O device representation .. 6
1.2.5. Analog output devices with diagnostics representation 7
1.2.6. Power/NIC boards diagnostic representation .. 8
1.2.7. View register tables ... 9

2. Configuring UEIModbus .. 11
2.1. Connecting through the serial port .. 11
2.2. Configuring the IP address .. 12
2.3. Opening the web UI ... 12
2.4. Starting/Stopping MODBUS slave service .. 13

2.4.1. Using the web UI to start/stop the slave service 14
2.4.2. Using the command line to start/stop the slave service 15

2.5. Configuring the date and time ... 15
2.5.1. Synchronizing time and date with the NTP server 16

2.5.1.1. Using the web UI to synchronize with NTP server 16
2.5.1.2. Using the command line to synchronize with NTP server 16

2.5.2. Setting local date and time .. 16
2.5.2.1. Using the web UI to set local date and time .. 16
2.5.2.2. Using the command line to set local date and time 18

2.5.3. Changing the time zone ... 18
2.6. Configuring I/O channels ... 18

2.6.1. Using the web UI to configure I/O channels .. 19
2.6.1.1. Using the web UI to configure the Scan Rate 21

2.6.2. Using the command line to configure I/O channels 22
2.6.2.1. Configuring analog input devices .. 23

2.6.2.1.1. Thermocouple (TC) ... 24
2.6.2.1.2. Strain gage (SG) ... 24
2.6.2.1.3. IEPE/Accelerometer (IE) ... 25
2.6.2.1.4. RTD (RT) .. 25
2.6.2.1.5. LVDT/RVDT (LV) .. 26
2.6.2.1.6. Synchro/Resolver (SY) ... 26

2.6.2.2. Configuring analog output devices .. 27
2.6.2.3. Configuring digital input devices .. 28
2.6.2.4. Configuring digital output devices .. 29
2.6.2.5. Configuring counter input devices ... 30
2.6.2.6. Configuring quadrature encoder input devices (QU) 31

 UEIModbus User Manual

© Copyright 2012-2021 www.ueidaq.com
United Electronic Industries, Inc. ii 508.921.4600

2.6.2.7. Configuring frequency/PWM output devices (CO) 32
2.6.2.8. Configuring variable reluctance input devices (VR) 33
2.6.2.9. Configuring an ARINC-429 device .. 36
2.6.2.10. Configuring an I2C device ... 39

3. Booting strategies .. 42
3.1. Booting an SD card with system partition read-only .. 42
3.2. Restoring or creating a new SD card .. 43

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 1 508.921.4600

1. Introduction
MODBUS is a messaging protocol developed by Modicon in 1979 and used to establish
master-slave/client-server communication between intelligent devices. It is a de facto
standard, truly open, and the most widely used network protocol in the industrial
manufacturing environment. (Specifications available at www.modbus.org/specs.php).

MODBUS devices communicate using a master-slave technique in which only one
device (the master) can initiate transactions (called queries). The other devices (slaves)
respond by supplying the requested data to the master or by taking the action requested
in the query.

A slave is any peripheral device (I/O transducer, valve, network drive, or other
measuring device), which processes information and sends its output to the master
using MODBUS.

Masters can address individual slaves or can initiate a broadcast message to all slaves.
Slaves return a response to all queries addressed to them individually but do not
respond to broadcast queries.

UEIModbus extends the capability of the PowerDNA distributed data acquisition system
by turning it into a MODBUS/TCP slave that can be accessed by any software client that
can act as a MODBUS/TCP master. Most popular HMI software packages support the
MODBUS/TCP protocol.

1.1. Register tables
The MODBUS specification defines four register tables (or register maps) in which the
input or output data for I/O devices can be read or written.

Register
Table Classic Name Description Data

Representation

0xxxx Coils
(Read/Write)

A 0x reference address is used for single bit output
data to be driven out by a digital output channel.

1 bit

1xxxx Discrete Inputs
(Read-only)

A 1x reference address holds the ON/OFF status
of the corresponding digital input channel.

1 bit

3xxxx Input Registers
(Read-only)

A 3x reference register stores a 16-bit value
received from an external source, such as an
analog input signal.

16 bits

4xxxx Holding
Registers
(Read/Write)

A 4x reference register is used to store 16-bits of
numerical data (binary or decimal) that is sent to
an output channel.

16 bits

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 2 508.921.4600

For each of the four register tables, the MODBUS protocol allows a maximum of 65536
data items to be accessed. It is slave dependent, in which data items are accessible by a
master.

Typically, a slave implements only a small memory area.

UEIModbus only implements memory areas big enough to hold the number of channels
used on each board layer.

1.2. Mapping PowerDNA I/O boards to MODBUS register tables
By default, PowerDNA I/O boards are mapped to MODBUS register tables by
associating the MODBUS register addresses for a board to the board position in the
chassis. The first/top PowerDNA I/O board in a chassis is referenced as device number
0, the next is device number 1, and so on. This device number is used to calculate the
address of the MODBUS registers associated with each layer by multiplying it by 1000,
(i.e., the third board in a chassis is identified as device number 2; therefore, 2000 will be
the starting address in MODBUS register space for this device).

Diagnostic data can also be accessed via MODBUS registers. PowerDNA I/O boards
that are designated as Guardian series boards provide access to internal diagnostic data
and map additional MODBUS registers for the diagnostic feedback, such as for internal
voltages, temperatures, open/short circuit status and more. Diagnostic registers are
mapped at an offset of 500 relative to the base address calculated from the device
position.

PowerDNA Power and NIC boards also provide access to internal diagnostic data.
Power and NIC boards are mapped to 12000 and 13000 respectively.

Example of addressing using register mapping relative to the board position in chassis:

Device 0 MODBUS registers will start at address 0
Device 0 diagnostic registers will start at address 500
Device 1 MODBUS registers will start at address 1000
Device 1 diagnostic registers will start at address 1500
…
Device x MODBUS registers will start at address 1000*x
Device x diagnostic registers will start at address 1000*x+500
…
Power board diagnostic registers will start at address 12000
NIC board diagnostic registers will start at address 13000

Alternatively, users can customize how PowerDNA I/O boards are mapped to Input
Registers or Holding Registers by entering an address offset (StartOffset) in a control
field when configuring the board.

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 3 508.921.4600

NOTE: Programming the StartOffset is described in section 2.6, “Configuring I/O
channels” on page 18.

Example of customized addressing using register mapping programmed with a
user-defined StartOffset:
(In this example device 0 is programmed with an offset of 0, and device 1 is
programmed with an offset of 124, and device x is programmed with an offset of 300):

Device 0 MODBUS registers will start at address 0
Device 0 diagnostic registers will start at address 500

Device 1 MODBUS Input/Holding registers will start at address 124
Device 1 MODBUS Coil/Discrete Input registers will start at address 1000
Device 1 diagnostic registers will start at address 1500
…
Device x MODBUS Input/Holding registers will start at address 300
Device x MODBUS Coil/Discrete Input registers will start at address 1000*x
Device x diagnostic registers will start at address 1000*x+500
…
Power board diagnostic registers will start at address 12000
NIC board diagnostic registers will start at address 13000

NOTE: The MODBUS protocol uses zero-based addresses. In actual MODBUS register
space, Device 0 will map to MODBUS address 0, as listed above. However, the
convention for referencing registers in MODBUS address space adds +1 to the actual
address, (i.e., the Device 1 MODBUS register may be addressed as 1001 in client/server
register maps).

1.2.1. Data type representations in MODBUS registers

Coils and Discrete Input registers only represent one bit. They are used to hold the
digital output and input line state of single bit digital devices.

Input and Holding registers are 16 bits. Each register can represent the raw data value
for a digital port or an analog channel for devices with a resolution less than or equal to
16 bits.

To represent values greater than 16 bits, additional Input or Holding registers are
needed:

• Two MODBUS registers are required to represent a scaled value of analog
channels using 32-bit IEEE floating point data representations.

• Four MODBUS registers are required to represent a scaled value of analog
channels using 64-bit IEEE double precision floating point data representations.

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 4 508.921.4600

1.2.2. Digital I/O device representation

Digital I/O devices are always mapped twice:

• Each bit line is mapped in the Coil (for output) or Discrete Input (for input) tables.
• Each port is mapped in the Holding Register (for output) or Input Register (for

input) tables.

The following is an example of a 12-bit digital input board at device 2. Note that in this
example the Holding Register mapping is based on board position (using default register
mapping/not set with a customized start offset):

Discrete Input Table Physical Channel
2001 Input port 0 line 0
2002 Input port 0 line 1
2003 Input port 0 line 2

… …
2011 Input port 0 line 10
2012 Input port 0 line 11

Input Register Table Physical Port

2001 Input port 0

The following is the same as above but with device 2 set with a customized start address
offset of 64:

Discrete Input Table Physical Channel
2001 Input port 0 line 0
2002 Input port 0 line 1
2003 Input port 0 line 2

… …
2011 Input port 0 line 10
2012 Input port 0 line 11

Input Register Table Physical Port
65 Input port 0

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 5 508.921.4600

1.2.3. Digital I/O device with diagnostics representation

Digital I/O devices are mapped as bit lines in the Coil (for output) or Discrete Input (as
input) tables and as a port in the Holding Register (for output) or Input Register (for
input) tables, as described above in section 1.2.2 above.

Digital I/O boards that support Guardian diagnostics additionally provide access to
diagnostic data, which maps in the Input Register table.

The following is an example of a 32-bit Guardian digital output board at device 2 that
provides digitized diagnostic voltage and current values for each digital output channel
(diagnostic values are simple precision floating point values: 32-bit values require 2 16-
bit registers per channel). Note that in this example the Holding Register mapping is
based on board position (not set with a customized register addressing):

Coil Table Physical Channel
2001 Output line 0
2002 Output line 1
2003 Output line 2

… …
2031 Output line 30
2032 Output line 31

Input Register Table DIO Diagnostics

2501 Output line 0 diagnostic current
2503 Output line 0 diagnostic voltage
2505 Output line 1 diagnostic current
2507 Output line 1 diagnostic voltage

… …
2625 Output line 31 diagnostic current
2627 Output line 31 diagnostic voltage

Holding Register Table Physical Port

2001 Output port 0

NOTE: The diagnostic readback parameters that are available for each DIO board are
dependent on the functionality of that board. The example above shows readback values
for the current and voltage per channel for a digital output board; however, digital input
boards may only provide the digitized input voltage, while other digital I/O boards may
also provide temperature readings and other diagnostic values.

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 6 508.921.4600

1.2.4. Analog I/O device representation

Analog input devices are mapped in the Input Register table and the Holding Register
table.

Analog output devices are mapped in the Holding Register table.

The following is an example for a 16-channel analog input board at device 3 and
configured to acquire data as simple precision floating point values
(32-bit values require 2 16-bit registers per channel). Note that in this example and the
next example the Input Register and Holding Register mapping is based on board
position (not set with a customized register addressing):

Input Register Table Holding Register Table Physical Channel
3001 3001 Channel 0
3003 3003 Channel 1

… … …
3031 3031 Channel 15

The following example is for an 8-channel analog output board at device 5 configured to
use double precision floating point values (64-bit values require 4 16-bit registers per
channel):

Holding Register Table Physical Channel
5001 Channel 0
5005 Channel 1

… …
5025 Channel 6
5029 Channel 7

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 7 508.921.4600

1.2.5. Analog output devices with diagnostics representation

Analog output devices are mapped in the Holding Register table, as described above in
section 1.2.4. Analog output boards that support Guardian diagnostic features
additionally provide access to diagnostic data, which maps in the Input Register table.

The following example is for a Guardian 32-channel analog output board at device 5
configured to use double precision floating point values (64-bit values require 4 16-bit
registers per channel). Note that in this example and the next example the Input Register
and Holding Register mapping is based on board position (not set with a customized
register addressing).
Guardian readback values include a digitized diagnostic voltage reading for each output
channel (diagnostic readings are configured as simple precision floating point values:
32-bit values require 2 16-bit registers per channel):

Input Register Table Physical Channel / Diagnostics
5501 Channel 0 (diagnostic voltage)
5503 Channel 1 (diagnostic voltage)
5505 Channel 2 (diagnostic voltage)

… …
5561 Channel 30 (diagnostic voltage)
5563 Channel 31 (diagnostic voltage)

Holding Register Table Physical Channel

5001 Channel 0
5005 Channel 1

… …
5121 Channel 30
5125 Channel 31

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 8 508.921.4600

1.2.6. Power/NIC boards diagnostic representation

Power and NIC boards installed in UEIModbus models based on the 8347 CPU
(UEIMODBUS 300/600-1G, UEIMODBUS 600/1200R, or -MIL models) provide access
to diagnostic data. Diagnostic data from the power and NIC boards map to the Input
Register table and Holding Register table.

UEIModbus models based on the 5200 CPU (UEIMODBUS 300/600) do not support
reading diagnostic data from power and NIC boards.

Available diagnostic data includes voltage readings (in Volts), current readings (in
Amps), and temperature readings (in Kelvins). Values are configured as floating point
numbers (32-bit values require 2 16-bit registers per channel):

Input Register Table Holding Register Table Power Diagnostics
12001 12001 2.5 V supply for slots 1-3
12003 12003 2.5 V supply for slots 4-6
12005 12005 3.3 V supply for slots 1-3
12007 12007 3.3 V supply for slots 4-6
12009 12009 24 V supply for slots 1-3
12011 12011 24 V supply for slots 4-6
12013 12013 Input Voltage
12015 12015 1.5 V supply for slots 1-6
12017 12017 1.2 V supply for slots 1-6
12019 12019 Fan Voltage
12021 12021 Input Current
12023 12023 Temperature 1
12025 12025 Temperature 2

Input Register Table Holding Register Table NIC Diagnostics

13001 13001 2.5 V supply for slots 4-6
13003 13003 Ground reference
13005 13005 3.3 V supply for slots 4-6
13007 13007 24 V supply for slots 4-6
13009 13009 1.5 V supply for slots 1-6
13011 13011 1.2 V supply for slots 1-6
13013 13013 3.3 V current for slots 4-6
13015 13015 Temperature 1
13017 13017 Temperature 2

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 9 508.921.4600

1.2.7. View register tables

A list of Modbus registers used by each I/O channel can be viewed in UEI’s web user
interface (web UI). The UEI-supplied web interface for configuring UEIModbus systems
is described in detail in section 2 starting on page 11.

Once the web interface is configured and open, to view register tables, you select the
Register Map tab, and then click the Coils, Discrete Inputs, Input Registers, or
Holding Registers tab.

The following shows the mapping when register addressing defaults to the board
position in chassis (device 0 starts at 0, device 1 starts at 1000, device 2 starts at
2000…):

Figure 1 Register Map Display for UEIModbus Web UI

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 10 508.921.4600

The following shows customized mapping. Register addressing for device 8 is
user-programmed with a start offset of “172”, and register addressing for device 9 is
based on board position in chassis (device 9 starts at 9000):

Figure 2 Register Map Display for UEIModbus Addressing with Custom Start Offsets

NOTE: UEIModbus updates the register map each time the Modbus slave server is
started. Click Stop Modbus slave and then Start Modbus slave to implement and view
changes that affect the register map, (e.g., after enabling or disabling channels).

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 11 508.921.4600

2. Configuring UEIModbus
The UEIModbus configuration consists of configuring the IP address and the I/O
channels you wish to make available to MODBUS/TCP masters.

The IP address must be configured using the serial port (sections 2.1 and 2.2).

The I/O channels are configured in the “/etc/modbusslave.conf” file, located on the root
file system (SD card) (section 2.6).

Channels can be configured using the UEIModbus web UI or by editing the
“/etc/modbusslave.conf” file manually at a command prompt (accessed via the serial port
or by remote login to the UEIModbus using ftp or ssh).

2.1. Connecting through the serial port
The following section describes the procedure to connect the UEIModbus chassis (Cube
or RACK) to your host PC.

1. Connect the serial cable between the serial port on the UEIModbus chassis
and the serial port on your PC.

You will need a serial communication program:
• Windows: ucon, MTTTY or HyperTerminal.
• Linux: minicom or cu (part of the uucp package).

2. Run your serial terminal program and configure the serial communication

settings as follows: 57600 bits/s, 8 data bits, 1 stop bit, and no parity.

3. Connect the DC output of the power supply (24 VDC) to the “Power In”
connector on the UEIModbus, and connect the AC input on the power supply
to an AC power source.

Once power is connected, you should see boot up messages similar to the following in
your serial terminal session window:

U-Boot 1.1.4 (Jan 10 2016 - 19:20:03)

CPU: MPC5200 v1.2 at 396 MHz
 Bus 132 MHz, IPB 66 MHz, PCI 33 MHz

Board: UEI PowerDNA MPC5200 Layer
I2C: 85 kHz, ready
DRAM: 128 MB
Reserving 349k for U-Boot at: 07fa8000
FLASH: 4 MB
In: serial
Out: serial

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 12 508.921.4600

Err: serial
Net: FEC ETHERNET

Type "run flash_nfs" to mount root filesystem over NFS

Hit any key to stop autoboot: 5

Booting image at ffc10000 ...

 Image Name: Linux-2.6.16.1
 Created: 2006-11-10 16:07:06 UTC
 Image Type: PowerPC Linux Kernel Image(gzip compressed)

 Data Size: 917636 Bytes = 896.1 kB
 Load Address: 00000000
 Entry Point: 00000000
 Verifying Checksum ... OK
 Uncompressing Kernel Image ... OK
id mach(): done
...
< lots of kernel messages >
...
BusyBox v1.2.2 (2006.11.03-19:16+0000) Built-in shell (ash)
Enter 'help' for a list of built-in commands.

~ #

After booting completes, the Linux prompt (#) will be available in your serial terminal
window, allowing you to navigate the file system and enter standard Linux commands,
such as ls, ps, and cd.

2.2. Configuring the IP address
Your UEIModbus Cube is configured at the factory with the IP address 192.168.100.2 to
be part of a private network.

You can change the IP address for the current session using the command:

setip <new IP address>

The setip command changes the current IP address and stores it in a file so that the
new IP address will be used next time the system is powered-up.

To test that the IP address is correctly set, type the ping command from the command
prompt of your host PC.

2.3. Opening the web UI
Once the IP address is configured and confirmed, you can disconnect the serial port and
configure the UEIModbus via the web interface by opening a web browser with the
following URL:

http://<UEIModbus IP address>/modbus.html

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 13 508.921.4600

Figure 3 UEIModbus Web UI

We recommend using a Firefox, Google Chrome, or Safari browser to access the
UEIModbus web UI. Microsoft Internet Explorer is not supported.

2.4. Starting/Stopping MODBUS slave service
MODBUS/TCP requests from MODBUS masters are handled by the MODBUS slave
service.

The UEIModbus is pre-configured to automatically start the MODBUS slave service at
boot time.

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 14 508.921.4600

2.4.1. Using the web UI to start/stop the slave service

To start the MODBUS slave server, click the Start Modbus slave button. The status
indicator should show that the server is in the “Running” state.

Figure 4 UEIModbus Slave Server Running

Click the Stop Modbus slave button to stop the slave server. The Modbus slave status
will read “Stopped” when the slave server is not running.

Check Autostart Modbus slave after power-up, and click Save configuration to
automatically start the UEIModbus slave service at boot time.

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 15 508.921.4600

2.4.2. Using the command line to start/stop the slave service

Use the following command to stop the MODBUS slave service:

/etc/init.d/modbusslave stop

Use the following command to start the MODBUS slave service:

/etc/init.d/modbusslave start

Use the following command to restart the MODBUS slave service:

/etc/init.d/modbusslave restart

Use the following command to disable automatic start of MODBUS slave service:
mv /etc/rc.d/S40modbusslave /etc/rc.d/K40modbusslave

Use the following command to enable automatic start of MODBUS slave service:

mv /etc/rc.d/K40modbusslave /etc/rc.d/S40modbusslave

2.5. Configuring the date and time
The UEIModbus on-board real-time clock (RTC) is used to produce the timestamp for
each data point. The RTC is backed by a system battery.

You can either set the date and time manually, or you can configure the UEIModbus to
automatically synchronize its clock with an NTP server over the network.

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 16 508.921.4600

2.5.1. Synchronizing time and date with the NTP server

2.5.1.1. Using the web UI to synchronize with NTP server

This feature is not implemented on the web UI.

2.5.1.2. Using the command line to synchronize with NTP server
To synchronize the UEIModbus with the NTP server, first verify that you can ping your
NTP server.

Edit the file “/etc/init.d/ntp” and set the variable NTP_SERVER to the IP address or host
name of your NTP server.

Use the following command to stop the NTP service:

/etc/init.d/ntp stop

Use the following command to start the NTP service:

/etc/init.d/ntp start

Use the following command to restart the NTP service:

/etc/init.d/ntp restart

Use the following commands to disable automatic start of NTP service:

mv /etc/rc.d/S50ntp /etc/rc.d/K50ntp

Use the following commands to enable automatic start of NTP service:

mv /etc/rc.d/K50ntp /etc/rc.d/S50ntp

2.5.2. Setting local date and time

The UEIModbus is equipped with a real-time clock (RTC) chip that preserves the date
and time settings when the UEIModbus is not powered.

By default, the date is set to the current date and time in the UTC (GMT) time zone.

You can use the web UI or the command line to set the date and time.

2.5.2.1. Using the web UI to set local date and time

The UEIMODBUS Date/time (UTC) field displays the current UTC date and time
programmed on the UEIModbus on-board RTC. If the display does not refresh
automatically, refresh your web browser to update.

Under the Timing tab, the New Date (UTC) displays the current UTC date and New
Time (UTC) displays the current UTC time (Figure 5 below).

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 17 508.921.4600

To manually set a new time or date, update the New Date (UTC) and/or New Time
(UTC) field/s, and click Set UTC date/time and save to save the new date and time to
the UEIModbus RTC.

To set the time and date to the same values as your host system, click Set UTC
date/time from host and save to align the UEIModbus RTC date and time with your
host PC.

Figure 5 Setting Time and Date via the UEIModbus Web UI

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 18 508.921.4600

2.5.2.2. Using the command line to set local date and time

To print the current date and time, use the following command:

date

To change the current date and time, use either of the following commands:

date –s MMDDhhmm
date –s YYYYMMDDhhmm.ss

For example, “date –s 06021405” will set the new date to June second, 2:05 PM.

To make this change permanent upon reboot, save the date to the RTC chip with the
following command:

hwclock –w –u

2.5.3. Changing the time zone

To set the time zone, you need to set the environment variable TZ.

For example, the command below sets the time zone to eastern time with daylight
saving time starting on the Sunday(0) of the second week(2) of March(3) and ending on
Sunday(0) of the first week(1) of November(11):

export TZ=EST5EDT,M3.2.0,M11.1.0

To make this change permanent upon reboot, add the command to the “/etc/profile” file.

You can find a detailed explanation of the syntax for TZ at:
http://www.gnu.org/software/libtool/manual/libc/TZ-Variable.html

2.6. Configuring I/O channels
Configuration parameters for UEIModbus I/O channels are stored in the
“/etc/modbusslave.conf” file.

Configuring channels using the UEIModbus web UI (section 2.6.1) updates the
“/etc/modbusslave.conf” automatically, or you can edit and update the configuration file
manually (section 2.6.2).

The “/etc/modbusslave.conf” file describes the devices and channels that will be
available through the MODBUS protocol. The UEIModbus slave server opens and
parses the configuration file at boot time to configure and start the I/O boards.

http://www.gnu.org/software/libtool/manual/libc/TZ-Variable.html

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 19 508.921.4600

2.6.1. Using the web UI to configure I/O channels

The UEIModbus I/O devices are listed under the Channels tab in the web UI display
(see Figure 6 below).

The Save configuration button saves the current configuration to the UEIModbus. After
updating channel parameters, you need to click Save configuration, and then stop and
start the slave service to activate configuration changes.

To configure a channel, click the device where the channel you wish to configure is
located. All I/O devices are listed in the Device pane under the Channels tab.

To enable a channel, click the corresponding Enable checkbox.

Figure 6 UEIModbus Channels Display

Channel Parameter settings (e.g., input mode, initialization values, gains, and scaling)
for each enabled channel can be set independently. These parameters are described in
section 2.6.2, “Using the command line to configure I/O channels”.

Configuration items under Device Parameters are set for all channels on the I/O board
and are described below:

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 20 508.921.4600

Start Offset: The start offset provides users a way of customizing the device address
range for MODBUS register mapping of Input Registers and Holding Registers (refer to
section 1.2 “Mapping PowerDNA I/O boards to MODBUS register tables” on page 2 for
more information):

• Start Offset = -1: All applicable MODBUS registers (Coil, Discrete Input, Input
and/or Holding Registers) for this I/O device will have the register start address
mapped to the I/O board position in the chassis (board in slot 0 will have the start
address mapped to 0, board in slot 1 will have the start address mapped to 1000,
board in slot 2 will have the start addresses mapped to 2000, etc.) See Figure 6.

• Start Offset = <zero-based offset value>: Input and/or Holding Registers
for the specified I/O device will have the register address mapped to
the <offset value> (subsequent enabled channels on the I/O board will
increment the address by the number of registers the data type requires).
Coil and Discrete Input Registers for this I/O board will still have the register start
address mapped to the I/O board position in the chassis (board in slot 0 will have
the start address mapped to 0, board in slot 1 will have the start address mapped
to 1000, board in slot 2 will have the start addresses mapped to 2000, etc.)
See Figure 7.

Figure 7 UEIModbus Start Offset Setting Mapped to Register Address

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 21 508.921.4600

Encoding Type: The Encoding Type pull-down menu in the web UI corresponds to
DataType parameters:

Encoding Type (GUI) DataType (Parameter)
32-bit Integer (first word low) i32
32-bit Integer (first word high) swi32
32-bit Float (first word low) f32
32-bit Float (first word high) swf32
64-bit Double (first dword low) f64
64-bit Double (first dword high) swf64

Only supported data types for a device should be selected as the Encoding Type. The
supported data types for each I/O device are listed in the DataType descriptions in
sections 2.6.2.1 through 2.6.2.8 below.

Measurement Type: The measurement type indicates the board-specific type of
measurements to be made. For example, the AI-207 can be configured to acquire
voltage measurements or thermocouple measurements. Channel Parameters will have
different options based on the Measurement Type.

Diagnostics: On boards that support internal diagnostic measurements (Guardian
boards), the Diagnostics pulldown enables or disables acquiring diagnostic data.

2.6.1.1. Using the web UI to configure the Scan Rate

The Scan Rate is the rate at which samples are acquired and stored in the internal
buffer. When an alarm is configured, the scan period is the maximum delay between the
physical event and the alarm notification.

The scan rate (Hz) is set under the Timing tab (Figure 8).

Figure 8 UEIModbus Scan Rate

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 22 508.921.4600

2.6.2. Using the command line to configure I/O channels

Channels can be configured manually by editing the “/etc/modbusslave.conf”
configuration file, located on the root file system (SD card).

The following syntax is used in the modbusslave.conf file to identify line entries as a
device type or a comment:

• Each line starting with ‘#’ is a comment.
• Each line starting with “AI” configures an analog input device to measure voltage.
• Each line starting with “TC” configures an analog input device to measure

temperatures from thermocouples.
• Each line starting with “SG” configures an analog input device to measure strain

gauges.
• Each line starting with “RT” configures an analog input device to measure

temperatures from RTDs.
• Each line starting with “IE” configures an analog input device to measure IEPE

and accelerometer signals.
• Each line starting with “LV” configures an analog input device to measure LVDT

or RVDT position.
• Each line starting with “SY” configures an analog input device to measure

Synchro or Resolver position.
• Each line starting with “AO” configures an analog output device.
• Each line starting with “DI” configures a digital input device.
• Each line starting with “DO” configures a digital output device.
• Each line starting with “CI” configures a counter input device.
• Each line starting with “QU” configures a quadrature encoder input device.
• Each line starting with “VR” configures a variable reluctance input device.
• Each line starting with “CO” configures a frequency/PWM output device.

After editing the configuration file, you must restart the MODBUS slave service to
activate changes:

/etc/init.d/modbusslave restart

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 23 508.921.4600

2.6.2.1. Configuring analog input devices

The configuration line for a generic analog input device begins with “AI” and can contain
any of the following “name=value” pairs. If a parameter is omitted, a default value will be
used instead.

Parameters are not case sensitive.

• Device={X}: ID of the device to configure.
• ChannelList={[X,Y,Z]}: comma separated list of channels.
• ScanRate={X}: scan rate programmed on the AI device.
• InputMode={DIFF|RSE}: input mode.
• Gain={[X,Y,Z]}: comma separated list of gains for each channel.

This is a 0 based index in list of gains supported by the device.
For example AI-207 comes with the following gains:
1,2,4,8,10,20,40,80,100,200,400,800
Set Gain=6 to configure gain of 40, Gain=7 to configure gain of 80 and so on.

• AutoZero={0|1}: auto-zero enable. Some analog input devices come with a
special channel to measure ground offset. Auto-zero subtracts the ground
voltage measurement from the input voltage measurement.

• Avg: size of the moving average window applied to the measurements.
• AvgThld: percent change to reset moving average. If the value of an input

sample changes by greater than the AvgThld percent, the array of moving
average samples resets to the new value, allowing the moving average to settle
at the new input level more quickly.

• DataType={i16|i32|swi32|f32|swf32|f64|swf64}: The data type used to transmit
values between the slave and the master.
i16: raw ADC value (only useful for 16-bit A/D devices).
i32: raw ADC value.
swi32: swapped raw ADC value.
f32: single-precision floating point.
swf32: single-precision floating point. Upper 16-bits and lower 16-bits are
swapped.
f64: double precision floating point.
swf64: double precision floating point. Upper 32-bits and lower 32-bits are
swapped.

• StartOffset: start address for Input/Holding registers in Modbus register map for
device (-1 uses default addressing; <offset value> uses user-programmed
offset to map addresses. See section 2.6.1 on page 19 for more information).

The following example configures device 0 to acquire voltages on channels 0 to 3:

AI device=0 channellist=0,1,2,3 inputMode=DIFF gain=0,0,0,0
dataType=f32 startOffset=-1

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 24 508.921.4600

2.6.2.1.1. Thermocouple (TC)

The thermocouple device inherits the parameters of the generic AI device
(section 2.6.2.1). In addition the parameters below configure features specific to a
thermocouple.

• TCType={E|J|K|S|R|T|B|N|C|0}: comma separated list of thermocouple types, or
use “0” to acquire a voltage measurement.

• TempScale={C|F|K}:comma separated list of temperature scales, Celsius,
Fahrenheit or Kelvin.

• CJCType={BUILTIN|CONSTANT}: the cold-junction compensation type.
“BUILTIN” uses the sensor on the terminal panel. “CONSTANT” uses a constant
value.

• CJCConst={X}: the cold-junction compensation temperature to use when
CJCType is set to “CONSTANT”.

The following example configures device 2 to acquire temperatures on the first 4
channels (don’t wrap the line when typing it):

TC device=2 channellist=0,1,2,3 inputMode=DIFF gain=8,8,8,8
TCType=K,K,E,E tempScale=C,C,C,C CJCType=BUILTIN dataType=f32

NOTE: Thermocouple devices map an Input Register for the CJC_Temperature
measurement that will be addressed directly after the Input Registers for the enabled
channels.

2.6.2.1.2. Strain gage (SG)

The strain gage device inherits the parameters of the generic AI device (section 2.6.2.1).
In addition the parameters below configure features specific to a strain gage.

• ExcVoltage: comma separated list of excitation voltages used to power load
cells or strain gauges.

• ScaleWithExcitation: comma separated list containing 0 to read S-/S+ voltage
or 1 to read ratiometric measurements in mV/V.

• GAF: comma separated list of gain adjustment factors obtained during shunt
calibration procedure.

This is only available on devices designed to work with load cells or strain gauges (AI-
208, AI-224, etc.)

The example below configures device 1 to acquire strains on channels 0 and 1:

SG device=1 channellist=0,1 inputMode=DIFF gain=8,8 dataType=f32
ExcVoltage=7.0,7.0 gaf=1.0,1.0

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 25 508.921.4600

2.6.2.1.3. IEPE/Accelerometer (IE)

The IEPE device inherits the parameters of the generic AI device (section 2.6.2.1). In
addition the parameters below configure features specific to an IEPE/accelerometer.

• Coupling: comma separated list containing DC, AC, AC_1 (1Hz HPF) or AC_0.1
(0.1Hz HPF)

• Lowpass: comma separated list containing 0 to disable low pass filter or 1 to
enable low pass filter

• Sensitivity: the voltage read will be converted to mV and divided by the
sensitivity specified in mVolts/[EU]

• ExcCurrent: Excitation current used to power the sensor (in mA)

This is only available on devices designed to work with IEPE sensors (AI-211).

The example below configures device 1 to acquire acceleration on the first 4 channels:

IE device=1 channellist=0,1,2,3 inputMode=DIFF gain=8,8,8,8
dataType=f32 ExcCurrent=1.0,2.0,3.0,4.0 LowPass=1,1,1,1
Sensitivity=1000.0,100.0,1000.0,1000.0 Coupling=AC,DC,AC,DC

2.6.2.1.4. RTD (RT)

The RTD device inherits the parameters of the generic AI device (section 2.6.2.1). In
addition the parameters below configure features specific to an RTD.

• Tempscale: comma separated list of temperature scales: C for Celsius, F for
Fahrenheit or K for Kelvin.

• Wiring: comma separated list containing 2 for two wires RTD, 3 for three wires
RTD and 4 for four wires RTD.

• RtdType: comma separated list of temperature coefficients of resistance of the
RTD. 3750, 3850, 3902, 3911, 3916, 3920, 3926, 3928.

• RtdRes: comma separated list of nominal resistances of the RTDs at 0 deg C.
• LeadsResistance: Resistance of the RTD leads (used in 2 wires mode only).

This is only available on devices designed to work with RTDs (AI-222).

The following example configures device 7 to acquire RTD temperatures on channels 0
and 1:

RT device=7 channellist=0,1 gain=0,0 Wiring=3,4 RtdType=3750,3750
RtdRes=100.0,100,0 tempScale=C,C LeadsResistance=0,0 dataType=f32

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 26 508.921.4600

2.6.2.1.5. LVDT/RVDT (LV)

The LVDT device inherits the parameters of the generic AI device (section 2.6.2.1). In
addition the parameters below configure features specific to the LVDT.

• Wiring: 4 for four wires connection, 5 for five wires connection.
• ExcVoltage: Excitation voltage used to power the LVDT.
• ExcFreq: Excitation frequency used to power the LVDT.
• Sensitivity: the voltage read will be converted to mV and divided by the

excitation voltage and the sensitivity specified in mVolts/V/[EU].
• ExtExc: 0 to use internal excitation, 1 to use external excitation.

This is only available on devices designed to work with LVDT sensors (AI-254).

The following example configures device 1 to acquire positions on channels 0 and 1:

LV device=1 channellist=0,1 gain=0 dataType=f32 ExcVoltage=7.0
ExcFreq=1400.0 Sensitivity=1000.0 ExtExc=0

2.6.2.1.6. Synchro/Resolver (SY)

The Synchro/Resolver device inherits the parameters of the generic AI device (section
2.6.2.1). In addition the parameters below configure features specific to a Synchro or
Resolver.

• Mode: "synchro", "resolver" or "synchrozground”.
• ExcVoltage: Excitation voltage used to power the LVDT.
• ExcFreq: Excitation frequency used to power the LVDT.
• ExtExc: 0 to use internal excitation, 1 to use external excitation.

This is only available on devices designed to work with Synchro or Resolver sensors (AI-
255 or AI-256).

The following example configures device 1 to acquire position angles on channels 0
and 1:

SY device=1 channellist=0,1 gain=0 dataType=f32 ExcVoltage=7.0
ExcFreq=1400.0 ExtExc=0

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 27 508.921.4600

2.6.2.2. Configuring analog output devices

The configuration line for an analog output device begins with “AO” and can contain any
of the following “name=value” pairs. If a parameter is omitted, a default value will be
used instead.

Parameters are not case sensitive.

• Device={X}: the ID of the device to configure.
• ChannelList={[X,Y,Z]}: comma separated list of channels.
• DataType={f32|swf32|f64|swf64}: the data type used to transmit values between

the master and the slave.
f32: single-precision floating point
swf32: single-precision floating point. Upper 16-bits and lower 16-bits are
swapped
f64: double precision floating point
swf64: double precision floating point. Upper 32-bits and lower 32-bits are
swapped

• InitValue={[X,Y,Z]}: comma separated list containing initial values to write to
output channel when the Modbus slave is started.

• EnableDiag={1|0}: Enables (1) or disables (0) diagnostic functionality and
diagnostic register mapping. Only applicable for Guardian devices, (i.e.,
Guardian analog output devices include AO-318 and AO-333).

• StartOffset: start address for Input/Holding registers in Modbus register map for
device (-1 uses default addressing; <offset value> uses user-programmed
offset to map addresses. See section 2.6.1 on page 19 for more information).

The following example configures device 0 to generate on the first 4 channels:

AO device=0 channellist=0,1,2,3 dataType=f32
initValue=0.0,1.0,2.0,0.0

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 28 508.921.4600

2.6.2.3. Configuring digital input devices

The configuration line for a digital input device begins with “DI” and can contain any of
the following “name=value” pairs. If a parameter is omitted, a default value will be used
instead.

Parameters are not case sensitive.

• Device={X}: the ID of the device to configure.
• ChannelList={[X,Y,Z]}: comma separated list of channels.
• DataType={i16|i32|swi32}: The data type used to transmit values between the

slave and the master.
i16: 16-bits integer
i32: 32-bits integer
swi32: swapped 32-bits integer. Upper 16-bits and lower 16-bits are swapped

• LowHyst={X}: Program the low hysteresis level.
• HighHyst={X}: Program the high hysteresis level.
• EnableDiag={1|0}: Enables (1) or disables (0) diagnostic functionality and

diagnostic register mapping. Only applicable for Guardian devices, (i.e.,
Guardian digital input devices include DIO-448 and DIO-449).

• StartOffset: start address for Input/Holding registers in Modbus register map for
device (-1 uses default addressing; <offset value> uses user-programmed
offset to map addresses. See section 2.6.1 on page 19 for more information).

The following example configures device 5 to acquire digital signals on its first port:
DI device=5 channellist=0 dataType=i32

DIO layer bits are mapped contiguously in all register tables, the data type setting
doesn’t have any effect.

For example, on DIO-403, the six 8-bit ports are mapped in all four register tables, input
registers, holding registers, discrete inputs and coils.

So if a DIO-403 is mapped at address 0:

Port 0 (lines 0 to 7) is mapped as bits 0-7 of register 0
Port 1 (lines 8 to 15) is mapped as bits 8-15 of register 0
Port 2 (lines 16 to 23) is mapped as bits 0-7 of register 1
Port 3 (lines 24 to 31) is mapped as bits 8-15 of register 1
Port 4 (lines 32 to 39) is mapped as bits 0-7 of register 2
Port 5 (lines 40 to 47) is mapped as bits 8-15 of register 2

The direction of a port doesn’t change its mapping but of course changes its behavior.
Reading from an output port will return its state (the last value written to it).
Writing to an input port will do nothing.

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 29 508.921.4600

2.6.2.4. Configuring digital output devices

The configuration line for a digital output device begins with “DO” and can contain any of
the following “name=value” pairs. If a parameter is omitted, a default value will be used
instead.

Parameters are not case sensitive.

• Device={X}: the ID of the device to configure.
• ChannelList={[X,Y,Z]}: comma separated list of channels.
• OutputMask={X}: selects the ports that are configured for output (for bi-

directional devices such as the DIO-403).
• DataType={i16|i32|swi32}: The data type used to transmit values between the

master and the slave.
i16: 16-bits integer
i32: 32-bits integer
swi32: swapped 32-bits integer. Upper 16-bits and lower 16-bits are swapped

• InitValue={[X,Y,Z]}: comma separated list containing initial values to write to
output port when the Modbus slave is started

• EnableDiag={1|0}: Enables (1) or disables (0) diagnostic functionality and
diagnostic register mapping. Only applicable for Guardian devices, (i.e.,
Guardian digital output devices include DIO-432, DIO-433, DIO-462, DIO-463).

• StartOffset: start address for Input/Holding registers in Modbus register map for
device (-1 uses default addressing; <offset value> uses user-programmed
offset to map addresses. See section 2.6.1 on page 19 for more information).

The following example configures device 1 to generate digital patterns on its first port:
DO device=1 channellist=0 dataType=i32 initValue=0x555

Special notes for DIO-403: The DIO-403 is the only device that can set the direction of
its six 8-bit digital ports. Each bit contained in the outputMask parameter sets the
direction of its respective port. For example “outputMask=0x11” will set ports 0 and 4 as
outputs and ports 1, 2, 3 and 5 as inputs.

The following example configures DIO-403 at device 0 to generate digital patterns on
ports 1, 3 and 5

DO device=0 numChannels=6 outputMask=0x2A dataType=i32

This configuration makes 48 coil registers accessible in the coil table:

• Port0 maps to coils 0 to 7 and writing to those coils are ignored (port is input)
• Port1 maps to coils 8 to 15
• Port2 maps to coils 16 to 23, writing to those coils are ignored
• Port3 maps to coils 24 to 31
• Port4 maps to coils 32 to 39, writing to those coils are ignored
• Port5 maps to coils 40 to 47

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 30 508.921.4600

2.6.2.5. Configuring counter input devices

The configuration line for a counter input device begins with “CI” and can contain any of
the following “name=value” pairs. If a parameter is omitted, a default value will be used
instead.

Parameters are not case sensitive.

• Device={X}: the ID of the device to configure.
• ChannelList={[X,Y,Z]}: comma separated list of channels.
• DataType={i16|i32|swi32|f32|swf32|f64|swf64}: The data type used to transmit

values between the slave and the master.
i16: 16-bits integer
i32: 32-bits integer
swi32: swapped 32-bits integer. Upper 16-bits and lower 16-bits are swapped
f32: single-precision floating point
swf32: single-precision floating point. Upper 16-bits and lower 16-bits are
swapped
f64: double precision floating point
swf64: double precision floating point. Upper 32-bits and lower 32-bits are
swapped

• Mode={count|quad|period|pulsewidth}: The mode used to configure the counter
to measure events, quadrature encoder position, period or pulse width.

• Source={internal|external}: The source signal to count or measure, internal uses
the on-board 66MHz clock, external uses the signal connected to the counter’s
input pin.

• Gate={internal|external}: The gate signal to enable/disable the counter, internal
sets the gate automatically when counter starts, external uses a signal connected
to the counter’s gate pin.

• InputInverted={0|1}: Set to 1 to invert the input signal.
• SourceDebouncer={X}: The minimum pulse width in micro-secs detected on the

counter input.
• GateDebouncer={X}: The minimum pulse width in micro-secs detected on the

counter gate.
• StartOffset: start address for Input/Holding registers in Modbus register map for

device (-1 uses default addressing; <offset value> uses user-programmed
offset to start addresses. See section 2.6.1 on page 19 for more information).

The following example configures device 2 to measure quadrature encoders position
connected to ports 0, 1, 2, and 3:

CI device=2 channellist=0,1,2,3 dataType=i32 mode=quad
source=external gate=internal inputinverted=0

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 31 508.921.4600

2.6.2.6. Configuring quadrature encoder input devices (QU)

The configuration line for a quadrature input device begins with “QU” and can contain
any of the following “name=value” pairs. If a parameter is omitted, a default value will be
used instead.

Parameters are not case sensitive.

• Device={X}: the ID of the device to configure.
• ChannelList={[X,Y,Z]}: comma separated list of channels.
• DataType={f32|swf32|f64|swf64}: The data type used to transmit values between

the slave and the master.
f32: single-precision floating point
swf32: single-precision floating point. Upper 16-bits and lower 16-bits are
swapped
f64: double precision floating point
swf64: double precision floating point. Upper 32-bits and lower 32-bits are
swapped

• Initialpos: Initial count loaded in counter (default is 0).
• Decodingtype: 1x, 2x or 4x. 2x and 4x decoding are more sensitive to smaller

changes in position.
• Zeroindex: 1 to enable zero indexing. resets the measurement to the initial value

when the Z, A and B inputs are in a given state.
• Zeroindexphase:

o zhigh: resets measurement when Z goes high
o alowblow: resets measurement when Z goes high, A is low and B is low
o alowbhigh: resets measurement when Z goes high, A is low and B is high
o ahighblow: resets measurement when Z goes high, A is high and B is low
o ahighbhigh: resets measurement when Z goes high, A is high and B is high

• ADebouncer: the minimum pulse width in micro-secs on A input. Any pulse
whose width is smaller will be ignored.

• BDebouncer: the minimum pulse width in micro-secs on B input. Any pulse
whose width is smaller will be ignored.

• ZDebouncer: the minimum pulse width in micro-secs on Z input. Any pulse
whose width is smaller will be ignored.

• StartOffset: start address for Input/Holding registers in Modbus register map for
device (-1 uses default addressing; <offset value> uses user-programmed
offset to map addresses. See section 2.6.1 on page 19 for more information).

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 32 508.921.4600

2.6.2.7. Configuring frequency/PWM output devices (CO)

The configuration line for a frequency output device begins with “CO” and can contain
any of the following “name=value” pairs. If a parameter is omitted, a default value will be
used instead.

Parameters are not case sensitive.

• Device={X}: the ID of the device to configure.
• ChannelList={[X,Y,Z]}: comma separated list of channels.
• DataType={i16|i32|swi32}: The data type used to transmit values between the

master and the slave.
i16: 16-bits integer
i32: 32-bits integer
swi32: swapped 32-bits integer. Upper 16-bits and lower 16-bits are swapped

• Mode={pulse|train}: The mode used to configure the counter to output pulse(s),
“pulse” will output a single pulse each time a new value is written to the Modbus
register. “train” will continuously output pulses.

• lowticks={X}: The initial number of clock ticks used to specify the low state
duration.

• highticks={X}: The initial number of clock ticks used to specify the high state
duration.

• StartOffset: start address for Input/Holding registers in Modbus register map for
device (-1 uses default addressing; <offset value> uses user-programmed
offset to map addresses. See section 2.6.1 on page 19 for more information).

The following example configures device 2 to output pulses out of ports 0,1,2,3:

CO device=2 channellist=0,1,2,3 dataType=i32 mode=train lowticks=1000
highticks=1000

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 33 508.921.4600

2.6.2.8. Configuring variable reluctance input devices (VR)

The configuration line for a variable reluctance input device begins with “VR” and can
contain any of the following “name=value” pairs. If a parameter is omitted, a default
value will be used instead.

Variable reluctance channels produce three values each in the input register table:

• Velocity in RPM
• Position in number of teeth
• Total teeth count since Modbus slave was started.

Parameters are not case sensitive.

• Device={X}: the ID of the device to configure.
• ChannelList={[X,Y,Z]}: comma separated list of channels.
• DataType={f32|swf32|f64|swf64}: The data type used to transmit values between

the slave and the master.
f32: single-precision floating point
swf32: single-precision floating point. Upper 16-bits and lower 16-bits are
swapped
f64: double precision floating point
swf64: double precision floating point. Upper 32-bits and lower 32-bits are
swapped

• EnableDiag={1|0}: Enables (1) or disables (0) diagnostic functionality and
diagnostic register mapping.
For VR-608 device, diagnostic registers provide Open/Short status for each
channel.

• StartOffset: start address for Input/Holding registers in Modbus register map for
device (-1 uses default addressing; <offset value> uses user-programmed
offset to map addresses. See section 2.6.1 on page 19 for more information).

• VrMode= {Decoder|Timed|Npulses|Zpulse}: The mode used to measure velocity,
position or direction. The mode can be set to:
o Decoder: Even and Odd channels are used in pair to determine direction

and position
o Timed: Count number of teeth detected during a timed interval
o Npulses: Measure the time taken to detect N teeth (Number of teeth needs

to be set)
o Zpulse: Measure the number of teeth and the time elapsed between two Z

pulses (The Z tooth is usually a gap or a double tooth on the encoder wheel)

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 34 508.921.4600

• ZcMode={Chip|Logic|fixed}: Zero crossing finds the point in time where the VR
sensor output voltage transitions from positive to negative voltage. This point is
when the center of the tooth is lining up with the center of the VR sensor. The
zero crossing mode can be set to:
o Chip: The front-end IC will automatically calculate the ZC level
o Logic: The device's FPGA measures the VR sensor signal and calculate the

ZC level as (min+max)/2
o Fixed: Use hard-coded ZC level (specified below)

• APTMode={Chip|Logic|fixed}: APT finds the point in time where the VR sensor
output voltage falls below a certain threshold. This point marks the beginning of
the gap between two teeth. The APT mode can be set to:
o Chip: The front-end IC will automatically set the AP threshold to 1/3 of the

peak input voltage
o Logic: The device's FPGA measures the VR sensor signal and sets the AP

threshold to a programmable fraction of the peak input voltage
o Fixed: Use hard-coded AP threshold (specified below)

• ADCRate: The rate in Hz at which the VR sensor signal is measured.
• MovingAverage: The size of the moving average window applied to the VR

sensor signal while it is measured.
• APTThresholdDivider: The APT threshold divider is used when APT mode is

set to "Logic". It specifies that the AP threshold will be set at a fraction of the
peak input voltage. This is a value between 1 and 15: 1=1/2, 2=1/4, 3=1/8 etc...

• APTThreshold: The APT threshold is used when APT mode is set to "Fixed".
• ZCThreshold: The ZC threshold is used when ZC mode is set to "Fixed".
• NumberOfTeeth: The number of teeth on the encoder wheel.
• ZToothSize: A Z Tooth is usually materialized by one or more missing teeth or

one or more fused teeth. This parameter specified the number of fused or
missing teeth.

• TimedRate: The rate at which teeth are counted when VrMode is set to “timed”.

The following example configures device 2 to measure VR sensor signals connected to
ports 0, 1, 2, and 3:

VR device=2 channellist=0,1,2,3 vrmode=timed timedrate=2.0
zcmode=chip aptmode=chip numberofteeth=72 ztoothsize=0 dataType=f32

NOTE: Each variable reluctance channel enabled yields 3 Input Registers in the
MODBUS register table: a _velocity, _position, and _teethcount register.

Also, enabling Diagnostics yields a Diagnostic Open/Short Register for each channel,
where reading a 1 means an open circuit is detected between the IN± channels and
reading a 0 means a short circuit is detected.

Refer to Figure 9 and Figure 10 for web UI displays of VR-608 channel configuration and
register mapping.

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 35 508.921.4600

Figure 9 VR-608 Channels Configuration in Web UI

Figure 10 VR-608 Register Mapping when Diagnostics Are Enabled

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 36 508.921.4600

2.6.2.9. Configuring an ARINC-429 device
Compatible devices are 429-566, 429-516-024, 429-516, 429-512.

Receive channels are mapped as input registers at offset "devn*1000"
Transmit channels are mapped as holding registers at offset "devn*1000"
The offset can be overridden with the "startOffset" attribute

Each receive/transmit channels must be configured to receive or transmit a specific
list of labels.
Each Input label occupies six 16-bit registers: 2 registers for data, one register for SSM,
one register for SDI and two registers for timestamp

16-bit register Offset in input register table Value
0 Label0 Value Low
1 Label0 Value High
2 SSM0
3 SDI0
4 Timestamp0 Low
5 Timestamp0 High
6 Label1 Value Low
7 Label1 Value High
8 SSM1
9 SDI1
10 Timestamp1 Low
11 Timestamp1 High

Each Output label occupies four 16-bit registers: 2 registers for data, one register for
SSM and one register for SDI

16-bit register Offset in holding register table Value
0 Label0 Value Low
1 Label0 Value High
2 SSM0
3 SDI0
4 Label1 Value Low
5 Label1 Value High
6 SSM1
7 SDI1

ARINC-429 devices are configured exclusively using the XML configuration file format.
XML Example:

 <device devn="0" type="arinc429" startOffset="-1">
 <channel id='0' name='RX0' direction='input'>
 <bitrate>100000</bitrate>

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 37 508.921.4600

 <!-- Parity is used to detect errors on incoming labels
 A parity error will set the data registers to 0xFFFFFFFF
 -->
 <parity>none</parity>
 <timestamp>off</timestamp>
 <!-- This label is mapped at devn*1000
 Data is mapped at devn*1000
 SDI is mapped at devn*1000 + 2
 SSM is mapped at devn*1000 + 3
 Timestamp mapped at devn*1000 + 4
 -->
 <label id='102' format='raw'/>
 <!-- This label is mapped at devn*1000+6
 The data field uses the "Binary Coded Decimal" representation -->
 <label id='56' format='bcd'>
 <!-- resolution is a multiplier/divider to represent
 real numbers (default is 1) -->
 <resolution>0.01</resolution>
 </label>
 <!-- This label is mapped at devn*1000+12
 The data field uses the "Binary Number Representation"
 This representation uses two's complement arithmetic -->
 <label id='55' format='bnr'>
 <!-- lsb of the data field (default is 11)
 the example uses 16 bits values so lsb is 29-16 = 13-->
 <lsb>13</lsb>
 <length>14</length>
 <!-- range of the encoded value. The example of 16384 allows
 the encoding of values between -16384 and +16384 -->
 <bnrRange>16384</bnrRange>
 </label>
 </channel>
 <!--Transmitted labels are mapped sequentially at offset
 "devn*1000 + label_index*4" -->
 <channel id='0' name='TX0' direction='output'>
 <bitrate>12500</bitrate>
 <!-- Parity is used to calculate the parity bit on outgoing labels -->
 <parity>odd</parity>
 <!-- Labels can be transmitted as soon as a new value is written to
 the holding registers in 'oneshot' mode -->
 <label id='12' format='raw' mode='oneshot'/>
 <!-- Labels can also be transmitted periodically -->
 <label id='98' format='bcd' mode='periodic' periodus='100000'>
 <lsb>11</lsb>
 <length>18</length>
 <defaultData>100</defaultData>
 <defaultSSM>2</defaultSSM>
 <defaultSDI>1</defaultSDI>
 </label>
 </channel>
 </device>

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 38 508.921.4600

The channel element for an ARINC-429 device represents an input (RX) or output (TX)
channel.

The direction attribute determines whether a channel is input (RX) or output (TX).

The element can contain any of the following sub-elements. If a parameter is omitted, a
default value will be used instead.

Parameters are not case sensitive.

• BitRate: Configure the channel bit rate. Only two values are valid: 12500 or
100000 bits/sec.

• Parity: Configure the parity bit behavior (none, odd or even).
On output channel the parity bit is automatically calculated to match this
parameter.
On input channels the parity bit is actually a parity error bit. It is set to 1 when the
received bit doesn’t match the calculated parity.

Each channel element must contain one or more label elements.
Input channels will filter out any incoming label that doesn’t match one of the label
elements.
Output channels will only send an output label from the list depending on its scheduling
policy.

Label elements contain the following attributes:

• Id: The label itself in decimal, octal (prefixed with 0) or hexadecimal (prefixed
with 0x)

• Name: The name of the label.
• Format: The format used to encode or decode the data value. Possible formats

are: BNR, BCD or Raw.
• Mode: This parameter is only valid for output labels. It configures the scheduling

policy to Periodic or OneShot.
Periodic: The label is automatically transmitted periodically. The label data can
be updated via Modbus/TCP
OneShot: The label is only transmitted when a new value is written via
Modbus/TCP.

• PeriodUs: The period in microseconds for re-transmitting a periodically
scheduled label.

Label elements can contain any of the following sub-elements:

• Lsb: The least significant bit of the data field in the ARINC word. LSB must be
set between 11 and 28. Default value is 11.

• Length: The number of bits used by the data field. Default value is 19
• Resolution: A scaling factor applied to the value. Default value is 1.

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 39 508.921.4600

• BnrRange: The maximum value encoded in BNR format
• DefaultData: The default data field transmitted by a periodic label (until it gets

updated by a Modbus/TCP write)
• DefaultSSM: The default SSM field transmitted by a periodic label (until it gets

updated by a Modbus/TCP write)
• DefaultSDI: The default SDI field transmitted by a periodic label (until it gets

updated by a Modbus/TCP write)

BCD format:
Each digit of the encoded value is represented by four bits used to store a value
between 0 and 9. The sign is set by the SSM field (0 for positive and 0x3 for negative)
Example: A data field of 0x12345 represents the decimal value 12345

BNR format:
The value is encoded in two’s complement arithmetic.
The BnrRange parameter specifies the minimum and maximum value.
Example: with bnrRange set to 16384, a value between -16383 and 16384 can be
encoded over 14 bits. The sign is stored in bit 29 (1 for negative, 0 for positive).

2.6.2.10. Configuring an I2C device

Compatible device is I2C-534.

Master and slave channels are mapped as holding registers at offset "devn*1000"
The offset can be overridden with the "startOffset" attribute.
I2C devices do not use the input register table.

Master and slave channels are controlled via a command register.
For master channels, data is transmitted and/or received on the bus each time the
command register is written to.
For slave channels, data is read or written to the FIFO each time the command register
is written to.

Master channels also come with two slave address registers to specify the address of
the slave to write to or read from.

16-bit register Offset in holding register table Value
0 Command register
1 Address1 register
2 Address2 register
3 Byte 0
4 Byte 1
5 Byte 2
6 Byte 3

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 40 508.921.4600

… …
100 Byte 97
101 Byte 98
102 Byte 99
103 <Next master or slave channel>

Slave channels come with one command register that specified the number of bytes to
transfer and the direction (write or read)

16-bit register Offset in holding register table Value
0 Command register
1 Byte 0
2 Byte 1
… …
99 Byte 98
100 Byte 99
101 <Next master or slave channel>

I2C devices are configured exclusively using the XML configuration file format.

For example:
<device type="i2c" devn="4" dataType="i16">
 <channel id="2" name="master0">
 <enabled>on</enabled>
 <mode>master</mode>
 <bitRate>400000</bitRate>
 <ttlLevel>5</ttlLevel>
 <secureShell>on</secureShell>
 <multiMaster>off</multimaster>
 <termination>on</termination>
 <loopback>on</loopback>
 <xdcp>off</xdcp>
 </channel>
 <channel id="2" name="slave2">
 <enabled>on</enabled>
 <mode>slave</mode>
 <bitRate>400000</bitRate>
 <ttlLevel>3.3</ttlLevel>
 <slaveAddress>5</slaveAddress>
 <slaveAddressWidth>7</slaveAddressWidth>
 </channel>
</device>

The channel element for an I2C device represents a master or slave channel.

The mode element determines whether a channel is master or slave.

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 41 508.921.4600

The channel element can contain any of the following sub-elements. If a parameter is
omitted, a default value will be used instead.

Parameters are not case sensitive.

• Mode: Configure the channel as a master or as a slave.
• BitRate: Configure the channel bit rate. Only three values are valid: 100000,

400000 or 1000000 bits/sec.
• TtlLevel: Configure the TTL level for data and clock signals.
• SecureShell: Enable or disable secure shell which verifies that commands are

transmitted without errors using CRC.
• MultiMaster: Enable or disable multi-master capability
• Termination: Enable or disable termination
• Loopback: Enable or disable loopback between master and slave channels

sharing the same ID
• Xdcp: Enable or disable XDCP mode for devices that require it.
• SlaveAddressWidth: Configure the address width of a slave channel (7 or 10)
• SlaveAddress: Configure the address of a slave channel

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 42 508.921.4600

3. Booting strategies
The UEIModbus file system contains the libraries, executables, and configuration files
needed to make the system functional.

By default, the file system is stored on the SD card inserted on the front panel of the
UEIModbus.

The file system can alternatively be located in a RAM drive loaded from the FLASH
memory or loaded from a remote server using the NFS protocol.

The standard UEIModbus file system is read/write to ease the configuration and allow
uploading of files during the development phase.

Once an application/configuration is stable, it is recommended to convert the file system
to read-only mode to render the UEIModbus file system resilient against unscheduled
shutdowns.

3.1. Booting an SD card with system partition read-only
The procedure below converts the standard UEIModbus file system to a read-only one.

1. Edit /etc/fstab as below to mount a RAM disk at /var (ram disk maximum size is
set to 2MBytes):

/dev/sdcard1 / ext3 defaults,noatime 1 1
none /proc proc defaults 0 0
none /sys sysfs defaults 0 0
none /dev/pts devpts defaults 0 0
tmpfs /var tmpfs defaults,size=2M 0 0

2. Create a new script /etc/varsetup.sh with the content below. It sets up the folders
needed in /var and maps a few writable folders at /tmp, /mnt and /home.

mkdir /var/tmp
mkdir /var/log
mkdir /var/lib
mkdir /var/lib/misc
mkdir /var/spool
mkdir /var/spool/cron
mkdir /var/spool/cron/crontabs
mkdir /var/run
mkdir /var/lock
mkdir /var/mnt
mkdir /var/home

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 43 508.921.4600

mount --bind /var/tmp /tmp
mount --bind /var/mnt /mnt
mount --bind /var/home /home

3. Edit /etc/inittab as shown below to execute varsetup.sh.

Mount all filesystem listed in /etc/fstab
::sysinit:/bin/mount –a

Create and mount non-persistent folders
::sysinit:/etc/varsetup.sh

Configure local network interface
::sysinit:/sbin/ifconfig lo 127.0.0.1 up
::sysinit:/sbin/route add -net 127.0.0.0 netmask 255.0.0.0 lo

run rc scripts
::sysinit:/etc/rcS

Start a shell on the console
ttyS0::respawn:-/bin/sh

unmount root file system when shutting-down
::shutdown:/bin/umount -a -r

4. Create symbolic links to files stored in /etc that need to be kept writeable.

ln –s /var/resolv.conf /etc/resolv.conf
ln –s /var/layers.xml /etc/layers.xml

5. Connect the console serial port, power-up the UEIModbus, and press any key to
enter U-Boot. Type the following commands to load the root file system read-
only:

setenv bootargs console=ttyS0,57600 root=62:1 ro
saveenv
reset

3.2. Restoring or creating a new SD card
Restoring or initializing a new SD card can only be done on a Linux PC (real or virtual).

1. Locate the SD card image file rfs-x.y.z.tgz on your UEIModbus CDROM as well
as the script containing the sequence of commands to partition, format, and
initialize a new SD card.

2. Connect the SD card via a USB adapter (or directly if your computer has a built-
in reader).

 UEIModbus User Manual

© Copyright 2021 www.ueidaq.com
United Electronic Industries, Inc. 44 508.921.4600

3. Type the command dmesg to find out what device node is associated with the
SD card. (Linux kernel outputs messages when it detects a new removable
drive).

4. Assuming that /dev/sdb is the SD card device node, type ./createsdcard.sh
/dev/sdb rfs-x.y.z.tgz to partition, format and copy files to the card.

	1. Introduction
	1.1. Register tables
	1.2. Mapping PowerDNA I/O boards to MODBUS register tables
	1.2.1. Data type representations in MODBUS registers
	1.2.2. Digital I/O device representation
	1.2.3. Digital I/O device with diagnostics representation
	1.2.4. Analog I/O device representation
	1.2.5. Analog output devices with diagnostics representation
	1.2.6. Power/NIC boards diagnostic representation
	1.2.7. View register tables

	2. Configuring UEIModbus
	2.1. Connecting through the serial port
	2.2. Configuring the IP address
	2.3. Opening the web UI
	2.4. Starting/Stopping MODBUS slave service
	2.4.1. Using the web UI to start/stop the slave service
	2.4.2. Using the command line to start/stop the slave service

	2.5. Configuring the date and time
	2.5.1. Synchronizing time and date with the NTP server
	2.5.1.1. Using the web UI to synchronize with NTP server
	2.5.1.2. Using the command line to synchronize with NTP server

	2.5.2. Setting local date and time
	2.5.2.1. Using the web UI to set local date and time
	2.5.2.2. Using the command line to set local date and time

	2.5.3. Changing the time zone

	2.6. Configuring I/O channels
	2.6.1. Using the web UI to configure I/O channels
	2.6.1.1. Using the web UI to configure the Scan Rate

	2.6.2. Using the command line to configure I/O channels
	2.6.2.1. Configuring analog input devices
	2.6.2.1.1. Thermocouple (TC)
	2.6.2.1.2. Strain gage (SG)
	2.6.2.1.3. IEPE/Accelerometer (IE)
	2.6.2.1.4. RTD (RT)
	2.6.2.1.5. LVDT/RVDT (LV)
	2.6.2.1.6. Synchro/Resolver (SY)

	2.6.2.2. Configuring analog output devices
	2.6.2.3. Configuring digital input devices
	2.6.2.4. Configuring digital output devices
	2.6.2.5. Configuring counter input devices
	2.6.2.6. Configuring quadrature encoder input devices (QU)
	2.6.2.7. Configuring frequency/PWM output devices (CO)
	2.6.2.8. Configuring variable reluctance input devices (VR)
	2.6.2.9. Configuring an ARINC-429 device
	2.6.2.10. Configuring an I2C device

	3. Booting strategies
	3.1. Booting an SD card with system partition read-only
	3.2. Restoring or creating a new SD card

